1
|
Denny JE, Alam MZ, Mdluli NV, Maslanka JR, Lieberman LA, Abt MC. Monoclonal antibody-mediated neutralization of Clostridioides difficile toxin does not diminish induction of the protective innate immune response to infection. Anaerobe 2024; 88:102859. [PMID: 38701911 PMCID: PMC11347114 DOI: 10.1016/j.anaerobe.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Clostridioides difficile infection causes pathology that ranges in severity from diarrhea to pseudomembranous colitis. Toxin A and Toxin B are the two primary virulence factors secreted by C. difficile that drive disease severity. The toxins damage intestinal epithelial cells leading to a loss of barrier integrity and induction of a proinflammatory host response. Monoclonal antibodies (mAbs) that neutralize Toxin A and Toxin B, actoxumab and bezlotoxumab, respectively, significantly reduce disease severity in a murine model of C. difficile infection. However, the impact of toxin neutralization on the induction and quality of the innate immune response following infection is unknown. The goal of this study was to define the quality of the host innate immune response in the context of anti-toxin mAbs therapy. At day 2 post-infection, C. difficile-infected, mAbs-treated mice had significantly less disease compared to isotype-treated mice despite remaining colonized with C. difficile. C. difficile-infected mAbs-treated mice still exhibited marked neutrophil infiltration and induction of a subset of proinflammatory cytokines within the intestinal lamina propria following infection that is comparable to isotype-treated mice. Furthermore, both mAbs and isotype-treated mice had an increase in IL-22-producing ILCs in the intestine following infection. MAbs-treated mice exhibited increased infiltration of eosinophils in the intestinal lamina propria, which has been previously reported to promote a protective host response following C. difficile infection. These findings show that activation of host protective mechanisms remain intact in the context of monoclonal antibody-mediated toxin neutralization.
Collapse
Affiliation(s)
- Joshua E Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Zahidul Alam
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nontokozo V Mdluli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey R Maslanka
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael C Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Hontecillas R. Oral Omilancor Treatment Ameliorates Clostridioides difficile Infection During IBD Through Novel Immunoregulatory Mechanisms Mediated by LANCL2 Activation. Inflamm Bowel Dis 2024; 30:103-113. [PMID: 37436905 DOI: 10.1093/ibd/izad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is an opportunistic infection of the gastrointestinal tract, commonly associated with antibiotic administration, that afflicts almost 500 000 people yearly only in the United States. CDI incidence and recurrence is increased in inflammatory bowel disease (IBD) patients. Omilancor is an oral, once daily, first-in-class, gut-restricted, immunoregulatory therapeutic in clinical development for the treatment of IBD. METHODS Acute and recurrent murine models of CDI and the dextran sulfate sodium-induced concomitant model of IBD and CDI were utilized to determine the therapeutic efficacy of oral omilancor. To evaluate the protective effects against C. difficile toxins, in vitro studies with T84 cells were also conducted. 16S sequencing was employed to characterize microbiome composition. RESULTS Activation of the LANCL2 pathway by oral omilancor and its downstream host immunoregulatory changes decreased disease severity and inflammation in the acute and recurrence models of CDI and the concomitant model of IBD/CDI. Immunologically, omilancor treatment increased mucosal regulatory T cell and decreased pathogenic T helper 17 cell responses. These immunological changes resulted in increased abundance and diversity of tolerogenic gut commensal bacterial strains in omilancor-treated mice. Oral omilancor also resulted in accelerated C. difficile clearance in an antimicrobial-free manner. Furthermore, omilancor provided protection from toxin damage, while preventing the metabolic burst observed in intoxicated epithelial cells. CONCLUSIONS These data support the development of omilancor as a novel host-targeted, antimicrobial-free immunoregulatory therapeutic for the treatment of IBD patients with C. difficile-associated disease and pathology with the potential to address the unmet clinical needs of ulcerative colitis and Crohn's disease patients with concomitant CDI.
