1
|
Olie SE, Andersen CØ, van de Beek D, Brouwer MC. Molecular diagnostics in cerebrospinal fluid for the diagnosis of central nervous system infections. Clin Microbiol Rev 2024; 37:e0002124. [PMID: 39404267 PMCID: PMC11629637 DOI: 10.1128/cmr.00021-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
SUMMARYCentral nervous system (CNS) infections can be caused by various pathogens, including bacteria, viruses, fungi, and parasites. Molecular diagnostic methods are pivotal for identifying the different causative pathogens of these infections in clinical settings. The efficacy and specificity of these methods can vary per pathogen involved, and in a substantial part of patients, no pathogen is identified in the cerebrospinal fluid (CSF). Over recent decades, various molecular methodologies have been developed and applied to patients with CNS infections. This review provides an overview of the accuracy of nucleic acid amplification methods in CSF for a diverse range of pathogens, examines the potential value of multiplex PCR panels, and explores the broad-range bacterial and fungal PCR/sequencing panels. In addition, it evaluates innovative molecular approaches to enhance the diagnosis of CNS infections.
Collapse
Affiliation(s)
- Sabine E. Olie
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christian Ø. Andersen
- Statens Serum Institute, Diagnostic Infectious Disease Preparedness, Copenhagen, Denmark
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C. Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
2
|
White PL. Progress on nonculture based diagnostic tests for invasive mould infection. Curr Opin Infect Dis 2024; 37:451-463. [PMID: 39270052 DOI: 10.1097/qco.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
PURPOSE OF REVIEW This review describes the current status of diagnosing invasive mould disease and Pneumocystis pneumonia using nonconventional diagnostics methods. RECENT FINDINGS There has been significant development in the range of nonculture mycological tests. Lateral flow tests (LFTs) for diagnosing aspergillosis complement galactomannan ELISA testing, and LFTs for other fungal diseases are in development. Rapid and low through-put B-D-Glucan assays increase access to testing and there has been significant progress in the standardization/development of molecular tests. Despite this, no single perfect test exists and combining tests (e.g., antigen and molecular testing) is likely required for the optimal diagnosis of most fungal diseases. SUMMARY Based on established clinical performance few mycological tests can be used alone for optimal diagnosis of fungal disease (FD) and combining tests, including classical approaches is the preferred route for confirming and excluding disease. Next-generation sequencing will likely play an increasing role in how we diagnose disease, but optimization, standardization and validation of the entire molecular process is needed and we must consider how host biomarkers can stratify risk. Given the burden of FD in low- and medium-income countries, improved access to novel but more so existing diagnostic testing is critical along with simplification of testing processes.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference laboratory, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
3
|
Safiia J, Díaz MA, Alshaker H, Atallah CJ, Sakr P, Moshovitis DG, Nawlo A, Franceschi AE, Liakos A, Koo S. Recent Advances in Diagnostic Approaches for Mucormycosis. J Fungi (Basel) 2024; 10:727. [PMID: 39452679 PMCID: PMC11509022 DOI: 10.3390/jof10100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mucormycosis, an invasive fungal infection caused by members of the order Mucorales, often progresses fulminantly if not recognized in a timely manner. This comprehensive review discusses the latest developments in diagnostic approaches for mucormycosis, from traditional histopathology and culture-based methods to advanced and emerging techniques such as molecular assays, imaging, serology, and metabolomics. We discuss challenges in the diagnosis of mucormycosis and emphasize the importance of rapid and accurate identification of this life-threatening infection.
Collapse
Affiliation(s)
- Jawad Safiia
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
| | - Marco Aurelio Díaz
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Alshaker
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Christine J. Atallah
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Paul Sakr
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Dimitrios G. Moshovitis
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ahmad Nawlo
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Andres E. Franceschi
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Liakos
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sophia Koo
- Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.S.); (M.A.D.); (H.A.); (C.J.A.); (P.S.); (D.G.M.); (A.N.); (A.E.F.); (A.L.)
