1
|
Izquierdo-Lara RW, Villabruna N, Hesselink DA, Schapendonk CME, Ribó Pons S, Nieuwenhuijse D, Meier JIJ, Goodfellow I, Dalm VASH, Fraaij PLA, van Kampen JJA, Koopmans MPG, de Graaf M. Patterns of the within-host evolution of human norovirus in immunocompromised individuals and implications for treatment. EBioMedicine 2024; 109:105391. [PMID: 39396425 DOI: 10.1016/j.ebiom.2024.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Currently, there is no licensed treatment for chronic norovirus infections, but the use of intra-duodenally-delivered immunoglobulins is promising; nevertheless, varying results have limited their wide use. Little is known about the relationship between norovirus genetic diversity and treatment efficacy. METHODS We analyzed the norovirus within-host diversity and evolution in a cohort of 20 immunocompromised individuals using next-generation sequencing (NGS) and clone-based sequencing of the capsid (VP1) gene. Representative VP1s were expressed and their glycan receptor binding affinity and antigenicity were evaluated. FINDINGS The P2 domain, within the VP1, accumulated up to 30-fold more non-synonymous mutations than other genomic regions. Intra-host virus populations in these patients tended to evolve into divergent lineages that were often antigenically distinct. Several of these viruses were widely resistant to binding-blocking antibodies in immunoglobulin preparations. Notably, for one patient, a single amino-acid substitution in the P2 domain resulted in an immune-escape phenotype, and it was likely the main contributor to treatment failure. Furthermore, we found evidence for transmission of late-stage viruses between two immunocompromised individuals. INTERPRETATION The findings demonstrated that within-host noroviruses in chronic infections tend to evolve into antigenically distinct subpopulations. This antigenic evolution was likely caused by the remaining low immunity levels exerted by immunocompromised individuals, possibly undermining antiviral treatment. Our observations provide insights into norovirus (within-host) evolution and treatment. FUNDING Erasmus MC grant mRACE, the European Union's Horizon 2020 research and innovation program under grant agreement No. 874735 (VEO), and the NWO STEVIN award (Koopmans).
Collapse
Affiliation(s)
- Ray W Izquierdo-Lara
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nele Villabruna
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Sol Ribó Pons
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - David Nieuwenhuijse
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jenny I J Meier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, UK
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Allergy & Clinical Immunology; Department of Immunology, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen J A van Kampen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Shah SAW, Palomar DP, Barr I, Poon LLM, Quadeer AA, McKay MR. Seasonal antigenic prediction of influenza A H3N2 using machine learning. Nat Commun 2024; 15:3833. [PMID: 38714654 PMCID: PMC11076571 DOI: 10.1038/s41467-024-47862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
Antigenic characterization of circulating influenza A virus (IAV) isolates is routinely assessed by using the hemagglutination inhibition (HI) assays for surveillance purposes. It is also used to determine the need for annual influenza vaccine updates as well as for pandemic preparedness. Performing antigenic characterization of IAV on a global scale is confronted with high costs, animal availability, and other practical challenges. Here we present a machine learning model that accurately predicts (normalized) outputs of HI assays involving circulating human IAV H3N2 viruses, using their hemagglutinin subunit 1 (HA1) sequences and associated metadata. Each season, the model learns an updated nonlinear mapping of genetic to antigenic changes using data from past seasons only. The model accurately distinguishes antigenic variants from non-variants and adaptively characterizes seasonal dynamics of HA1 sites having the strongest influence on antigenic change. Antigenic predictions produced by the model can aid influenza surveillance, public health management, and vaccine strain selection activities.