Collapse
|
3
|
Brauns S, Marquardt I, Thon C, Frentzel S, Jakob J, Färber J, Philipsen L, Jänsch L, Link A, Bruder D. Mucosal-associated invariant T cells from Clostridioides difficile-infected patients exhibit a distinct proinflammatory phenotype and enhanced cytotoxic activity. Int Immunol 2023; 35:543-554. [PMID: 37549964 DOI: 10.1093/intimm/dxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells mainly found in the mucosa and peripheral blood. We have recently demonstrated that Clostridioides difficile activates MAIT cells in vitro. However, their role in the pathogenesis of C. difficile infection (CDI) in human patients remains elusive to date. In this study, we performed comprehensive immunophenotyping of MAIT cells derived from CDI patients and compared their phenotype to that of patients with inflammatory bowel diseases (IBD) and healthy controls. Our study revealed that blood MAIT cells from CDI patients exhibit an interleukin 17a (IL-17a)-dominated proinflammatory phenotype and an increased readiness to synthesize the proinflammatory cytokine interferon γ (IFN-γ) following in vitro re-stimulation. Moreover, the cytotoxic activity of MAIT cells, as measured by surface CD107a and intracellular granzyme B expression, was strongly increased in CDI. Multi epitope ligand cartography (MELC) analysis of intestinal biopsies from CDI patients revealed that MAIT cells exhibit an increased production of granzyme B and increased cytotoxicity compared to the control group. Together with previously published in vitro data from our group, our findings suggest that MAIT cells are functionally involved in the immune response against C. difficile and contribute to the pathogenesis of CDI.
Collapse
Affiliation(s)
- Steffen Brauns
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Isabel Marquardt
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Sarah Frentzel
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jacqueline Färber
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Multi-parametric Bioimaging and Cytometry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
4
|
Baker R, Hontecillas R, Tubau-Juni N, Leber AJ, Kale S, Bassaganya-Riera J. Computational modeling of complex bioenergetic mechanisms that modulate CD4+ T cell effector and regulatory functions. NPJ Syst Biol Appl 2022; 8:45. [DOI: 10.1038/s41540-022-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractWe built a computational model of complex mechanisms at the intersection of immunity and metabolism that regulate CD4+ T cell effector and regulatory functions by using coupled ordinary differential equations. The model provides an improved understanding of how CD4+ T cells are shaping the immune response during Clostridioides difficile infection (CDI), and how they may be targeted pharmacologically to produce a more robust regulatory (Treg) response, which is associated with improved disease outcomes during CDI and other diseases. LANCL2 activation during CDI decreased the effector response, increased regulatory response, and elicited metabolic changes that favored Treg. Interestingly, LANCL2 activation provided greater immune and metabolic modulation compared to the addition of exogenous IL-2. Additionally, we identified gluconeogenesis via PEPCK-M as potentially responsible for increased immunosuppressive behavior in Treg cells. The model can perturb immune signaling and metabolism within a CD4+ T cell and obtain clinically relevant outcomes that help identify novel drug targets for infectious, autoimmune, metabolic, and neurodegenerative diseases.
Collapse
|
5
|
Chandra H, Sharma KK, Tuovinen OH, Sun X, Shukla P. Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes 2022; 13:1979882. [PMID: 34724858 PMCID: PMC8565823 DOI: 10.1080/19490976.2021.1979882] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pathobionts are opportunistic microbes that emerge as a result of perturbations in the healthy microbiome due to complex interactions of various genetic, exposomal, microbial, and host factors that lead to their selection and expansion. Their proliferations can aggravate inflammatory manifestations, trigger autoimmune diseases, and lead to severe life-threatening conditions. Current surge in microbiome research is unwinding these complex interplays between disease development and protection against pathobionts. This review summarizes the current knowledge of pathobiont emergence with a focus on Clostridioides difficile and the recent findings on the roles of immune cells such as iTreg cells, Th17 cells, innate lymphoid cells, and cytokines in protection against pathobionts. The review calls for adoption of innovative tools and cutting-edge technologies in clinical diagnostics and therapeutics to provide insights in identification and quantification of pathobionts.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India,Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA,Xingmin Sun Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India,CONTACT Pratyoosh Shukla School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Yim SK, Kim SW, Lee ST. Efficient Stool Collection Methods for Evaluating the Diarrhea Score in Mouse Diarrhea Models. In Vivo 2021; 35:2115-2125. [PMID: 34182487 DOI: 10.21873/invivo.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The mouse diarrhea score is usually determined by evaluating stool consistency and shape. Thus, defecated stools should be collected without damage or contamination. The study aimed to develop improved mouse stool collection methods and diarrhea-scoring criteria. MATERIALS AND METHODS We developed improved stool collection methods (paper towel methods) and compared them with previously used ones (stool collection using regular cages containing bedding chips or filter paper and metabolic cages). RESULTS Compared to previously used methods, paper towel methods collected stools without bedding chips-induced contamination, mouse body/foot-induced damage, or sampling errors. When using paper towel methods, wet stools create water marks (diarrhea marks) on paper towels with strong water absorption capacity, by which diarrheal severity can be analyzed semi-quantitatively. To improve the objectivity in determining diarrhea scores, practical diarrhea-scoring criteria were also proposed. CONCLUSION These results would be helpful to researchers facing difficulties in evaluating the mouse diarrhea score.
