1
|
Waller SB, Ripoll MK, Gonçalves HP, Dalla Lana DF, de Faria RO, Meireles MCA, Fuentefria AM, de Mello JRB, Cleff MB. Are γ-terpinene, 1,8-cineole, p-coumaric acid, and quercetin active against wild-type and non-wild-type Sporothrix brasiliensis to itraconazole? Braz J Microbiol 2023; 54:531-541. [PMID: 36422848 PMCID: PMC9944583 DOI: 10.1007/s42770-022-00879-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
The emergence of itraconazole (ITZ)-resistant Sporothrix brasiliensis in feline and canine cases in southern Brazil has hampered the clinical cure of animal sporotrichosis, encouraging the search for therapeutic alternatives. The promising use of plants extracts from Lamiaceae family is known; however, there are no studies with its major compounds, as γ-terpinene (γTER), 1,8-cineole (1,8CIN), p-coumaric acid (pCOU), and quercetin (QUER). For the first time, we evaluated the antifungal, synergistic, cytotoxic activities and action mechanism of these compounds against S. brasiliensis. For this, 28 S. brasiliensis from cats (n = 24) and dogs (n = 4) and standard strains of S. brasiliensis and S. schenckii (n = 4) were tested by M38-A2 (CLSI), revealing non-wild-type (WT) isolates to ITZ on 54.2% (13/24) and 75% (03/04) of feline and canine isolates, respectively. Of the compounds, γTER stood out against all isolates (MIC/MFC 0.75 to > 3 mg/ml; MIC50 3 mg/ml). However, 1,8CIN, pCOU, and QUER showed little or no activity (MIC50 > 3 mg/ml). Thus, γTER was selected for checkerboard assay, whose combination with ITZ showed synergistic (WT isolates) and indifferent (non-WT isolates) interaction. For action mechanism (sorbitol protection and ergosterol effect), γTER acted in membrane by complexing with fungal ergosterol and at the cell wall level, showing two possible pathways as antifungal target. Finally, cytotoxicity (MTT assay) showed that γTER was the safest compound on MDBK cells, even at a concentration of 3 mg/ml (90.16%). Our findings support that γTER is a potent antifungal candidate for the control of sporotrichosis, including against non-WT S. brasiliensis.
Collapse
Affiliation(s)
- Stefanie Bressan Waller
- Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), 1 Campus Universitário Capão Do Leão, Pelotas, RS, 96010-900, Brazil.
| | - Márcia Kutscher Ripoll
- Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), 1 Campus Universitário Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Helena Piúma Gonçalves
- Departamento de Clínicas Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Daiane Flores Dalla Lana
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Osório de Faria
- Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), 1 Campus Universitário Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Mário Carlos Araújo Meireles
- Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), 1 Campus Universitário Capão Do Leão, Pelotas, RS, 96010-900, Brazil
| | - Alexandre Meneghello Fuentefria
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Roberto Braga de Mello
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marlete Brum Cleff
- Departamento de Clínicas Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| |
Collapse
|
2
|
de Souza LCDSV, Reis NF, Alcântara LM, da Silveira Souto SRL, de Araújo Penna B, Santos RCS, Robbs BK, Machado FP, Castro HC, Machado RLD, Rocha L, de Souza Baptista AR. Ethyl acetate fractions of Myrciaria floribunda, Ocotea pulchella, and Ocotea notata exhibit promising in vitro activity against Sporothrix brasiliensis isolates with low susceptibility to itraconazole. Braz J Microbiol 2023; 54:579-586. [PMID: 36701111 PMCID: PMC9944169 DOI: 10.1007/s42770-023-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Sporothrix brasiliensis with low susceptibility isolates were described from the Brazilian zoonotic sporotrichosis hyperendemics. The aim of this work was to evaluate distinct fractions of Ocotea pulchella, Ocotea notata, Myrciaria floribunda, and Hypericum brasiliense plant extracts against itraconazole-sensitive and low susceptibility S. brasiliensis isolates. Crude extracts were tested against clinical isolates and the ATCC MYA4823 to determine the minimum inhibitory concentrations (MICs) and fungicidal or fungistatic activities (MFC). A high MICs and MFCs amplitude (1 - > 128 µg/mL) were obtained for seven extracts. The highest antimicrobial activities against sensitive S. brasiliensis were displayed by the ethyl acetate extracts of O. notata (MIC = 2-128 μg/mL) and M. floribunda (MIC = 1-8 μg/mL). A fungicidal effect was observed for all fraction extracts. Ocotea spp. and M. floribunda ethyl acetate extracts provide promising profiles against itraconazole-sensitive or low susceptibility S. brasiliensis. Future studies will determine if these extracts can contribute as alternative therapies to this neglected zoonosis.