Collapse
Affiliation(s)
- Syed Awais W Shah
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Daniel P Palomar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Industrial Engineering & Decision Analytics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong SAR, China
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Matthew R McKay
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Carnaccini S, Cáceres CJ, Gay LC, Ferreri LM, Skepner E, Burke DF, Brown IH, Geiger G, Obadan A, Rajao DS, Lewis NS, Perez DR. Antigenic mapping of the hemagglutinin of the H9 subtype influenza A viruses using sera from Japanese quail ( Coturnix c. japonica). J Virol 2023; 97:e0074323. [PMID: 37800947 PMCID: PMC10617583 DOI: 10.1128/jvi.00743-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eugene Skepner
- Center for Pathogen Evolution, University of Cambridge, Cambridge, United Kingdom
| | - David F. Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Adebimpe Obadan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola S. Lewis
- World Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Witte L, Baharani VA, Schmidt F, Wang Z, Cho A, Raspe R, Guzman-Cardozo C, Muecksch F, Canis M, Park DJ, Gaebler C, Caskey M, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Epistasis lowers the genetic barrier to SARS-CoV-2 neutralizing antibody escape. Nat Commun 2023; 14:302. [PMID: 36653360 PMCID: PMC9849103 DOI: 10.1038/s41467-023-35927-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Waves of SARS-CoV-2 infection have resulted from the emergence of viral variants with neutralizing antibody resistance mutations. Simultaneously, repeated antigen exposure has generated affinity matured B cells, producing broadly neutralizing receptor binding domain (RBD)-specific antibodies with activity against emergent variants. To determine how SARS-CoV-2 might escape these antibodies, we subjected chimeric viruses encoding spike proteins from ancestral, BA.1 or BA.2 variants to selection by 40 broadly neutralizing antibodies. We identify numerous examples of epistasis, whereby in vitro selected and naturally occurring substitutions in RBD epitopes that do not confer antibody resistance in the Wuhan-Hu-1 spike, do so in BA.1 or BA.2 spikes. As few as 2 or 3 of these substitutions in the BA.5 spike, confer resistance to nearly all of the 40 broadly neutralizing antibodies, and substantial resistance to plasma from most individuals. Thus, epistasis facilitates the acquisition of resistance to antibodies that remained effective against early omicron variants.
Collapse
Affiliation(s)
- Leander Witte
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Alice Cho
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | | | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Debby J Park
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int J Mol Sci 2022; 23:ijms232012408. [PMID: 36293269 PMCID: PMC9604028 DOI: 10.3390/ijms232012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza remains one of the most prevalent viruses circulating amongst humans and has resulted in several pandemics. The prevention and control of H3N2 influenza is complicated by its propensity for evolution, which leads to vaccine mismatch and reduced vaccine efficacies. This study employed the strategy of serial passaging to compare the evolution of the human seasonal influenza strain A/Singapore/G2-31.1/2014(H3N2) in MDCK-SIAT1 versus primary chick embryo fibroblast (CEF) cells. Genetic analysis of the HA, NS1, NA, and PB1 gene segments by Sanger sequencing revealed the presence of specific mutations and a repertoire of viral quasispecies following serial passaging. Most quasispecies were also found in PB1, which exhibited consistently high transversion-to-transition ratios in all five MDCK-SIAT1 passages. Most notably, passage 5 virus harbored the D457G substitution in the HA2 subunit, while passage 3 virus acquired K53Q and Q69H mutations in PB1-F2. An A971 variant leading to a non-synonymous R316Q substitution in PB1 was also identified in MDCK-SIAT1 passages 2 and 4. With an increasing number of passages, the proportion of D457G mutations progressively increased and was associated with larger virus plaque sizes. However, microneutralization assays revealed no significant differences in the neutralizing antibody profiles of human-influenza-immune serum samples against pre-passaged virus and passage 5 virus. In contrast, viable virus was only detected in passage 1 of CEF cells, which gave rise to multiple viral RNA quasispecies. Our findings highlight that serial passaging is able to drive differential adaptation of H3N2 influenza in different host species and may alter viral virulence. More studies are warranted to elucidate the complex relationships between H3N2 virus evolution, viral virulence changes, and low vaccine efficacy.