Collapse
Affiliation(s)
- Sung Kyun Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; .,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Stojanović I, Saksida T, Miljković Đ, Pejnović N. Modulation of Intestinal ILC3 for the Treatment of Type 1 Diabetes. Front Immunol 2021; 12:653560. [PMID: 34149694 PMCID: PMC8209467 DOI: 10.3389/fimmu.2021.653560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Gut-associated lymphoid tissue (GALT) is crucial for the maintenance of the intestinal homeostasis, but it is also the potential site of the activation of autoreactive cells and initiation/propagation of autoimmune diseases in the gut and in the distant organs. Type 3 innate lymphoid cells (ILC3) residing in the GALT integrate signals from food ingredients and gut microbiota metabolites in order to control local immunoreactivity. Notably, ILC3 secrete IL-17 and GM-CSF that activate immune cells in combating potentially pathogenic microorganisms. ILC3 also produce IL-22 that potentiates the strength and integrity of epithelial tight junctions, production of mucus and antimicrobial peptides thus enabling the proper function of the intestinal barrier. The newly discovered function of small intestine ILC3 is the secretion of IL-2 and the promotion of regulatory T cell (Treg) generation and function. Since the intestinal barrier dysfunction, together with the reduction in small intestine ILC3 and Treg numbers are associated with the pathogenesis of type 1 diabetes (T1D), the focus of this article is intestinal ILC3 modulation for the therapy of T1D. Of particular interest is free fatty acids receptor 2 (FFAR2), predominantly expressed on intestinal ILC3, that can be stimulated by available selective synthetic agonists. Thus, we propose that FFAR2-based interventions by boosting ILC3 beneficial functions may attenuate autoimmune response against pancreatic β cells during T1D. Also, it is our opinion that treatments based on ILC3 stimulation by functional foods can be used as prophylaxis in individuals that are genetically predisposed to develop T1D.
Collapse
Affiliation(s)
- Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nada Pejnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
McKee HK, Kajiwara C, Yamaguchi T, Ishii Y, Shimizu N, Ohara A, Tateda K. Clostridioides difficile toxins enhanced the in vitro production of CXC chemokine ligand 2 and tumor necrosis factor-α via Toll-like receptors in macrophages. J Med Microbiol 2021; 70. [PMID: 33830910 DOI: 10.1099/jmm.0.001342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction. Clostridioides difficile infection (CDI) causes toxin-mediated enteropathy, such as antibiotic-associated diarrhoea and pseudomembranous colitis. Rho-glucosylating toxin A (TcdA) and toxin B (TcdB) have been clearly implicated in pathogenesis, whereas the virulence of binary toxin (CDT) is still debated.Hypothesis statement. We hypothesized that CDT is involved in the host immune response and plays a pivotal role in establishing virulence by modulating pro-inflammatory cytokine production; this is achieved through the integral Toll-like receptor (TLR) signalling pathways.Aim. The aim of the present study was to determine whether and how CDT impacts macrophages compared to TcdA or TcdB by examining the induction of CXC chemokine ligand 2 (CXCL2) and tumour necrosis factor-α (TNF-α), both of which are crucial in mediating local and systematic inflammatory responses.Methodology. RAW264.7 cells or transfected human embryonic kidney (HEK) 293 T cells were incubated with TcdA, TcdB, or CDT. In some experiments, a neutralizing antibody against TLR2 or TLR4, or myeloid differentiation 88 inhibitory peptide were added. The amount of CXCL2 and TNF-α secreted was then measured.Results. In RAW264.7 macrophages, CXCL2 and TNF-α were produced via the Toll-like receptor 2 (TLR2) or Toll-like receptor 4 (TLR4) pathway in a TcdA, TcdB, or CDT dose-dependent manner. Interleukin-8 secretion was induced in TLR4/MD2/CD14-transfected, but not in TLR2-transfected, HEK 293 T cells following TcdB or CDT exposure.Conclusion. Our results showed that C. difficile toxins, including CDT, enhanced macrophage-mediated CXCL2 and TNF-α production via TLR2 and TLR4, indicating that CDT affects host immune responses.