Collapse
Affiliation(s)
- Lais Cavalcanti Dos Santos Velasco de Souza
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil
| | - Nathália Faria Reis
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil
| | - Lucas Martins Alcântara
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil
| | - Simone Rocha Leal da Silveira Souto
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil
| | - Bruno de Araújo Penna
- Laboratory of Gram Positive Cocos, Biomedical Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Renan Caetano Souza Santos
- Natural Products Technology Laboratory, Pharmacy Faculty, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Bruno Kaufmann Robbs
- Nova Friburgo Health Institute, Department of Basic Science, Nova Friburgo, Rio de Janeiro, Brazil
| | - Francisco Paiva Machado
- Natural Products Technology Laboratory, Pharmacy Faculty, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Laboratory of Antibiotics, Biochemistry and Molecular Modeling, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil
| | - Leandro Rocha
- Natural Products Technology Laboratory, Pharmacy Faculty, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Andréa Regina de Souza Baptista
- Center for Microorganisms' Investigation, Department of Microbiology and Parasitology, Biomedical Institute, Federal Fluminense University, Niterói, Alameda Barros Terra, s/nº, CEP: 24020-150, Brazil.
| |
Collapse
|
3
|
Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus by Mate ( Ilex paraguariensis), Rosemary ( Rosmarinus officinalis) and Green Tea ( Camellia sinensis) Extracts: Relation with Extract Antioxidant Capacity and Fungal Oxidative Stress Response Modulation. Molecules 2022; 27:molecules27238550. [PMID: 36500642 PMCID: PMC9739609 DOI: 10.3390/molecules27238550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Plant extracts may represent an ecofriendly alternative to chemical fungicides to limit aflatoxin B1 (AFB1) contamination of foods and feeds. Mate (Ilex paraguariensis), rosemary (Romarinus officinalis) and green tea (Camellia sinensis) are well known for their beneficial properties, which are mainly related to their richness in bioactive phenolic compounds. AFB1 production is inhibited, with varying efficiency, by acetone/water extracts from these three plants. At 0.45 µg dry matter (DM)/mL of culture medium, mate and green tea extracts were able to completely inhibit AFB1 production in Aspergillus flavus, and rosemary extract completely blocked AFB1 biosynthesis at 3.6 µg DM/mL of culture medium. The anti-AFB1 capacity of the extracts correlated strongly with their phenolic content, but, surprisingly, no such correlation was evident with their antioxidative ability, which is consistent with the ineffectiveness of these extracts against fungal catalase activity. Anti-AFB1 activity correlated more strongly with the radical scavenging capacity of the extracts. This is consistent with the modulation of SOD induced by mate and green tea in Aspergillus flavus. Finally, rutin, a phenolic compound present in the three plants tested in this work, was shown to inhibit AFB1 synthesis and may be responsible for the anti-mycotoxin effect reported herein.