Collapse
|
6
|
Liang W, Tan TJC, Wang Y, Lv H, Sun Y, Bruzzone R, Mok CKP, Wu NC. Egg-adaptive mutations of human influenza H3N2 virus are contingent on natural evolution. PLoS Pathog 2022; 18:e1010875. [PMID: 36155668 PMCID: PMC9536752 DOI: 10.1371/journal.ppat.1010875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Egg-adaptive mutations in influenza hemagglutinin (HA) often emerge during the production of egg-based seasonal influenza vaccines, which contribute to the largest share in the global influenza vaccine market. While some egg-adaptive mutations have minimal impact on the HA antigenicity (e.g. G186V), others can alter it (e.g. L194P). Here, we show that the preference of egg-adaptive mutation in human H3N2 HA is strain-dependent. In particular, Thr160 and Asn190, which are found in many recent H3N2 strains, restrict the emergence of L194P but not G186V. Our results further suggest that natural amino acid variants at other HA residues also play a role in determining the preference of egg-adaptive mutation. Consistently, recent human H3N2 strains from different clades acquire different mutations during egg passaging. Overall, these results demonstrate that natural mutations in human H3N2 HA can influence the preference of egg-adaptation mutation, which has important implications in seed strain selection for egg-based influenza vaccine.
Collapse
Affiliation(s)
- Weiwen Liang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanxin Sun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Istituto Pasteur Italia, Rome, Italy
- Centre for Immunology & Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Chris K. P. Mok
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (CKPM); (NCW)
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (CKPM); (NCW)
| |
Collapse
|
7
|
Wang Y, Lei R, Nourmohammad A, Wu NC. Antigenic evolution of human influenza H3N2 neuraminidase is constrained by charge balancing. eLife 2021; 10:e72516. [PMID: 34878407 PMCID: PMC8683081 DOI: 10.7554/elife.72516] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the main influenza antigens, neuraminidase (NA) in H3N2 virus has evolved extensively for more than 50 years due to continuous immune pressure. While NA has recently emerged as an effective vaccine target, biophysical constraints on the antigenic evolution of NA remain largely elusive. Here, we apply combinatorial mutagenesis and next-generation sequencing to characterize the local fitness landscape in an antigenic region of NA in six different human H3N2 strains that were isolated around 10 years apart. The local fitness landscape correlates well among strains and the pairwise epistasis is highly conserved. Our analysis further demonstrates that local net charge governs the pairwise epistasis in this antigenic region. In addition, we show that residue coevolution in this antigenic region is correlated with the pairwise epistasis between charge states. Overall, this study demonstrates the importance of quantifying epistasis and the underlying biophysical constraint for building a model of influenza evolution.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Armita Nourmohammad
- Department of Physics, University of WashingtonSeattleUnited States
- Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
- Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Carle Illinois College of Medicine, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
8
|
A statistical analysis of antigenic similarity among influenza A (H3N2) viruses. Heliyon 2021; 7:e08384. [PMID: 34825090 PMCID: PMC8605065 DOI: 10.1016/j.heliyon.2021.e08384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
An accurate assessment of antigenic similarity between influenza viruses is important for vaccine strain recommendations and influenza surveillance. Due to the mechanisms that result in frequent changes in the antigenicities of strains, it is desirable to obtain an antigenic similarity measure that accounts for specific changes in strains that are of epidemiological importance in influenza. Empirically grounded statistical models best achieve this. In this study, an interpretable machine-learning model was developed using distinguishing features of antigenic variants to analyze antigenic similarity. The features comprised of cluster information, amino acid sequences located in known antigenic and receptor-binding sites of influenza A (H3N2). In order to assess validity of parameters, accuracy and relevance of model to vaccine effectiveness, the model was applied to influenza A (H3N2) viruses due to their abundant genetic data and epidemiological relevance to influenza surveillance. An application of the model revealed that all model parameters were statistically significant to determining antigenic similarity between strains. Furthermore, upon evaluating the model for predicting antigenic similarity between strains, it achieved 95% area under Receiver Operating Characteristic curve (AUC), 94% accuracy, 76% precision, 97% specificity, 68% sensitivity and a diagnostic odds ratio (DOR) of 83.19. Above all, the model was found to be strongly related to influenza vaccine effectiveness to indicate the correlation between vaccine effectiveness and antigenic similarity between vaccine and circulating strains in an epidemic. The study predicts probabilities of antigenic similarity and estimates changes in strains that lead to antigenic variants. A successful application of the methods presented in this study would complement the global efforts in influenza surveillance.