Collapse
Affiliation(s)
- Hiroe Konishi McKee
- Department of Pediatrics, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.,Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Norikazu Shimizu
- Department of Pediatrics, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan.,Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Akira Ohara
- Department of Pediatrics, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540, Japan
| |
Collapse
|
10
|
Cribas ES, Denny JE, Maslanka JR, Abt MC. Loss of Interleukin-10 (IL-10) Signaling Promotes IL-22-Dependent Host Defenses against Acute Clostridioides difficile Infection. Infect Immun 2021; 89:e00730-20. [PMID: 33649048 PMCID: PMC8091099 DOI: 10.1128/iai.00730-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Infection with the bacterial pathogen Clostridioides difficile causes severe damage to the intestinal epithelium that elicits a robust inflammatory response. Markers of intestinal inflammation accurately predict clinical disease, however, the extent to which host-derived proinflammatory mediators drive pathogenesis versus promote host protective mechanisms remains elusive. In this report, we employed Il10-/- mice as a model of spontaneous colitis to examine the impact of constitutive intestinal immune activation, independent of infection, on C. difficile disease pathogenesis. Upon C. difficile challenge, Il10-/- mice exhibited significantly decreased morbidity and mortality compared to littermate Il10 heterozygote (Il10HET) control mice, despite a comparable C. difficile burden, innate immune response, and microbiota composition following infection. Similarly, antibody-mediated blockade of interleukin-10 (IL-10) signaling in wild-type C57BL/6 mice conveyed a survival advantage if initiated 3 weeks prior to infection. In contrast, no advantage was observed if blockade was initiated on the day of infection, suggesting that the constitutive activation of inflammatory defense pathways prior to infection mediated host protection. IL-22, a cytokine critical in mounting a protective response against C. difficile infection, was elevated in the intestine of uninfected, antibiotic-treated Il10-/- mice, and genetic ablation of the IL-22 signaling pathway in Il10-/- mice negated the survival advantage following C. difficile challenge. Collectively, these data demonstrate that constitutive loss of IL-10 signaling, via genetic ablation or antibody blockade, enhances IL-22-dependent host defense mechanisms to limit C. difficile pathogenesis.
Collapse
Affiliation(s)
- Emily S Cribas
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua E Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey R Maslanka
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Miljković Đ, Jevtić B, Stojanović I, Dimitrijević M. ILC3, a Central Innate Immune Component of the Gut-Brain Axis in Multiple Sclerosis. Front Immunol 2021; 12:657622. [PMID: 33912185 PMCID: PMC8071931 DOI: 10.3389/fimmu.2021.657622] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Gut immune cells have been increasingly appreciated as important players in the central nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS research, as they represent the innate cell counterpart of the major pathogenic cell population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal models of autoimmune diseases. Besides, they are also well known for their ability to stabilize the intestinal barrier and to shape the immune response to the gut microbiota. Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17 cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3 functional modulation for the benefit of MS patients will be addressed, as well.