Collapse
|
4
|
Khayal EES, Alabiad MA, Elkholy MR, Shalaby AM, Nosery Y, El-Sheikh AA. The immune modulatory role of marjoram extract on imidacloprid induced toxic effects in thymus and spleen of adult rats. Toxicology 2022; 471:153174. [PMID: 35398170 DOI: 10.1016/j.tox.2022.153174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/24/2023]
Abstract
Imidacloprid (IMID), one of environmental persistent neonicotinoid insecticides, has been used a long time ago and categorized from insecticide induced moderate toxicity by World Health Organization (WHO). Marjoram, is one of the most worldwide used herbs in Egypt due to its antioxidant, anti-inflammatory, anti-genotoxic, anti-mutagenic, anticoagulant, and beneficial effects. This study aimed to evaluate the protective role of marjoram extract on the immunotoxic response and oxidative stress induced by IMID in the immune lymphoid organs (thymus and spleen) of rats. Fifty adult male albino rats were divided randomly into five groups; negative and positive (distilled water) control, marjoram extract (200 mg/kg/day), IMID (22.5 mg/kg/day), marjoram extract + IMID (200 mg/kg +22.5 mg/kg) orally for 8 weeks. Marjoram pretreatment reversed reduced animals body, thymus and spleen weights attributed to IMID. It amended the significantly elevated total leukocytes, neutrophils percentage, increased immunoglobulin G and the significantly reduction of lymphocytes percentage, phagocytic activity, phagocytic index and lysozyme activity induced by IMID. Moreover, marjoram administration significantly reduced thymic and splenic gene expression of interleukin-1β, interleukin-6, tumor necrosis factor-α and increased interleukin-10, in addition, it decreased thymic and splenic contents of malondialdehyde and restored the reduced antioxidant enzymes' activities following IMID exposure. Marjoram ameliorated IMID induced histopathological alterations in thymus and spleen and adjusted IMID immunomodulatory effects by increased the downregulation of CD4 and CD8 immune reactive cell expression. Conclusion, Marjoram has a protective role to reverse IMID immune toxic effects in thymus and spleen tissues of rats by its antioxidant, anti-inflammatory and immunomodulatory defense mechanisms.
Collapse
Affiliation(s)
- Eman El-Sayed Khayal
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Ramadan Elkholy
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Yousef Nosery
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Arwa A El-Sheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
5
|
Rababa'h AM, Alzoubi MA. Origanum majorana L. Extract Protects Against Isoproterenol-Induced Cardiotoxicity in Rats. Cardiovasc Toxicol 2021; 21:543-552. [PMID: 33786740 DOI: 10.1007/s12012-021-09645-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022]
Abstract
Coronary artery diseases are the major causes of disabilities and death worldwide. Evidence from the literature has demonstrated that Origanum majorana L. (marjoram) acts as an antioxidant, anti-inflammatory, antiplatelet, and assists in hormonal regulation. However, there is limited scientific evidence describing the signaling pathways associated with the marjoram's positive effect on cardiac injury. Therefore, we aimed to understand the mechanistic protective effects of marjoram on isoproterenol (ISO)-induced myocardial injury in rats. Sprague Dawley rats were randomly assigned into six groups. Marjoram was administrated by oral gavage and isoproterenol was administrated subcutaneously (ISO; 85 mg/kg). Heart weight, cardiac enzymes, inflammatory, and oxidative stress biomarkers were measured. The ISO-induced cardiac injury was confirmed by the significant increase in the levels of cardiac enzymes (P value < 0.05), whereas pre-treatment with marjoram normalized these cardiac injury parameters. We also determined that marjoram had a protective effect against ISO-induced increase in C-reactive protein (CRP), IL-6, IL-13, and TNF-α. Additionally, marjoram significantly decreased cardiac thiobarbituric acid reactive substances (TBARS) levels (P value < 0.05) and protected against ISO-induced oxidative stress. We have demonstrated that marjoram decreased both cardiac oxidative stress and inflammation, thus establishing the beneficial effects of marjoram on ISO-induced cardiac injury in rats.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Miya A Alzoubi
- Department of Forensic Medicine and Toxicology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
6
|