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Ortiz B, Varela D, Fontecha G, Torres K, Cornely OA, Salmanton-García J. Strengthening Fungal Infection Diagnosis and Treatment: An In-depth Analysis of Capabilities in Honduras. Open Forum Infect Dis 2024; 11:ofae578. [PMID: 39421702 PMCID: PMC11483579 DOI: 10.1093/ofid/ofae578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are a major public health concern in low- and middle-income countries (LMICs) due to limited diagnostic and treatment resources, leading to high morbidity and mortality. Despite their significant global burden, IFIs are underrecognized and underdiagnosed in LMICs. This study evaluates the diagnostic and therapeutic capacities for managing IFI in Honduras, a country with unique health care challenges. Methods From March to December 2023, a comprehensive survey was conducted across multiple health care centers in Honduras. The survey, reviewed for content and clarity by local medical institutions, targeted medical microbiologists and clinicians to assess various aspects of fungal disease diagnosis and treatment. Data included the availability and use of diagnostic tools and antifungal therapies, identifying gaps and limitations in current practices. Results The survey revealed that Candida spp (97.4%) and Aspergillus spp (35.9%) were the most concerning pathogens. Although microscopy and culture methods were available in most institutions, their application in suspected IFI cases was inconsistent, and antifungal susceptibility testing was rarely performed. Advanced diagnostic techniques, such as antigen detection, were available in only a few institutions, while antibody detection and polymerase chain reaction testing were entirely absent. All hospitals had access to at least 1 triazole antifungal, typically fluconazole, but there was a notable scarcity of more potent antifungals, including amphotericin B formulations and echinocandins. The limited use of available diagnostic tools and the restricted availability of essential antifungals were identified as major barriers to effective IFI management. Conclusions This study highlights significant gaps in the diagnostic and therapeutic capabilities for managing IFI in Honduras. The underutilization of basic diagnostic tools, the inaccessibility of advanced testing methods, and the limited availability of essential antifungal medications underscore the urgent need for capacity-building initiatives, infrastructure improvements, and policy reforms. Addressing these deficiencies is critical for enhancing the management of IFI in Honduras, with broader implications for similar LMIC settings. These findings can inform targeted interventions and resource allocation to improve outcomes for patients with IFI.
Collapse
Affiliation(s)
- Bryan Ortiz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Diana Varela
- Servicio de Infectología, Servicio de Atención Integral de Pacientes con VIH, Hospital Escuela, Tegucigalpa, Honduras
- Instituto de Enfermedades Infecciosas y Parasitarias Antonio Vidal, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Karla Torres
- Agrupación de Microbiólogos Propietarios de Laboratorios Privados de Honduras, Tegucigalpa, Honduras
- Departamento de Química y Biología, Centro Universitario Regional de Occidente, Santa Rosa de Copán, Honduras
| | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
5
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Goshia T, Aralar A, Wiederhold N, Jenks JD, Mehta SR, Karmakar A, E S M, Sharma A, Sun H, Kebadireng R, White PL, Sinha M, Hoenigl M, Fraley SI. Universal digital high-resolution melting for the detection of pulmonary mold infections. J Clin Microbiol 2024; 62:e0147623. [PMID: 38695528 PMCID: PMC11237519 DOI: 10.1128/jcm.01476-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 05/14/2024] Open
Abstract
Invasive mold infections (IMIs) are associated with high morbidity, particularly in immunocompromised patients, with mortality rates between 40% and 80%. Early initiation of appropriate antifungal therapy can substantially improve outcomes, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high-resolution melting (U-dHRM) analysis may enable rapid and robust diagnoses of IMI. A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these pathogen curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. U-dHRM achieved 97% overall fungal organism identification accuracy and a turnaround time of ~4 hrs. U-dHRM detected pathogenic molds (Aspergillus, Mucorales, Lomentospora, and Fusarium) in 73% of 30 samples classified as IMI, including mixed infections. Specificity was optimized by requiring the number of pathogenic mold curves detected in a sample to be >8 and a sample volume to be 1 mL, which resulted in 100% specificity in 21 at-risk patients without IMI. U-dHRM showed promise as a separate or combination diagnostic approach to standard mycological tests. U-dHRM's speed, ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples, and detect emerging opportunistic pathogens may aid treatment decisions, improving patient outcomes. IMPORTANCE Improvements in diagnostics for invasive mold infections are urgently needed. This work presents a new molecular detection approach that addresses technical and workflow challenges to provide fast pathogen detection, identification, and quantification that could inform treatment to improve patient outcomes.