Collapse
Affiliation(s)
- Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Wang Q, Colonna M. Keeping time in group 3 innate lymphoid cells. Nat Rev Immunol 2020; 20:720-726. [DOI: 10.1038/s41577-020-0397-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
|
14
|
Wang Q, Robinette ML, Billon C, Collins PL, Bando JK, Fachi JL, Sécca C, Porter SI, Saini A, Gilfillan S, Solt LA, Musiek ES, Oltz EM, Burris TP, Colonna M. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci Immunol 2020; 4:4/40/eaay7501. [PMID: 31586012 DOI: 10.1126/sciimmunol.aay7501] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/29/2019] [Indexed: 11/02/2022]
Abstract
Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cyrielle Billon
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Luís Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Cristiane Sécca
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia I Porter
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ankita Saini
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik S Musiek
- Hope Center for Neurological Disorders, Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Thomas P Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Chen YS, Chen IB, Pham G, Shao TY, Bangar H, Way SS, Haslam DB. IL-17-producing γδ T cells protect against Clostridium difficile infection. J Clin Invest 2020; 130:2377-2390. [PMID: 31990686 PMCID: PMC7190913 DOI: 10.1172/jci127242] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/17/2020] [Indexed: 01/04/2023] Open
Abstract
Colitis caused by Clostridium difficile infection is a growing cause of human morbidity and mortality, especially after antibiotic use in health care settings. The natural immunity of newborn infants and protective host immune mediators against C. difficile infection are not fully understood, with data suggesting that inflammation can be either protective or pathogenic. Here, we show an essential role for IL-17A produced by γδ T cells in host defense against C. difficile infection. Fecal extracts from children with C. difficile infection showed increased IL-17A and T cell receptor γ chain expression, and IL-17 production by intestinal γδ T cells was efficiently induced after infection in mice. C. difficile-induced tissue inflammation and mortality were markedly increased in mice deficient in IL-17A or γδ T cells. Neonatal mice, with naturally expanded RORγt+ γδ T cells poised for IL-17 production were resistant to C. difficile infection, whereas elimination of γδ T cells or IL-17A each efficiently overturned neonatal resistance against infection. These results reveal an expanded role for IL-17-producing γδ T cells in neonatal host defense against infection and provide a mechanistic explanation for the clinically observed resistance of infants to C. difficile colitis.
Collapse
MESH Headings
- Animals
- Clostridioides difficile/immunology
- Enterocolitis, Pseudomembranous/genetics
- Enterocolitis, Pseudomembranous/immunology
- Enterocolitis, Pseudomembranous/pathology
- Enterocolitis, Pseudomembranous/prevention & control
- Female
- Humans
- Interleukin-17/genetics
- Interleukin-17/immunology
- Male
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
Collapse
Affiliation(s)
- Yee-Shiuan Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Iuan-Bor Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Giang Pham
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tzu-Yu Shao
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hansraj Bangar
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sing Sing Way
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David B. Haslam
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
The gut microbiome diversity of Clostridioides difficile-inoculated mice treated with vancomycin and fidaxomicin. J Infect Chemother 2020; 26:483-491. [PMID: 32165071 DOI: 10.1016/j.jiac.2019.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effect of vancomycin and fidaxomicin on the diversity of intestinal microbiota in a mouse model of Clostridioides difficile infection. METHODS Mice were divided into 11 models (4 mice per model): 6 uninoculated models and 5 models inoculated with C. difficile BI/NAP1/027. Inoculated models were prepared using intraperitoneal clindamycin followed by inoculation with C. difficile BI/NAP1/027. Uninoculated and C. difficile-inoculated mice received 2 or 7 days' vancomycin or fidaxomicin. Clostridium butyricum MIYAIRI 588 probiotic and lactoferrin prebiotic were administered for 10 days to uninoculated mice. Intestinal microbiome composition was investigated by sequence analyses of bacterial 16S rRNA genes from faeces, and microbiota diversity estimated. RESULTS In uninoculated, untreated ('normal') mice, Clostridia (57.8%) and Bacteroidia (32.4%) accounted for the largest proportions of gut microbiota. The proportion of Clostridia was numerically reduced in C. difficile-inoculated versus normal mice. Administration of vancomycin to C. difficile-inoculated mice reduced the proportions of Bacteroidia and Clostridia, and increased that of Proteobacteria. Administration of fidaxomicin to C. difficile-inoculated mice reduced the proportion of Clostridia to a lesser extent, but increased that of Bacteroidia. Microbiota diversity was lower in C. difficile-inoculated versus normal mice (164.5 versus 349.1 operational taxonomic units (OTUs), respectively); treatment of C. difficile-inoculated mice with 7 days' vancomycin reduced diversity to a greater extent than did 7 days' fidaxomicin treatment (26.2 versus 134.2 OTUs, respectively). CONCLUSIONS Both C. difficile inoculation and treatment with vancomycin or fidaxomicin reduced microbiota diversity; however, dysbiosis associated with fidaxomicin was milder than with vancomycin.