Collapse
|
9
|
Kissling E, Pozo F, Buda S, Vilcu AM, Gherasim A, Brytting M, Domegan L, Gómez V, Meijer A, Lazar M, Vučina VV, Dürrwald R, van der Werf S, Larrauri A, Enkirch T, O'Donnell J, Guiomar R, Hooiveld M, Petrović G, Stoian E, Penttinen P, Valenciano M. Low 2018/19 vaccine effectiveness against influenza A(H3N2) among 15-64-year-olds in Europe: exploration by birth cohort. ACTA ACUST UNITED AC 2020; 24. [PMID: 31796152 PMCID: PMC6891946 DOI: 10.2807/1560-7917.es.2019.24.48.1900604] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction Influenza A(H3N2) clades 3C.2a and 3C.3a co-circulated in Europe in 2018/19. Immunological imprinting by first childhood influenza infection may induce future birth cohort differences in vaccine effectiveness (VE). Aim The I-MOVE multicentre primary care test-negative study assessed 2018/19 influenza A(H3N2) VE by age and genetic subgroups to explore VE by birth cohort. Methods We measured VE against influenza A(H3N2) and (sub)clades. We stratified VE by usual age groups (0–14, 15–64, ≥ 65-years). To assess the imprint-regulated effect of vaccine (I-REV) hypothesis, we further stratified the middle-aged group, notably including 32–54-year-olds (1964–86) sharing potential childhood imprinting to serine at haemagglutinin position 159. Results Influenza A(H3N2) VE among all ages was −1% (95% confidence interval (CI): −24 to 18) and 46% (95% CI: 8–68), −26% (95% CI: −66 to 4) and 20% (95% CI: −20 to 46) among 0–14, 15–64 and ≥ 65-year-olds, respectively. Among 15–64-year-olds, VE against clades 3C.2a1b and 3C.3a was 15% (95% CI: −34 to 50) and −74% (95% CI: −259 to 16), respectively. VE was −18% (95% CI: −140 to 41), −53% (95% CI: −131 to −2) and −12% (95% CI: −74 to 28) among 15–31-year-olds (1987–2003), 32–54-year-olds (1964–86) and 55–64-year-olds (1954–63), respectively. Discussion The lowest 2018/19 influenza A(H3N2) VE was against clade 3C.3a and among those born 1964–86, corresponding to the I-REV hypothesis. The low influenza A(H3N2) VE in 15–64-year-olds and the public health impact of the I-REV hypothesis warrant further study.