Collapse
Affiliation(s)
- Tyler Goshia
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - April Aralar
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Nathan Wiederhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jeffrey D Jenks
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Durham County Department of Public Health, Durham, North Carolina, USA
| | - Sanjay R Mehta
- Department of Medicine, University of California San Diego, San Diego, California, USA
- San Diego Veterans Administration Medical Center, San Diego, California, USA
| | | | - Monish E S
- MelioLabs Inc., Santa Clara, California, USA
| | | | - Haoxiang Sun
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - Refilwe Kebadireng
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, Cardiff University, UHW, Cardiff, United Kingdom
- Centre for Trials Research, Division of Infection and Immunity, Cardiff University, UHW, Cardiff, United Kingdom
| | - Mridu Sinha
- MelioLabs Inc., Santa Clara, California, USA
| | - Martin Hoenigl
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Stephanie I Fraley
- Department of Bioengineering, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Ye X, Zhang L, Yang Q, Pan W, Zeng X. Rapid duplex flap probe-based isothermal assay to identify the Cryptococcus neoformans and Cryptococcus gattii. Front Cell Infect Microbiol 2024; 14:1321886. [PMID: 38558853 PMCID: PMC10981274 DOI: 10.3389/fcimb.2024.1321886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Cryptococcosis is a life-threatening invasive fungal infection with significantly increasing mortality worldwide, which is mainly caused by Cryptococcus neoformans and Cryptococcus gattii. These two species complexes have different epidemiological and clinical characteristics, indicating the importance of accurate differential diagnosis. However, the clinically used culture method and cryptococcal capsular antigen detection couldn't achieve the above goals. Herein, we established a novel duplex flap probe-based isothermal assay to identify the Cryptococcus neoformans and Cryptococcus gattii within 1 hour. This assay combined the highly sensitive nucleic acid isothermal amplification and highly specific fluorescence probe method, which could effectively distinguish the sequence differences of the two species complexes using two different fluorescence flap probes in a single reaction system. This novel method showed excellent detection performance with sensitivity (10 copies/μL each) and specificity (100%) compared to traditional culture and sequencing methods. Furthermore, we applied this method to spiked clinical samples, 30 cerebrospinal fluids and 30 bronchoalveolar lavage fluids, which kept good detection performance. This novel rapid duplex flap probe-based isothermal assay is a promising and robust tool for applications in differential diagnosis of the Cryptococcus neoformans and Cryptococcus gattii in clinical settings, especially when clinical suspicion for cryptococcal disease is high and epidemiological studies.
Collapse
Affiliation(s)
- Xin Ye
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Zhang
- Department of Dermatology, The third affiliated hospital of Xi’an Jiaotong University, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Qingqing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Goshia T, Aralar A, Wiederhold N, Jenks JD, Mehta SR, Sinha M, Karmakar A, Sharma A, Shrivastava R, Sun H, White PL, Hoenigl M, Fraley SI. Universal Digital High Resolution Melt for the detection of pulmonary mold infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566457. [PMID: 37986859 PMCID: PMC10659414 DOI: 10.1101/2023.11.09.566457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Invasive mold infections (IMIs) such as aspergillosis, mucormycosis, fusariosis, and lomentosporiosis are associated with high morbidity and mortality, particularly in immunocompromised patients, with mortality rates as high as 40% to 80%. Outcomes could be substantially improved with early initiation of appropriate antifungal therapy, yet early diagnosis remains difficult to establish and often requires multidisciplinary teams evaluating clinical and radiological findings plus supportive mycological findings. Universal digital high resolution melting analysis (U-dHRM) may enable rapid and robust diagnosis of IMI. This technology aims to accomplish timely pathogen detection at the single genome level by conducting broad-based amplification of microbial barcoding genes in a digital polymerase chain reaction (dPCR) format, followed by high-resolution melting of the DNA amplicons in each digital reaction to generate organism-specific melt curve signatures that are identified by machine learning. Methods A universal fungal assay was developed for U-dHRM and used to generate a database of melt curve signatures for 19 clinically relevant fungal pathogens. A machine learning algorithm (ML) was trained to automatically classify these 19 fungal melt curves and detect novel melt curves. Performance was assessed on 73 clinical bronchoalveolar lavage (BAL) samples from patients suspected of IMI. Novel curves were identified by micropipetting U-dHRM reactions and Sanger sequencing amplicons. Results U-dHRM achieved an average of 97% fungal organism identification accuracy and a turn-around-time of 4hrs. Pathogenic molds (Aspergillus, Mucorales, Lomentospora and Fusarium) were detected by U-dHRM in 73% of BALF samples suspected of IMI. Mixtures of pathogenic molds were detected in 19%. U-dHRM demonstrated good sensitivity for IMI, as defined by current diagnostic criteria, when clinical findings were also considered. Conclusions U-dHRM showed promising performance as a separate or combination diagnostic approach to standard mycological tests. The speed of U-dHRM and its ability to simultaneously identify and quantify clinically relevant mold pathogens in polymicrobial samples as well as detect emerging opportunistic pathogens may provide information that could aid in treatment decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Tyler Goshia
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - April Aralar