Collapse
|
17
|
Type 3 Immunity during Clostridioides difficile Infection: Too Much of a Good Thing? Infect Immun 2019; 88:IAI.00306-19. [PMID: 31570564 DOI: 10.1128/iai.00306-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clostridioides (formerly known as Clostridium) difficile is the leading cause of hospital-acquired gastrointestinal infections in the United States and one of three urgent health care threats identified by the Centers for Disease Control and Prevention. C. difficile disease is mediated by the production of toxins that disrupt the epithelial barrier and cause a robust host inflammatory response. Studies in humans as well as animal models of disease have shown that the type of immune response generated against the infection dictates the outcome of disease, often irrespective of bacterial burden. Much of the focus on immunity during C. difficile infection (CDI) has been on type 3 immunity because of the established role for this arm of the immune system in other gastrointestinal inflammatory conditions such as inflammatory bowel disease (IBD). For example, interleukin-22 (IL-22) production by group 3 innate lymphoid cells (ILC3s) protects against pathobionts translocating across the epithelium during CDI. On the other hand, interleukin-17 (IL-17) production by Th17 cells increases CDI-associated mortality. Additionally, neutropenia has been associated with increased susceptibility to CDI in humans, but increased neutrophilia in mouse models correlates with host pathology. Taking the data together, these findings suggest dual roles for type 3 immune responses during infection. Here, we review the complex role of type 3 immunity during CDI and delineate what is known about innate and adaptive cellular immunity as well as the downstream effector cytokines known to be important during this infection.
Collapse
|
18
|
Saleh MM, Frisbee AL, Leslie JL, Buonomo EL, Cowardin CA, Ma JZ, Simpson ME, Scully KW, Abhyankar MM, Petri WA. Colitis-Induced Th17 Cells Increase the Risk for Severe Subsequent Clostridium difficile Infection. Cell Host Microbe 2019; 25:756-765.e5. [PMID: 31003940 DOI: 10.1016/j.chom.2019.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/12/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Clostridium difficile infection (CDI) is the number one hospital-acquired infection in the United States. CDI is more common and severe in inflammatory bowel disease patients. Here, we studied the mechanism by which prior colitis exacerbates CDI. Mice were given dextran sulfate sodium (DSS) colitis, recovered for 2 weeks, and then were infected with C. difficile. Mortality and CDI severity were increased in DSS-treated mice compared to controls. Severe CDI is dependent on CD4+ T cells, which persist after colitis-associated inflammation subsides. Adoptive transfer of Th17 cells to naive mice is sufficient to increase CDI-associated mortality through elevated IL-17 production. Finally, in humans, the Th17 cytokines IL-6 and IL-23 associate with severe CDI, and patients with high serum IL-6 are 7.6 times more likely to die post infection. These findings establish a central role for Th17 cells in CDI pathogenesis following colitis and identify them as a potential target for preventing severe disease.
Collapse
Affiliation(s)
- Mahmoud M Saleh
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Alyse L Frisbee
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Erica L Buonomo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Carrie A Cowardin
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennie Z Ma
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Morgan E Simpson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Kenneth W Scully
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Mayuresh M Abhyankar
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - William A Petri
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Maseda D, Zackular JP, Trindade B, Kirk L, Roxas JL, Rogers LM, Washington MK, Du L, Koyama T, Viswanathan VK, Vedantam G, Schloss PD, Crofford LJ, Skaar EP, Aronoff DM. Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate Clostridium difficile Colitis while Dysregulating the Inflammatory Response. mBio 2019; 10:mBio.02282-18. [PMID: 30622186 PMCID: PMC6325247 DOI: 10.1128/mbio.02282-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major public health threat worldwide. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enhanced susceptibility to and severity of CDI; however, the mechanisms driving this phenomenon have not been elucidated. NSAIDs alter prostaglandin (PG) metabolism by inhibiting cyclooxygenase (COX) enzymes. Here, we found that treatment with the NSAID indomethacin prior to infection altered the microbiota and dramatically increased mortality and the intestinal pathology associated with CDI in mice. We demonstrated that in C. difficile-infected animals, indomethacin treatment led to PG deregulation, an altered proinflammatory transcriptional and protein profile, and perturbed epithelial cell junctions. These effects were paralleled by increased recruitment of intestinal neutrophils and CD4+ cells and also by a perturbation of the gut microbiota. Together, these data implicate NSAIDs in the disruption of protective COX-mediated PG production during CDI, resulting in altered epithelial integrity and associated immune responses.IMPORTANCEClostridium difficile infection (CDI) is a