1
|
Virulence Potential of a Multidrug-Resistant Escherichia coli Strain Belonging to the Emerging Clonal Group ST101-B1 Isolated from Bloodstream Infection. Microorganisms 2020; 8:microorganisms8060827. [PMID: 32486334 PMCID: PMC7355805 DOI: 10.3390/microorganisms8060827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
Collapse
|
2
|
Moshkovskaya M, Vakhrusheva T, Rakitina D, Baykova J, Panasenko O, Basyreva L, Gusev S, Gusev A, Mikhalchik E, Smolina N, Dobretsov G, Scherbakov P, Parfenov A, Fadeeva N, Pobeguts O, Govorun V. Neutrophil activation by Escherichia coli isolates from human intestine: effects of bacterial hydroperoxidase activity and surface hydrophobicity. FEBS Open Bio 2020; 10:414-426. [PMID: 31961067 PMCID: PMC7050253 DOI: 10.1002/2211-5463.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 01/27/2023] Open
Abstract
Successful colonization of the intestine requires that bacteria interact with the innate immune system and, in particular, neutrophils. Progression of inflammatory bowel diseases (IBD) is associated with alterations in gut microbiota, and dysbiosis in Crohn’s disease (CD) patients is often associated with an expansion of Escherichia coli. Here, we investigated the ability of such E. coli isolates to avoid neutrophil activation and to utilize reactive oxygen species. Neutrophil activation was detected in vitro in normal human blood via luminol chemiluminescence (CL) induced by reactive oxygen and halogen species generated by neutrophils. No significant difference in neutrophil activation in vitro was detected between isolates from inflamed (23 isolates) vs healthy intestines (5 isolates), with 10‐fold variation within both groups (2.9–61.2 mV). CL activity of isolates from the same patient differed by 1.5–5 times. Twenty‐four isolates from ileal aspirate, biopsy, and feces of seven patients with CD and one patient with no intestine inflammation were tested for extracellular peroxidase and catalase activity and cell surface hydrophobicity. Average values between patients varied from 26 ± 3 to 73 ± 18 µmol·g−1 of air dry weight for peroxidase activity, from 15 ± 2 to 189 ± 56 mmol·g−1 of air dry weight for catalase activity, and from 5 ± 3 to 105 ± 9 a.u. for the hydrophobic probe fluorescence. Extracellular peroxidase activity and hydrophobicity of bacterial cell surface correlated negatively with stimulated neutrophil CL. The ability of some isolates to avoid neutrophil activation and to utilize reactive oxygen species may provide a strategy to survive assault by the innate immune system.
Collapse
Affiliation(s)
- Mariam Moshkovskaya
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Tatyana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Lilia Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Natalia Smolina
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Gennadiy Dobretsov
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia.,Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Asfold Parfenov
- Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Nina Fadeeva
- Moscow Clinical Scientific Center, Central Scientific Institute of Gastroenterology, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, Russia
| |
Collapse
|
3
|
Fainstein N, Tyk R, Touloumi O, Lagoudaki R, Goldberg Y, Agranyoni O, Navon-Venezia S, Katz A, Grigoriadis N, Ben-Hur T, Einstein O. Exercise intensity-dependent immunomodulatory effects on encephalomyelitis. Ann Clin Transl Neurol 2019; 6:1647-1658. [PMID: 31368247 PMCID: PMC6764499 DOI: 10.1002/acn3.50859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/20/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022] Open
Abstract
Background Exercise training (ET) has beneficial effects on multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the intensity‐dependent effects of ET on the systemic immune system in EAE remain undefined. Objective (1) To compare the systemic immune modulatory effects of moderate versus high‐intensity ET protocols in protecting against development of EAE; (2) To investigate whether ET affects autoimmunity selectively, or causes general immunosuppression. Methods Healthy mice performed moderate or high‐intensity treadmill running programs. Proteolipid protein (PLP)‐induced transfer EAE was utilized to examine ET effects specifically on the systemic immune system. Lymph node (LN)‐T cells from trained versus sedentary donor mice were transferred to naïve recipients and EAE severity was assessed, by clinical assessment and histopathological analysis. LN‐T cells derived from donor trained versus sedentary PLP‐immunized mice were analyzed in vitro for proliferation assays by flow cytometry analysis and cytokine and chemokine receptor gene expression using real‐time PCR. T cell‐dependent immune responses of trained versus sedentary mice to the nonautoantigen ovalbumin and susceptibility to Escherichia coli‐induced acute peritonitis were examined. Results High‐intensity training in healthy donor mice induced significantly greater inhibition than moderate‐intensity training on proliferation and generation of encephalitogenic T cells in response to PLP‐immunization, and on EAE severity upon their transfer into recipient mice. High‐intensity training also inhibited LN‐T cell proliferation in response to ovalbumin immunization. E. coli bacterial counts and dissemination were not affected by training. Interpretation High‐intensity training induces superior effects in preventing autoimmunity in EAE, but does not alter immune responses to E. coli infection.