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Nathan Wiederhold
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jeffrey D. Jenks
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Durham County Department of Public Health, Durham, NC, USA
| | - Sanjay R. Mehta
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- San Diego Veterans Administration Medical Center, San Diego, CA, USA
| | | | | | | | | | - Haoxiang Sun
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, and Cardiff University Centre for Trials Research/Division of Infection/Immunity, University Hospital of Wales, Cardiff, United Kingdom
| | - Martin Hoenigl
- Department of Medicine, Medical University of Graz, Graz, Austria
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
9
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
10
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Dark Mold Infections in Solid Organ Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Mendonça A, Carvalho-Pereira J, Franco-Duarte R, Sampaio P. Optimization of a Quantitative PCR Methodology for Detection of Aspergillus spp. and Rhizopus arrhizus. Mol Diagn Ther 2022; 26:511-525. [PMID: 35710958 PMCID: PMC9202985 DOI: 10.1007/s40291-022-00595-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Introduction Multiplex quantitative polymerase chain reaction (qPCR) methods for the detection of Aspergillus spp. based only on SYBR Green and melting curve analysis of PCR products are difficult to develop because most targets are located within ITS regions. The aim of this study was to adapt our previously developed methodology based on a multiplex PCR assay coupled with GeneScan analysis to provide a qPCR method. Methods A SYBR Green-based real-time PCR assay was optimized to detect A. fumigatus, A. flavus, A. niger, A. terreus, and R. arrhizus in a multiplex assay and applied to cultured fungi and spiked plasma. Results Different melting temperatures allowed identification of all five pathogens and discrimination between them, even in samples with low amounts of fungal gDNA (from 1.3 to 33.0 pg/μL), which has been reported previously as problematic. No false-positive results were obtained for non-target species, including bacteria and human DNA. This method allowed detection of fungal pathogens in human plasma spiked with fungal DNA and in coinfections of A. niger/R. arrhizus. Discussion This work provides evidence for the use of a qPCR multiplex method based on SYBR Green and melting curve analysis of PCR products for the detection of A. fumigatus, A. flavus, A. niger, A. terreus, and R. arrhizus. The proposed method is simpler and less expensive than available kits based on fluorescent probes and can be used for aiding diagnosis of the most relevant invasive filamentous fungi, particularly in low-income health care institutions. Supplementary Information The online version contains supplementary material available at 10.1007/s40291-022-00595-1.
Collapse
Affiliation(s)
- Alexandre Mendonça
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Joana Carvalho-Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
13
|
The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Tay E, Chen SCA, Green W, Lopez R, Halliday CL. Development of a Real-Time PCR Assay to Identify and Distinguish between Cryptococcus neoformans and Cryptococcus gattii Species Complexes. J Fungi (Basel) 2022; 8:jof8050462. [PMID: 35628719 PMCID: PMC9144077 DOI: 10.3390/jof8050462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the principle causative agents of cryptococcosis. Differences in epidemiological and clinical features, and also treatment, mean it is important for diagnostic laboratories to distinguish between the two species. Molecular methods are potentially more rapid than culture and cryptococcal antigen (CRAG) detection; however, commercial PCR-based assays that target Cryptococcus do not distinguish between species. Here, we developed a real-time PCR assay targeting the multicopy mitochondrial cytochrome b (cyt b) gene to detect C. neoformans and C. gattii in clinical specimens. Assay performance was compared with culture, histopathology, CRAG and panfungal PCR/DNA sequencing. The cyt b-directed assay accurately detected and identified all eight C. neoformans/gattii genotypes. High-resolution melt curve analysis unambiguously discriminated between the two species. Overall, assay sensitivity (96.4%) compared favorably with panfungal PCR (76.9%) and culture (14.5%); assay specificity was 100%. Of 25 fresh frozen paraffin embedded (FFPE) specimens, assay sensitivity was 96% (76% for panfungal PCR; 68% for histopathology). The Cryptococcus-specific PCR is a rapid (~4 h) sensitive method to diagnose (or exclude) cryptococcosis and differentiate between the two major species. It is suitable for use on diverse clinical specimens and may be the preferred molecular method for FFPE specimens where clinical suspicion of cryptococcosis is high.
Collapse
Affiliation(s)
- Enoch Tay
- Research Education Network, Western Sydney Local Health District, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Sharon C-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.C.-A.C.); (W.G.); (R.L.)
| | - Wendy Green
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.C.-A.C.); (W.G.); (R.L.)
| | - Ronald Lopez
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.C.-A.C.); (W.G.); (R.L.)
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (S.C.-A.C.); (W.G.); (R.L.)
- Correspondence: ; Tel.: +61-2-8890-6255
| |
Collapse
|
15
|
Development and evaluation of a novel fast broad-range PCR and sequencing assay (FBR-PCR/S) using dual priming oligonucleotides targeting the ITS/LSU gene regions for rapid diagnosis of invasive fungal diseases: multi-year experience in a large Canadian healthcare zone. BMC Infect Dis 2022; 22:375. [PMID: 35418032 PMCID: PMC9008905 DOI: 10.1186/s12879-022-07356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study evaluated the performance of a novel fast broad range PCR and sequencing (FBR-PCR/S) assay for the improved diagnosis of invasive fungal disease (IFD) in high-risk patients in a large Canadian healthcare region.