Waller SB, Dalla Lana DF, Quatrin PM, Ferreira MRA, Fuentefria AM, Mezzari A. Antifungal resistance on Sporothrix species: an overview. Braz J Microbiol 2021; 52:73-80. [PMID: 32476087 PMCID: PMC7966672 DOI: 10.1007/s42770-020-00307-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The treatment of human and animal sporotrichosis is often performed with antifungal agents; however, the emergence of antifungal-resistant strains of Sporothrix species has been reported. We aimed to discuss the ability of Sporothrix species in developing resistance to the conventional antifungals and mechanisms for this. METHODOLOGY Published data on databases (PubMed, Science Direct, Google Scholar) were investigated using a combination of keywords from 2008 to 2019 by the StArt tool. RESULTS The minimal inhibitory concentrations values based on the Clinical and Laboratory Standards Institute (CLSI) from eight references were classified according to the epidemiological cutoff values in wild-type or non-wild-type strains. In this way, non-wild-type S. schenckii and, mainly, S. brasiliensis isolates were recognized on itraconazole, amphotericin B, terbinafine, and voriconazole, which are strains that deserve more attention toward antifungal control, with a probable risk of mutation to antifungal resistance. Among the few reviewed studied on antifungal resistance, the melanin production capacity (DHN-melanin, L-DOPA melanin, and pyomelanin), the low genetic diversity due to the abnormal number of chromosomes, and the mutation in cytochrome P450 are some of the factors for developing resistance mechanism. CONCLUSIONS The emergence of Sporothrix species with in vitro antifungal resistance was evidenced and the possible mechanisms for resistance development may be due to the melanin production capacity, genetic diversity and mutations in cytochrome P450. Further studies should be carried out targeting gene expression for the development of antifungal resistance on Sporothrix species in order to prospect new therapeutic targets for human and veterinary use.
Collapse
Affiliation(s)
- Stefanie Bressan Waller
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Daiane Flores Dalla Lana
- Postgraduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Priscilla Maciel Quatrin
- Postgraduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Adelina Mezzari
- Department of Analysis, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Etchecopaz A, Toscanini MA, Gisbert A, Mas J, Scarpa M, Iovannitti CA, Bendezú K, Nusblat AD, Iachini R, Cuestas ML. Sporothrix Brasiliensis: A Review of an Emerging South American Fungal Pathogen, Its Related Disease, Presentation and Spread in Argentina. J Fungi (Basel) 2021; 7:jof7030170. [PMID: 33652625 PMCID: PMC7996880 DOI: 10.3390/jof7030170] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Sporotrichosis, caused by Sporothrix schenckii and related species, is the most frequent implantation mycosis in Latin America. In Argentina, over the last 8 years, there have been 0.16 new cases per month of feline sporotrichosis in 2011, increasing to 0.75 cases per month in 2019 and involving zoonotic transmission to humans. Molecular identification by polymerase chain reaction (PCR) detected Sporothrix brasiliensis in these feline and zoonotic outbreaks. This study will focus on different feline and human sporotrichosis outbreaks caused by S. brasiliensis in Argentina during 2011–2019. We will address the sources of infection and environmental hotspots, as well as the application of several treatment strategies for improving the pharmacotherapy of the different clinical forms of the disease. Finally, we will provide a detailed summary of the clinical aspects and new advances in host–pathogen interactions, virulence factors and immune response, focusing on state-of-the-art diagnostic tools and potential vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Etchecopaz
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - María A. Toscanini
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Amelia Gisbert
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Javier Mas
- Cátedra de Clínica Médica, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.G.); (J.M.)
| | - Miguel Scarpa
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
| | - Cristina A. Iovannitti
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Karla Bendezú
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
| | - Alejandro D. Nusblat
- Instituto de Nanobiotecnología (Nanobiotec), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina; (M.A.T.); (A.D.N.)
| | - Ricardo Iachini
- Instituto de Zoonosis «Luis Pasteur», Buenos Aires C1405 DCD, Argentina;
| | - María L. Cuestas
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1427 CWN, Argentina; (A.E.); (M.S.)