Collapse
Affiliation(s)
- Nina Fainstein
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Reuven Tyk
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Olga Touloumi
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Yehuda Goldberg
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Oryan Agranyoni
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Shiri Navon-Venezia
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Abram Katz
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Nikolaos Grigoriadis
- B' Department of Neurology, AHEPA University Hospital of Thessaloniki, Thessaloniki, Greece
| | - Tamir Ben-Hur
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Ofira Einstein
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Hung WT, Cheng MF, Tseng FC, Chen YS, Shin-Jung Lee S, Chang TH, Lin HH, Hung CH, Wang JL. Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: The role of virulence genes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:947-955. [PMID: 31076319 DOI: 10.1016/j.jmii.2019.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extraintestinal pathogenic Escherichia coli (ExPEC) strains hold the responsibility for the majority of E. coli infections. Numerous extraintestinal virulence factors (VFs) were possessed by ExPEC which are involved in the pathogenesis of infection. However, the effect of comorbidities or infection syndrome in the association of VFs and mortality remains inconclusive. METHOD This study addressed whether specific sequence type (ST) and VFs of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) are associated with different outcomes in patients with bloodstream infection. 121 adults from southern Taiwan with ESBL-EC bloodstream infections were enrolled during a 6-year period. Demographic data, including infection syndromes, underlying disease and outcomes, were collected. The virulence factors in isolates were analyzed by PCR and multilocus sequence typing analyses were also performed. RESULT Positivity for the virulence genes iha, hlyD, sat, iutA, fyuA, malX, ompT, and traT was associated with ST131 positivity (P < 0.05). Some ESBL-EC virulence genes associated with urinary tract infection (UTI) were revealed. Positivity for ST405 and the virulence genes iroN and iss were significantly associated with increased 30-day mortality (death within 30 days) on univariate analysis (P < 0.05). Independent risk factors of 30-day mortality in bacteremic patients with UTI included underlying chronic liver disease and malignancy. ST131 was borderline associated with 30-day mortality. Independent risk factors associated with 30-day mortality among bacteremic patients without UTI included comorbidities and iroN positivity. CONCLUSION In bacteremic patients with UTI, and the ST131 clone was borderline associated with mortality. Positivity for the virulence gene iroN may be linked to mortality in bacteremic patients without UTI.
Collapse
Affiliation(s)
- Wan-Ting Hung
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Ming-Fang Cheng
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan; School of Nursing, Fooyin University, Kaohsiung, Taiwan.
| | - Fan-Chen Tseng
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| | - Yao-Shen Chen
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan.
| | - Susan Shin-Jung Lee
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan.
| | | | - Hsi-Hsun Lin
- E-Da Hospital, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital and College of Medicine, National Cheng Kung University Tainan, Taiwan.