Methods A total of 114 clinical specimens (CS) including bronchoalveolar lavages (BALs) were prospectively tested from 107 patients over a 2-year period. Contrived BALs (n = 33) inoculated with known fungi pathogens were also tested to increase diversity. Patient characteristics, fungal stain and culture results were collected from the laboratory information system. Dual-priming oligonucleotide (DPO) primers targeted to the internal transcribed spacer (ITS) (~ 350 bp) and large subunit (LSU) (~ 550 bp) gene regions were used to perform FBR-PCR/S assays on extracted BALs/CS. The performance of the molecular test was evaluated against standard microbiological methods and clinical review for the presence of IFD.
Results The 107 patients were predominantly male (67, 62.6%) with a mean age of 59 years (range = 0–85 years): 74 (69.2%) patients had at least one underlying comorbidity: 19 (34.5%) had confirmed and 12 (21.8%) had probable IFD. Culture recovered 66 fungal isolates from 55 BALs/CS with Candida spp. and Aspergillus spp. being most common. For BALs, the molecular assay vs. standard methods had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV), and efficiency of 88.5% vs.100%, 100% vs. 61.1%, 100% vs. 88.5%, 61.1% vs. 100%, and 90.2% for both. For other CS, the molecular assay had similar performance to standard methods with sensitivity, specificity, PPV, NPV and efficiency of 66.7%, 87.0%, 66.7%, 87.0% and 81.3% for both methods. Both methods also performed similarly, regardless of whether CS stain/microscopy showed yeast/fungal elements. FBR-PCR/S assays results were reported in ~ 8 h compared to fungal cultures that took between 4 and 6 weeks.
Conclusions Rapid molecular testing compared to standard methods have equivalent diagnostic efficiency but improves clinical utility by reporting a rapid species-level identification the same dayshift (~ 8 h).
Collapse
|
16
|
Honsig C, Selitsch B, Hollenstein M, Vossen MG, Spettel K, Willinger B. Identification of Filamentous Fungi by MALDI-TOF Mass Spectrometry: Evaluation of Three Different Sample Preparation Methods and Validation of an In-House Species Cutoff. J Fungi (Basel) 2022; 8:jof8040383. [PMID: 35448614 PMCID: PMC9025689 DOI: 10.3390/jof8040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Invasive infections caused by filamentous fungi constitute a leading cause of morbidity and mortality in immunocompromised patients. Rapid and reliable identification of filamentous fungi is essential for the early initiation of appropriate treatment. In the present study, 230 filamentous fungi isolates identified by conventional methods were investigated using MALDI-TOF MS (Bruker Daltonics, Bremen, Germany) in combination with the Filamentous Fungi Library 3.0 provided by the manufacturer. Three different sample preparation methods were applied as recommended by the manufacturer and identification rates were compared using the criteria provided by the manufacturer. Application of the more time-consuming sample preparation methods clearly improved identification at the species level. Thus, the identification rate increased from 48.9% using the simplest method to 76.1% with the most laborious procedure. Misidentifications did not occur. Furthermore, the reliability of an in-house threshold for species identification was investigated. The reduced threshold increased the rate of isolates correctly identified at the species level by up to 86.4%. As no misidentification was made at the genus level and only one misidentification of minor significance occurred at the species level, this threshold could be validated for routine use in our laboratory. In conclusion, regarding the high identification rates achieved, this commercial platform proved suitable for implementation in routine diagnosis.
Collapse
Affiliation(s)
- Claudia Honsig
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (B.S.); (K.S.)
| | - Brigitte Selitsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (B.S.); (K.S.)
| | - Marlene Hollenstein
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Matthias G. Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (B.S.); (K.S.)
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (C.H.); (B.S.); (K.S.)
- Correspondence: ; Tel.: +43-1-40400-51560
| |
Collapse
|
17
|
Darwish RM, AlMasri M, Al‐Masri MM. Mucormycosis: The Hidden and Forgotten Disease. J Appl Microbiol 2022; 132:4042-4057. [DOI: 10.1111/jam.15487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Rula M. Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy The University of Jordan Amman Jordan
| | | | | |
Collapse
|
18
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
19
|
New Tools in Laboratory Diagnosis of Invasive Fungal Infections. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Lackner N, Posch W, Lass-Flörl C. Microbiological and Molecular Diagnosis of Mucormycosis: From Old to New. Microorganisms 2021; 9:microorganisms9071518. [PMID: 34361953 PMCID: PMC8304313 DOI: 10.3390/microorganisms9071518] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Members of the order Mucorales may cause severe invasive fungal infections (mucormycosis) in immune-compromised and otherwise ill patients. Diagnosis of Mucorales infections and discrimination from other filamentous fungi are crucial for correct management. Here, we present an overview of current state-of-the-art mucormycosis diagnoses, with a focus on recent developments in the molecular field. Classical diagnostic methods comprise histology/microscopy as well as culture and are still the gold standard. Newer molecular methods are evolving quickly and display great potential in early diagnosis, although standardization is still missing. Among them, quantitative PCR assays with or without melt curve analysis are most widely used to detect fungal DNA in clinical samples. Depending on the respective assay, sequencing of the resulting PCR product can be necessary for genus or even species identification. Further, DNA-based methods include microarrays and PCR-ESI-MS. However, general laboratory standards are still in development, meaning that molecular methods are currently limited to add-on analytics to culture and microscopy.