- Centro de Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina; (C.A.I.); (K.B.)
- Correspondence: ; Tel.: +54-11-59509500 (ext. 2176/77)
| |
Collapse
|
8
|
Ebani VV, Mancianti F. Use of Essential Oils in Veterinary Medicine to Combat Bacterial and Fungal Infections. Vet Sci 2020; 7:E193. [PMID: 33266079 PMCID: PMC7712454 DOI: 10.3390/vetsci7040193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) are secondary metabolites of plants employed in folk medicine for a long time thanks to their multiple properties. In the last years, their use has been introduced in veterinary medicine, too. The study of the antibacterial properties of EOs is of increasing interest, because therapies with alternative drugs are welcome to combat infections caused by antibiotic-resistant strains. Other issues could be resolved by EOs employment, such as the presence of antibiotic residues in food of animal origin and in environment. Although the in vitro antimicrobial activity of EOs has been frequently demonstrated in studies carried out on bacterial and fungal strains of different origins, there is a lack of information about their effectiveness in treating infections in animals. The scientific literature reports some studies about in vitro EOs' activity against animal clinical bacterial and fungal isolates, but in vivo studies are very scanty. The use of EOs in therapy of companion and farm animals should follow careful studies on the toxicity of these natural products in relation to animal species and route of administration. Moreover, considering the different behavior of EOs in relation to both species and strain pathogen, before starting a therapy, an aromatogram should be executed to choose the oil with the best antimicrobial activity.
Collapse
Affiliation(s)
- Valentina Virginia Ebani
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Mancianti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
9
|
Rababa'h AM, Matani BR, Ababneh MA. The ameliorative effects of marjoram in dehydroepiandrosterone induced polycystic ovary syndrome in rats. Life Sci 2020; 261:118353. [PMID: 32877649 DOI: 10.1016/j.lfs.2020.118353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
AIMS Polycystic ovary syndrome (PCOS) is a widespread chronic reproductive disorder that is associated with metabolic disturbances. Traditionally, the marjoram plant is well-known to restore hormonal balance and regulate the menstrual cycle. We aimed to investigate the ameliorative effects of marjoram extract on hormonal profiles, body and ovaries weight, insulin sensitivity, inflammation, and oxidative stress in a rat model of PCOS. MAIN METHODS A 75 postpubertal (42 days old) female Wistar rats were randomly assigned into five groups (control, dehydroepiandrosterone (DHEA) induced-PCOS model, marjoram-treated PCOS rats, metformin-treated PCOS rats and the combination of marjoram+metfomin treated PCOS model). PCOS induction was performed by subcutaneous injection of DHEA 60 mg/kg daily for 24 days. Ovaries weight, adiponectin, hormonal levels, inflammatory, and oxidative stress biomarker levels were measured at the end of the treatment period using ELISA assay. KEY FINDINGS The current study showed that marjoram significantly decreased ovaries' weight and the estradiol levels (P-value<0.05) compared to the DHEA group. Interestingly, marjoram improved insulin sensitivity as manifested by a significant increase in the adiponectin serum levels (P-value<0.05). Marjoram alone or in combination with metformin prominently decreased the IL-6 level and improved the levels of ovarian SOD and GPx enzymes (P-value<0.05). Additionally, the group treated with the combination of marjoram and metformin remarkably decreased the level of TBARS (P-value<0.05). SIGNIFICANCE The present study established the beneficial effects of marjoram administration on DHEA-induced PCOS in female Wistar rats. The mechanistic effect includes improvement in the hormonal levels, ovaries weight, insulin sensitivity, antioxidants, and anti-inflammatory parameters.