spore-forming anaerobic bacterium and leading cause of antibiotic-associated colitis. Epidemiological data suggest that use of nonsteroidal anti-inflammatory drugs (NSAIDs) increases the risk for CDI in humans, a potentially important observation given the widespread use of NSAIDs. Prior studies in rodent models of CDI found that NSAID exposure following infection increases the severity of CDI, but mechanisms to explain this are lacking. Here we present new data from a mouse model of antibiotic-associated CDI suggesting that brief NSAID exposure prior to CDI increases the severity of the infectious colitis. These data shed new light on potential mechanisms linking NSAID use to worsened CDI, including drug-induced disturbances to the gut microbiome and colonic epithelial integrity. Studies were limited to a single NSAID (indomethacin), so future studies are needed to assess the generalizability of our findings and to establish a direct link to the human condition.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph P Zackular
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruno Trindade
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Leslie Kirk
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Lisa M Rogers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mary K Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Markey L, Shaban L, Green ER, Lemon KP, Mecsas J, Kumamoto CA. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes 2018; 9:497-509. [PMID: 29667487 PMCID: PMC6287688 DOI: 10.1080/19490976.2018.1465158] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 02/03/2023] Open
Abstract
Clostridium difficile is a major nosocomial pathogen responsible for close to half a million infections and 27,000 deaths annually in the U.S. Preceding antibiotic treatment is a major risk factor for C. difficile infection (CDI) leading to recognition that commensal microbes play a key role in resistance to CDI. Current antibiotic treatment of CDI is only partially successful due to a high rate of relapse. As a result, there is interest in understanding the effects of microbes on CDI susceptibility to support treatment of patients with probiotic microbes or entire microbial communities (e.g., fecal microbiota transplantation). The results reported here demonstrate that colonization with the human commensal fungus Candida albicans protects against lethal CDI in a murine model. Colonization with C. albicans did not increase the colonization resistance of the host. Rather, our findings showed that one effect of C. albicans colonization was to enhance a protective immune response. Mice pre-colonized with C. albicans expressed higher levels of IL-17A in infected tissue following C. difficile challenge compared to mice that were not colonized with C. albicans. Administration of cytokine IL-17A was demonstrated to be protective against lethal murine CDI in mice not colonized with C. albicans. C. albicans colonization was associated with changes in the abundance of some bacterial components of the gut microbiota. Therefore, C. albicans colonization altered the gut ecosystem, enhancing survival after C. difficile challenge. These findings demonstrate a new, beneficial role for C. albicans gut colonization.
Collapse
Affiliation(s)
- Laura Markey
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, MA
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, MA
| | - Erin R. Green
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, MA
| | - Katherine P. Lemon
- The Forsyth Institute (Microbiology), Cambridge, MA and Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Joan Mecsas
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, MA
| | - Carol A. Kumamoto
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences and Department of Molecular Biology and Microbiology, Tufts University, Boston, MA
| |
Collapse
|
21
|
Jose S, Mukherjee A, Abhyankar MM, Leng L, Bucala R, Sharma D, Madan R. Neutralization of macrophage migration inhibitory factor improves host survival after Clostridium difficile infection. Anaerobe 2018; 53:56-63. [PMID: 29944928 PMCID: PMC6309669 DOI: 10.1016/j.anaerobe.2018.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
Clostridium difficile is an important cause of nosocomial diarrhea in the western world. Toxins (A, B, and binary toxins) generated by C. difficile bacteria damage intestinal epithelial cells. Hallmarks of host response to C. difficile infection (CDI) include upregulation of inflammatory mediators and tissue infiltration by immune cells. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that is known to enhance the host immune response to infectious pathogens. Additionally, MIF can adversely impact host survival to numerous infections. The role of MIF in the pathogenesis of CDI remains poorly understood. Here, we show that patients with CDI had significantly higher circulating MIF compared to patients who had diarrhea but tested negative for C. difficile (non-CDI controls). Similarly, in a mouse model, C. difficile challenge significantly increased levels of plasma and tissue MIF. Antibody-mediated depletion of MIF decreased C. difficile-induced inflammatory responses, clinical disease, and mortality. Together, these results uncover a potential role for MIF in exacerbating CDI and suggest that use of anti-MIF antibodies may represent a therapeutic strategy to curb host inflammatory responses and improve disease outcomes in CDI.