Collapse
|
21
|
Scedosporium and Lomentospora infections in lung transplant recipients. CURRENT FUNGAL INFECTION REPORTS 2021. [DOI: 10.1007/s12281-021-00416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Menu E, Landier J, Prudent E, Ranque S, L’Ollivier C. Evaluation of 11 DNA Automated Extraction Protocols for the Detection of the 5 Mains Candida Species from Artificially Spiked Blood. J Fungi (Basel) 2021; 7:jof7030228. [PMID: 33808911 PMCID: PMC8003619 DOI: 10.3390/jof7030228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
The molecular detection of Candida plays an important role in the diagnosis of candidaemia, a major cause of morbidity and mortality. The sensitivity of this diagnosis is partly related to the efficiency of yeast DNA extraction. In this monocentric study, we investigated the suitability of 11 recent automated procedures for the extraction of low and high amounts of Candida DNA from spiked blood. The efficacy of the DNA extraction procedures to detect Candida spp. in blood samples ranged from 31.4% to 80.6%. The NucliSENSTM easyMAGTM procedure was the most efficient, for each species and each inoculum. It significantly outperformed the other procedures at the lower Candida inocula mimicking the clinical setting. This study highlighted a heterogeneity in DNA extraction efficacy between the five main Candida species (Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis and Candida krusei). Up to five automated procedures were appropriate for C. krusei DNA extraction, whereas only one method yielded an appropriate detection of low amount of C. tropicalis. In the era of the syndromic approach to bloodstream infection diagnosis, this evaluation of 11 automated DNA extraction methods for the PCR diagnosis of candidaemia, puts the choice of an appropriate method in routine diagnosis within the reach of laboratories.
Collapse
Affiliation(s)
- Estelle Menu
- Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 13385 Marseille, France; (S.R.); (C.L.)
- IHU Méditerranée Infection, 13385 Marseille, France;
- Correspondence:
| | - Jordi Landier
- Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Institut de Recherche pour le Développement, Institut National de Santé et de Recherche Médicale, Aix Marseille Université, 13385 Marseille, France;
| | - Elsa Prudent
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Stéphane Ranque
- Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 13385 Marseille, France; (S.R.); (C.L.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Coralie L’Ollivier
- Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 13385 Marseille, France; (S.R.); (C.L.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| |
Collapse
|
23
|
Freeman Weiss Z, Leon A, Koo S. The Evolving Landscape of Fungal Diagnostics, Current and Emerging Microbiological Approaches. J Fungi (Basel) 2021; 7:jof7020127. [PMID: 33572400 PMCID: PMC7916227 DOI: 10.3390/jof7020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Invasive fungal infections are increasingly recognized in immunocompromised hosts. Current diagnostic techniques are limited by low sensitivity and prolonged turnaround times. We review emerging diagnostic technologies and platforms for diagnosing the clinically invasive disease caused by Candida, Aspergillus, and Mucorales.
Collapse
Affiliation(s)
- Zoe Freeman Weiss
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
- Massachusetts General Hospital, Division of Infectious Diseases, Boston, MA 02115, USA
- Correspondence:
| | - Armando Leon
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| | - Sophia Koo
- Brigham and Women’s Hospital, Division of Infectious Diseases, Boston, MA 02115, USA; (A.L.); (S.K.)