| |
Collapse
|
5
|
Geslain G, Birgy A, Adiba S, Magnan M, Courroux C, Levy C, Cohen R, Bidet P, Bonacorsi S. Genome sequencing of strains of the most prevalent clonal group of O1:K1:H7 Escherichia coli that causes neonatal meningitis in France. BMC Microbiol 2019; 19:17. [PMID: 30654756 PMCID: PMC6337857 DOI: 10.1186/s12866-018-1376-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
Background To describe the temporal dynamics, molecular characterization, clinical and ex vivo virulence of emerging O1:K1 neonatal meningitis Escherichia coli (NMEC) strains of Sequence Type complex (STc) 95 in France. The national reference center collected NMEC strains and performed whole genome sequencing (WGS) of O1:K1 STc95 NMEC strains for phylogenetic and virulence genes content analysis. Data on the clinical and biological features of patients were also collected. Ex vivo virulence was assessed using the Dictyostelium discoideum amoeba model. Results Among 250 NMEC strains collected between 1998 and 2015, 38 belonged to O1:K1 STc95. This clonal complex was the most frequently collected after 2004, representing up to 25% of NMEC strains in France. Phylogenetic analysis demonstrated that most (74%) belonged to a cluster designated D-1, characterized by the adhesin FimH30. There is no clinical data to suggest that this cluster is more pathogenic than its counterparts, although it is highly predominant and harbors a large repertoire of extraintestinal virulence factors, including a pS88-like plasmid. Ex vivo virulence model showed that this cluster was generally less virulent than STc95 reference strains of O45S88:H7 and O18:H7 serotypes. However, the model showed differences between several subclones, although they harbor the same known virulence determinants. Conclusions The emerging clonal group O1:K1 STc95 of NMEC strains is mainly composed of a cluster with many virulence factors but of only moderate virulence. Whether its emergence is due to its ability to colonize the gut thanks to FimH30 or pS88-like plasmid remains to be determined. Electronic supplementary material The online version of this article (10.1186/s12866-018-1376-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guillaume Geslain
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France
| | - André Birgy
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France
| | - Sandrine Adiba
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Research University Paris, Paris, France
| | - Mélanie Magnan
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Céline Courroux
- Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France
| | - Corinne Levy
- Association Clinique Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés, France
| | - Robert Cohen
- Association Clinique Thérapeutique Infantile du Val de Marne, Saint Maur des Fossés, France
| | - Philippe Bidet
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France
| | - Stéphane Bonacorsi
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,Service de Microbiologie, Centre National de Référence Escherichia coli, Hôpital Robert-Debré, AP-HP, 48 boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
6
|
钟 一, 张 晓, 刘 文, 杨 芳, 晏 群, 刘 清, 李 艳, 李 虹, 邹 明. [Bloodstream infections with Escherichia coli O16-ST131 and O25b-ST131: molecular epidemiology, phylogenetic analysis and antimicrobial resistance]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1521-1526. [PMID: 30613024 PMCID: PMC6744214 DOI: 10.12122/j.issn.1673-4254.2018.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To investigate the phylogenetics and prevalence of bloodstream infections with Escherichia coli ST131, the antimicrobial resistance profiles of the pathogens, and the clinical features. METHODS Non-duplicate Escherichia coli isolates were collected from 144 patients with bloodstream infections in our hospital between January and December, 2016.The phylogenetic groups of the isolates were analyzed using multiplex PCR, and O serotyping of ST131 strains was performed by allele-specific PCR.The clinical characteristics of the 144 patients were analyzed to define the differences in the clinical features between patients with ST131 infection and those with non-ST131 infection.Antibiotic susceptibility of the isolates was determined using the Vitek 2 compact system. RESULTS The phylogenetic group analysis showed a domination by group B2 (41.0%[59/144]), followed by group F, group B1 and group E, which accounted for 16.7%(24/144), 13.9%(20/144), and 13.2% (19/144), respectively.Nine strains (6.3%) of Escherichia coli were identified to be ST131 strains, among which 8 were O25b-B2-ST131 strains and 1 was O16-B2-ST131 strain.Of the 9 cases of ST131 infection, 7(77.8%) were found to occur in a nosocomial setting.The demographic characteristics and clinical features of the ST131-infected patients were similar to those of non-ST131-infected patients.ST131 strains were sensitive to piperacillin/tazobactam, imipenem, ertapenem, and amikacin, but showed high resistance rates to cefazolin, ceftriaxone, ciprofloxacin, levofloxacin, gentamicin, and trimethoprim/ sulfamethoxazole (all over 50%).The positivity rate of ESBLs in the ST131 strains was 77.8%, and the multidrug resistance rate reached 88.9%, which was higher than that of non-ST131 isolates, but the difference was not statistically significant. CONCLUSIONS The most common phylogenetic groups of Escherichia coli isolates from patients with bloodstream infections are group B2 and F, and the positivity rate of ST131 is low.We for the first time detected O16-ST131 in patients with blood-borne infections in China.The clinical features of ST131-infected patients are similar to those of non-ST131-infected patients.The positivity rate of ESBLs and the multidrug resistance rate are high in ST131 strains, which may raise concerns in the future.
Collapse
Affiliation(s)
- 一鸣 钟
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 晓荷 张
- 中南大学湘雅医学院医学检验系,湖南 长沙 410013Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - 文恩 刘
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 芳 杨
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 群 晏
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 清霞 刘
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 艳明 李
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 虹玲 李
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - 明祥 邹
- 中南大学湘雅医院检验科,湖南 长沙 410008Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|