1
|
Zhang Y, Nagalo BM. Immunovirotherapy Based on Recombinant Vesicular Stomatitis Virus: Where Are We? Front Immunol 2022; 13:898631. [PMID: 35837384 PMCID: PMC9273848 DOI: 10.3389/fimmu.2022.898631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA virus of the Vesiculovirus genus, has demonstrated encouraging anti-neoplastic activity across multiple human cancer types. VSV is particularly attractive as an oncolytic agent because of its broad tropism, fast replication kinetics, and amenability to genetic manipulations. Furthermore, VSV-induced oncolysis can elicit a potent antitumor cytotoxic T-cell response to viral proteins and tumor-associated antigens, resulting in a long-lasting antitumor effect. Because of this multifaceted immunomodulatory property, VSV was investigated extensively as an immunovirotherapy alone or combined with other anticancer modalities, such as immune checkpoint blockade. Despite these recent opportunities to delineate synergistic and additive antitumor effects with existing anticancer therapies, FDA approval for the use of oncolytic VSV in humans has not yet been granted. This mini-review discusses factors that have prompted the use of VSV as an immunovirotherapy in human cancers and provides insights into future perspectives and research areas to improve VSV-based oncotherapy.
Collapse
Affiliation(s)
- Yuguo Zhang
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Bolni Marius Nagalo,
| |
Collapse
|
2
|
Kim GN, Choi JA, Wu K, Saeedian N, Yang E, Park H, Woo SJ, Lim G, Kim SG, Eo SK, Jeong HW, Kim T, Chang JH, Seo SH, Kim NH, Choi E, Choo S, Lee S, Winterborn A, Li Y, Parham K, Donovan JM, Fenton B, Dikeakos JD, Dekaban GA, Haeryfar SMM, Troyer RM, Arts EJ, Barr SD, Song M, Kang CY. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2. PLoS Pathog 2021; 17:e1010092. [PMID: 34914812 PMCID: PMC8675757 DOI: 10.1371/journal.ppat.1010092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022] Open
Abstract
The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19. The COVID-19 pandemic has had unprecedented global health, economic and societal impact globally. Vaccinating the majority of the world’s population is the best way to help prevent new infections. Many vaccines have been developed to prevent various viral diseases that are currently in use around the world. This has generated a high demand for these vaccines, putting a strain on production capacity and delivery. With new variants of concern starting to dominate the human pandemic, new derivatives of the current vaccines may be necessary for continued protection from SARS-CoV-2 infection. We have developed a vaccine that uses a safe vesicular stomatitis virus-based delivery vehicle to present a key SARS-CoV-2 protein to our immune system in order to train it to recognize and prevent SARS-CoV-2 infection. Our vaccine completely protected vaccinated animals from SARS-CoV-2 infection and significantly reduced lung damage, a major hallmark of COVID-19.
Collapse
Affiliation(s)
- Gyoung Nyoun Kim
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Jung-ah Choi
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kunyu Wu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Nasrin Saeedian
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Eunji Yang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Hayan Park
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Sun-Je Woo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Gippeum Lim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Seong-Gyu Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Su-Kyeong Eo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Hoe Won Jeong
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Taewoo Kim
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Jae-Hyung Chang
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Sang Hwan Seo
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Na Hyung Kim
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Eunsil Choi
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Seungho Choo
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | - Sangkyun Lee
- Sumagen, 4F Dongwon Bldg, Teheran-ro 77-gil, Gangnam-gu, Seoul, Korea
| | | | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Kate Parham
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Justin M. Donovan
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Brock Fenton
- Department of Biology, Faculty of Science, The University of Western Ontario, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Gregory A. Dekaban
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ryan M. Troyer
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Eric J. Arts
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Manki Song
- International Vaccine Institute, SNU Research Park, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - C. Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|