| |
Collapse
|
24
|
Chen SCA, Halliday CL, Hoenigl M, Cornely OA, Meyer W. Scedosporium and Lomentospora Infections: Contemporary Microbiological Tools for the Diagnosis of Invasive Disease. J Fungi (Basel) 2021; 7:23. [PMID: 33406673 PMCID: PMC7823285 DOI: 10.3390/jof7010023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Scedosporium/Lomentospora fungi are increasingly recognized pathogens. As these fungi are resistant to many antifungal agents, early diagnosis is essential for initiating targeted drug therapy. Here, we review the microbiological tools for the detection and diagnosis of invasive scedosporiosis and lomentosporiosis. Of over 10 species, Lomentospora prolificans, Scedosporium apiospermum, S. boydii and S. aurantiacum cause the majority of infections. Definitive diagnosis relies on one or more of visualization, isolation or detection of the fungus from clinical specimens by microscopy techniques, culture and molecular methods such as panfungal PCR or genus-/species-specific multiplex PCR. For isolation from respiratory tract specimens, selective media have shown improved isolation rates. Species identification is achieved by macroscopic and microscopic examination of colonies, but species should be confirmed by ITS with or without β-tubulin gene sequencing or other molecular methods. Matrix-assisted laser desorption ionization-time of flight mass spectrometry databases are improving but may need supplementation by in-house spectra for species identification. Reference broth microdilution methods is preferred for antifungal susceptibility testing. Next-generation sequencing technologies have good potential for characterization of these pathogens. Diagnosis of Scedosporium/Lomentospora infections relies on multiple approaches encompassing both phenotypic- and molecular-based methods.
Collapse
Affiliation(s)
- Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia;
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Martin Hoenigl
- Division of Infectious Diseases and Global Health, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, San Diego, CA 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Oliver A. Cornely
- Department of Internal Medicine, Excellence Centre for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany;
- Translational Research Cologne Excellence Cluster on Cellular Responses in Aging-associated Diseases (CECAD), 50923 Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Koln), 50923 Cologne, Germany
| | - Wieland Meyer
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Sydney, NSW 2006, Australia;
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Sydney, NSW 2006, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW 2145, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
| |
Collapse
|
25
|
Camp I, Spettel K, Willinger B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J Fungi (Basel) 2020; 6:E101. [PMID: 32640656 PMCID: PMC7558065 DOI: 10.3390/jof6030101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Invasive infections caused by members of the genus Candida are on the rise. Especially patients in intensive care units, immunocompromised patients, and those recovering from abdominal surgery are at risk for the development of candidemia or deep-seated candidiasis. Rapid initiation of appropriate antifungal therapy can increase survival rates significantly. In the past, most of these infections were caused by C. albicans, a species that typically is very susceptible to antifungals. However, in recent years a shift towards infections caused by non-albicans species displaying various susceptibly patterns has been observed and the prompt diagnosis of the underlying species has become an essential factor determining the therapeutic outcome. The gold standard for diagnosing invasive candidiasis is blood culture, even though its sensitivity is low and the time required for species identification usually exceeds 48 h. To overcome these issues, blood culture can be combined with other methods, and a large number of tests have been developed for this purpose. The aim of this review was to give an overview on strengths and limitations of currently available molecular methods for the diagnosis of invasive candidiasis.
Collapse
Affiliation(s)
| | | | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (I.C.); (K.S.)
| |
Collapse
|
26
|
Knowledge at what cost? An audit of the utility of panfungal PCR performed on bronchoalveolar lavage fluid specimens at a tertiary mycology laboratory. Pathology 2020; 52:584-588. [PMID: 32576387 DOI: 10.1016/j.pathol.2020.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 11/21/2022]
Abstract
The diagnostic utility and costs of panfungal PCR assays for invasive fungal disease (IFD) from bronchoalveolar lavage fluid (BALF) specimens are incompletely defined. In a retrospective audit, panfungal PCR results from 2014-2018 were matched with information on request forms and the registrar/microbiologist diary of clinical liaison. Identification of a single fungus other than a commensal was considered potentially clinically significant, and assessed for clinical relevance. Of 1002 specimens tested, an estimated 90% were requested in patients without clinical suspicion of IFD. There were 530 (52.9%) PCR-positive results of which 485/530 (91.5%) identified multiple fungal species or commensal fungi; 45 (8.5%) were clinically significant but only in 12 (1.2%) was panfungal PCR the sole diagnostic test leading to IFD diagnosis, all in immunocompromised patients with clinical suspicion of IFD. Costs of panfungal PCR tests averaged AUD 133 per test, or AUD 26,767/annum. However, the average cost-per-diagnosis achieved was AUD 15,978/annum. Limiting testing to patients at risk and with clinical suspicion of IFD, may save over AUD 13,383/annum (assuming 50-90% reduction in testing). The value-added utility of panfungal PCR on BALF is 1.2% (12/1002). We have since introduced pre-analytical stewardship limiting routine panfungal PCR testing of BALF to high-risk patients in our hospital.