Collapse
Affiliation(s)
- Abeer M Rababa'h
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Bayan R Matani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mera A Ababneh
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
10
|
Waller SB, Cleff MB, Ripoll MK, Meireles MCA, Varela MT, Fernandes JPDS. Benzylidene-carbonyl compounds are active against itraconazole-susceptible and itraconazole-resistant Sporothrix brasiliensis. Folia Microbiol (Praha) 2020; 65:1033-1038. [PMID: 32821987 DOI: 10.1007/s12223-020-00814-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022]
Abstract
We evaluated the antifungal activity of benzylidene-carbonyl compounds (LINS03) based on the structure of gibbilimbol from Piper malacophyllum Linn. Five analogues (1-5) were synthetized following a classic aldol condensation between an aromatic aldehyde and a ketone, under basic conditions. These were tested against itraconazole-susceptible (n = 3) and itraconazole-resistant (n = 5) isolates of Sporothrix brasiliensis by M38-A2 guidelines of CLSI. All of them were fungistatic (MIC ranged of 0.11-0.22 mg/mL (1); 0.08-0.17 mg/mL (2); 0.05-0.1 mg/mL (3); 0.04-0.33 mg/mL (4); and 0.04-0.3 mg/mL (5)), highlighting compounds 2 and 3. As fungicidal, compounds 1 and 2 were highlighted (MFC ranged of 0.22-0.89 mg/mL and 0.08-1.35 mg/mL, respectively), compared with the remaining (0.77-> 3.08 mg/mL (3); 0.08-> 2.6 mg/mL (4); and 0.59-> 2.37 mg/mL (5)). The inhibitory activity was related to the benzylidene-carbonyl, whereas the phenol group and the low chain homolog seems to contribute to some extent to the fungicidal effect. Compound 2 highlighted due to the considerable fungistatic and fungicidal activities, including itraconazole-resistant Sporothrix brasiliensis. These findings support the potential usefulness of benzylidene-carbonyl compounds as promising prototypes for the development of antifungal against sporotrichosis by Sporothrix brasiliensis, including against itraconazole-resistant isolates.
Collapse
Affiliation(s)
- Stefanie Bressan Waller
- Department of Veterinary Clinics, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Marlete Brum Cleff
- Department of Veterinary Clinics, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Márcia Kutscher Ripoll
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Mário Carlos Araújo Meireles
- Department of Preventive Veterinary, Faculty of Veterinary, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Marina Themoteo Varela
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, 09913-030, Brazil
| | - João Paulo Dos S Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, 09913-030, Brazil
| |
Collapse
|
11
|
Rodrigues AM, Della Terra PP, Gremião ID, Pereira SA, Orofino-Costa R, de Camargo ZP. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020; 185:813-842. [PMID: 32052359 DOI: 10.1007/s11046-020-00425-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Sporotrichosis is a neglected subcutaneous mycosis of humans and animals acquired by traumatic inoculation of soil and plant material (classical route) contaminated with infectious propagules of the pathogen or being bitten/scratched by infected cats (alternative route). Within a genus composed of 53 species displaying an essentially environmental core, there are only a few members which have considerable impacts on human or animal health. Infections are typically caused by S. brasiliensis, S. schenckii or S. globosa. Rare mammal pathogens include members of the S. pallida and S. stenocereus complexes. To illustrate the tremendous impact of emerging zoonotic sporotrichosis on public health, we discuss the main features of the expanding epidemics driven by S. brasiliensis in cats and humans. The cat entry in the transmission chain of sporotrichosis, causing epizooties (cat-cat) or zoonosis (cat-human), has contributed to the definition of new paradigms in Sporothrix transmission, reaching epidemic levels, making the disease a serious public health problem. Indeed, S. brasiliensis infection in humans and animals is likely to become even more important in the future, with projections of its expansion in biogeographic domains and host range, as well as greater virulence in mammals. Therefore, lessons from a long-standing outbreak in the state of Rio de Janeiro about the source and distribution of the etiological agents among outbreak areas can be used to create better control and prevention plans and increase awareness of sporotrichosis as a serious emerging zoonotic disease.