Collapse
Affiliation(s)
| | - Francisco Pozo
- National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III, Madrid, Spain
| | - Silke Buda
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Respiratory Infections Unit, Berlin, Germany
| | - Ana-Maria Vilcu
- Sorbonne Université, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
| | - Alin Gherasim
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain.,National Epidemiology Centre, Institute of Health Carlos III, Madrid, Spain
| | - Mia Brytting
- Public Health Agency of Sweden, Stockholm, Sweden
| | - Lisa Domegan
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Health Service Executive- Health Protection Surveillance Centre, Dublin, Ireland
| | - Verónica Gómez
- Departamento de Epidemiologia, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Adam Meijer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mihaela Lazar
- "Cantacuzino" National Military-Medical Institute for Research and Development, Bucharest, Romania
| | - Vesna Višekruna Vučina
- Croatian Institute of Public Health, Division for epidemiology of communicable diseases, Zagreb, Croatia
| | - Ralf Dürrwald
- Robert Koch Institute, National Reference Center for Influenza, Germany
| | - Sylvie van der Werf
- CNR des virus des infections respiratoires, WHO National Influenza Center, Institut Pasteur, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR3569, Université Paris Diderot SPC, France
| | - Amparo Larrauri
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain.,National Epidemiology Centre, Institute of Health Carlos III, Madrid, Spain
| | | | - Joan O'Donnell
- Health Service Executive- Health Protection Surveillance Centre, Dublin, Ireland
| | - Raquel Guiomar
- Departamento de Doenças Infeciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Mariëtte Hooiveld
- Nivel (Netherlands Institute for Health Services Research), Utrecht, the Netherlands
| | - Goranka Petrović
- Croatian Institute of Public Health, Division for epidemiology of communicable diseases, Zagreb, Croatia
| | - Elena Stoian
- "Cantacuzino" National Military-Medical Institute for Research and Development, Bucharest, Romania
| | - Pasi Penttinen
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | -
- The I-MOVE primary care study team members are listed at the end of the article
| |
Collapse
|
10
|
Wille M, Holmes EC. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038489. [PMID: 31871237 DOI: 10.1101/cshperspect.a038489] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The patterns and processes of influenza virus evolution are of fundamental importance, underpinning such traits as the propensity to emerge in new host species and the ability to rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evolution of influenza viruses. We begin with an exploration of the origins of influenza viruses within the orthomyxoviruses, showing how our perception of the evolutionary history of these viruses has been transformed with metagenomic sequencing. We then outline the diversity of virus subtypes in different species and the processes by which these viruses have emerged in new hosts, with a particular focus on the role played by segment reassortment. We then turn our attention to documenting the spread and phylodynamics of seasonal influenza A and B viruses in human populations, including the drivers of antigenic evolution, and finish with a discussion of virus diversity and evolution at the scale of individual hosts.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
11
|
Fitness Barriers Limit Reversion of a Proofreading-Deficient Coronavirus. J Virol 2019; 93:JVI.00711-19. [PMID: 31341046 PMCID: PMC6798108 DOI: 10.1128/jvi.00711-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants. The 3′-to-5′ exoribonuclease in coronavirus (CoV) nonstructural protein 14 (nsp14-ExoN) mediates RNA proofreading during genome replication. ExoN catalytic residues are arranged in three motifs: I (DE), II (E), and III (D). Alanine replacement of the motif I residues (AA-E-D; four nucleotide substitutions) in murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV yields viable mutants with impaired replication and fitness, increased mutation rates, and attenuated virulence in vivo. Despite these impairments, MHV- and SARS-CoV ExoN motif I AA mutants (ExoN-AA) have not reverted at motif I in diverse in vitro and in vivo environments, suggesting that profound fitness barriers prevent motif I reversion. To test this hypothesis, we engineered MHV-ExoN-AA with 1, 2, or 3 nucleotide mutations along genetic pathways to AA-to-DE reversion. We show that engineered intermediate revertants were viable but had no increased replication or competitive fitness compared to that of MHV-ExoN-AA. In contrast, a low-passage-number (passage 10 [P10]) MHV-ExoN-AA showed increased replication and competitive fitness without reversion of ExoN-AA. Finally, engineered reversion of ExoN-AA to ExoN-DE in the presence of ExoN-AA passage-adaptive mutations resulted in significant fitness loss. These results demonstrate that while reversion is possible, at least one alternative adaptive pathway is more rapidly advantageous than intermediate revertants and may alter the genetic background to render reversion detrimental to fitness. Our results provide an evolutionary rationale for lack of ExoN-AA reversion, illuminate potential multiprotein replicase interactions and coevolution, and support future studies aimed at stabilizing attenuated CoV ExoN-AA mutants. IMPORTANCE Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants.
Collapse
|