Collapse
Affiliation(s)
- Shinsmon Jose
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Anindita Mukherjee
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Mayuresh M Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lin Leng
- Departments of Internal Medicine, Yale University, New Haven, CT, USA
| | - Richard Bucala
- Departments of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divya Sharma
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr Top Microbiol Immunol 2018; 422:265-301. [PMID: 30062595 DOI: 10.1007/82_2018_117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human microbiota consists of bacteria, archaea, viruses, and fungi that build a highly complex network of interactions between each other and the host. While there are many examples for commensal bacterial influence on host health and immune modulation, little is known about the role of commensal fungi inside the gut community. Up until now, fungal research was concentrating on opportunistic diseases caused by fungal species, leaving the possible role of fungi as part of the microbiota largely unclear. Interestingly, fungal and bacterial abundance in the gut appear to be negatively correlated and disruption of the bacterial microbiota is a prerequisite for fungal overgrowth. The mechanisms behind bacterial colonization resistance are likely diverse, including direct antagonism as well as bacterial stimulation of host defense mechanisms. In this work, we will review the current knowledge of the development of the intestinal bacterial and fungal community, the influence of the microbiota on human health and disease, and the role of the opportunistic yeast C. albicans. We will furthermore discuss the possible benefits of commensal fungal colonization. Finally, we will summarize the recent findings on bacterial-fungal interactions.
Collapse
Affiliation(s)
- Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - M Joanna Niemiec
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Alexander Steimle
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Julia S Frick
- Interfaculty Institute for Microbiology and Infection Medicine, Tübingen, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
23
|
Wang L, Cao J, Li C, Zhang L. IL-27/IL-27 Receptor Signaling Provides Protection in Clostridium difficile-Induced Colitis. J Infect Dis 2017; 217:198-207. [DOI: 10.1093/infdis/jix581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 11/04/2017] [Indexed: 01/03/2023] Open
|
24
|
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol (1985) 2017; 124:330-340. [PMID: 28935827 DOI: 10.1152/japplphysiol.00515.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol 124: 330-340, 2018. First published September 21, 2017; doi: 10.1152/japplphysiol.00515.2017 .-This work investigated the effect of 3 days of 500 mg/day dietary curcumin supplementation on gastrointestinal barrier damage and systems-physiology responses to exertional heat stress in non-heat-acclimated humans. Eight participants ran (65% V̇o2max) for 60 min in a Darwin chamber (37°C/25% relative humidity) two times (Curcumin/Placebo). Intestinal fatty acid-binding protein (I-FABP) and associated proinflammatory [monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), interleukin-6] and anti-inflammatory [interleukin-1 receptor antagonist (IL-1RA), interleukin-10 (IL-10)] cytokines were assayed from plasma collected before (Pre), after (Post) and 1 (1-Post) and 4 (4-Post) h after exercise. Core temperature and HR were measured throughout exercise; the physiological strain index (PSI) was calculated from these variables. Condition differences were determined with 2-way (condition × time) repeated-measures ANOVAs. The interaction of condition × time was significant ( P = 0.05) for I-FABP and IL-1RA. Post hoc analysis indicated I-FABP increased more from Pre to Post (87%) and 1-Post (33%) in Placebo than in Curcumin (58 and 18%, respectively). IL-1RA increased more from Pre to 1-Post in Placebo (153%) than in Curcumin (77%). TNF-α increased ( P = 0.01) from Pre to Post (19%) and 1-Post (24%) in Placebo but not in Curcumin ( P > 0.05). IL-10 increased ( P < 0.01) from Pre to Post (61%) and 1-Post (42%) in Placebo not in Curcumin ( P > 0.05). The PSI, which indicates exertional heatstroke risk, was also lower ( P < 0.01) in Curcumin than Placebo from 40 to 60 min of exercise. These data suggest 3 days curcumin supplementation may improve gastrointestinal function, associated cytokines, and systems-level physiology responses during exertional heat stress. This could help reduce exertional heatstroke risk in non-heat-acclimated individuals. NEW & NOTEWORTHY Exercise-heat stress increases gastrointestinal barrier damage and risk of exertional heatstroke. Over the past decade at least eight different dietary supplements have been tested for potential improvements in gastrointestinal barrier function and systems-level physiology responses during exercise-heat stress. None have been shown to protect against both insults simultaneously. In this report 3 days of 500 mg/day dietary curcumin supplementation are shown to improve gastrointestinal barrier function, associated cytokine responses, and systems-level physiology parameters. Further research is warranted.
Collapse
Affiliation(s)
- Mandy C Szymanski
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University , Riverside, California
| | - Lacey M Gould
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - David S Morin
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University , High Point, North Carolina
| |
Collapse
|