Collapse
Affiliation(s)
- Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil.
| | - Paula Portella Della Terra
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil
| | - Isabella Dib Gremião
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Sandro Antonio Pereira
- Laboratory of Clinical Research on Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Rosane Orofino-Costa
- Dermatology Department, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (FCM-UERJ), Rio de Janeiro, RJ, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Cell Biology Division, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|
12
|
Abstract
Interest in the content of natural antioxidants in plant-based foods can be from the human health perspective, in terms of how these compounds might help promote one's health and wellness, or from the storage point-of-view, as the endogenous antioxidant constituents aid to extend a foodstuff's shelf-life. This chapter reports essential information about the mechanism of antioxidant action and methods employed for determination of their activity, classes of phenolic compounds (phenolic acids, flavonoids, lignans, stilbenes, tannins), sources of plant antioxidants (oil seeds, cereals, legumes, plants of the Lamiaceae family, tea and coffee, tree nuts, fruits, and berries), extraction strategies of phenolic compounds from plant material, and the influence of processing and storage on the content of natural antioxidants in foods and their antioxidant activity. Thermal processing, if not releasing bound phenolics from the structural matrices of the food, tends to decrease the antioxidant potential or, in the best case scenario, has no significant negative impact. Gentler sterilization processes such as high-pressure processing tend to better retain the antioxidant potential of a foodstuff than thermal treatments such as steaming, boiling, or frying. The impact of processing can be assessed by determining the antioxidant potential of foodstuffs either at the point of formulation or after different periods of storage under specified conditions.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, United States
| |
Collapse
|
13
|
Garcia Ferreira P, Pereira Borba-Santos L, Noronha LL, Deckman Nicoletti C, de Sá Haddad Queiroz M, de Carvalho da Silva F, Rozental S, Omena Futuro D, Francisco Ferreira V. Synthesis, Stability Studies, and Antifungal Evaluation of Substituted α- and β-2,3-Dihydrofuranaphthoquinones against Sporothrix brasiliensis and Sporothrix schenckii. Molecules 2019; 24:molecules24050930. [PMID: 30866442 PMCID: PMC6429059 DOI: 10.3390/molecules24050930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Sporotrichosis is a neglected fungal infection caused by Sporothrix spp., which have a worldwide distribution. The standard antifungal itraconazole has been recommended as a first-line therapy. However, failure cases in human and feline treatment have been reported in recent years. This study aimed to synthesize several α- and β-2,3-dihydrofuranaphthoquinones and evaluate them against Sporothrix schenckii and Sporothrix brasiliensis—the main etiological agents of sporotrichosis in Brazil. The stability of these compounds was also investigated under different storage conditions for 3 months. The samples were removed at 0, 60, and 90 days and assessed by 1H-NMR, and their in vitro antifungal susceptibility was tested. Furthermore, we evaluated the superficial changes caused by the most effective and stable compounds using scanning electron microscopy and determined their effects when combined with itraconazole. Nine dihydrofuranaphthoquinones showed good antifungal activity and stability, with MIC values of 2–32 µM. Compounds 6 and 10 were the most active dihydrofuranaphthoquinones in vitro for both species; in fungi, these compounds induced yeast–hyphae conversion and alteration in the hyphae and conidia structures. Compound 10 also exhibited a synergistic activity with itraconazole against S. schenckii, with a ΣFIC index value of 0.3. Our results indicate that Compounds 6 and 10 are potential candidates for the development of new antifungal agents for the treatment of sporotrichosis.
Collapse
Affiliation(s)
- Patricia Garcia Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Luana Pereira Borba-Santos
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Leticia Lorena Noronha
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Caroline Deckman Nicoletti
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Marcella de Sá Haddad Queiroz
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Fernando de Carvalho da Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói-RJ 24210-141, Brazil.
| | - Sônia Rozental
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ-Brazil.
| | - Débora Omena Futuro
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| | - Vitor Francisco Ferreira
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói-RJ 24241-000, Brazil.
| |
Collapse
|