Collapse
|
27
|
Madigan T, Fattahi S, Rajapakse NS, Ristagno EH. Mediastinal Histoplasmosis With Esophageal Perforation Presenting as Recurrent Polymicrobial Empyema and Pericarditis in a Previously Healthy Child. J Pediatric Infect Dis Soc 2020; 9:272-276. [PMID: 31192366 DOI: 10.1093/jpids/piz042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022]
Affiliation(s)
- Theresa Madigan
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sayeh Fattahi
- Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Nipunie S Rajapakse
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth H Ristagno
- Division of Pediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
28
|
Camp I, Manhart G, Schabereiter-Gurtner C, Spettel K, Selitsch B, Willinger B. Clinical evaluation of an in-house panfungal real-time PCR assay for the detection of fungal pathogens. Infection 2020; 48:345-355. [PMID: 32052286 PMCID: PMC7256020 DOI: 10.1007/s15010-020-01395-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Due to an increasing incidence of invasive fungal infections, the availability of reliable diagnostic tools for the fast detection of a wide spectrum of fungal pathogens is of vital importance. In this study, we aimed to conduct an extensive clinical evaluation of a recently published in-house panfungal PCR assay on samples from suspected invasive fungal infections. METHODS Overall 265 clinical samples from 232 patients with suspected invasive fungal disease (96 deep airway samples, 60 sterile fluids, 50 tissue biopsies, and 59 blood samples) were included. All samples underwent standard culture-based diagnostics and were additionally analyzed with our panfungal PCR assay. RESULTS Overall, 55.1% of agreement between culture and the panfungal PCR was observed; in 17% of all samples partial concordance was noted, while results between culture and our PCR assay were not in agreement in 27.9%. Our panfungal assay performed better in samples from normally sterile sites, while samples from the deep airways yielded the highest rate of discordant (39.6%) results. In two tissue and three blood samples an invasive pathogen was only detected by PCR while cultures remained negative. CONCLUSION In combination with routine methods, our panfungal PCR assay is a valuable diagnostic tool. Patients at risk for invasive fungal infections might profit from the reduced time to pathogen identification.
Collapse
Affiliation(s)
- Iris Camp
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gabriele Manhart
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Schabereiter-Gurtner
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Ingenetix GmbH, Vienna, Austria
| | - Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Brigitte Selitsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Kidd SE, Chen SCA, Meyer W, Halliday CL. A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Front Microbiol 2020; 10:2903. [PMID: 31993022 PMCID: PMC6971168 DOI: 10.3389/fmicb.2019.02903] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Invasive fungal diseases (IFDs) present an increasing global burden in immunocompromised and other seriously ill populations, including those caused by pathogens which are inherently resistant or less susceptible to antifungal drugs. Early diagnosis encompassing accurate detection and identification of the causative agent and of antifungal resistance is critical for optimum patient outcomes. Many molecular-based diagnostic approaches have good clinical utility although interpretation of results should be according to clinical context. Where an IFD is in the differential diagnosis, panfungal PCR assays allow the rapid detection/identification of fungal species directly from clinical specimens with good specificity; sensitivity is also high when hyphae are seen in the specimen including in paraffin-embedded tissue. Aspergillus PCR assays on blood fractions have good utility in the screening of high risk hematology patients with high negative predictive value (NPV) and positive predictive value (PPV) of 94 and 70%, respectively, when two positive PCR results are obtained. The standardization, and commercialization of Aspergillus PCR assays has now enabled direct comparison of results between laboratories with commercial assays also offering the simultaneous detection of common azole resistance mutations. Candida PCR assays are not as well standardized with the only FDA-approved commercial system (T2Candida) detecting only the five most common species; while the T2Candida outperforms blood culture in patients with candidemia, its role in routine Candida diagnostics is not well defined. There is growing use of Mucorales-specific PCR assays to detect selected genera in blood fractions. Quantitative real-time Pneumocystis jirovecii PCRs have replaced microscopy and immunofluorescent stains in many diagnostic laboratories although distinguishing infection may be problematic in non-HIV-infected patients. For species identification of isolates, DNA barcoding with dual loci (ITS and TEF1α) offer optimal accuracy while next generation sequencing (NGS) technologies offer highly discriminatory analysis of genetic diversity including for outbreak investigation and for drug resistance characterization. Advances in molecular technologies will further enhance routine fungal diagnostics.
Collapse
Affiliation(s)
- Sarah E. Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, South Australia Pathology, Adelaide, SA, Australia
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Wieland Meyer
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Research and Education Network, Westmead Hospital, Westmead, NSW, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
30
|
Detection and identification of fungi in bronchoalveolar lavage fluid from immunocompromised patients using panfungal PCR. Folia Microbiol (Praha) 2018; 64:421-428. [PMID: 30535753 DOI: 10.1007/s12223-018-00669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Rapid diagnostics of fungal pneumonia and initiation of appropriate therapy are still challenging. In this study, we used two panfungal assays to test bronchoalveolar lavage fluid (BALF) samples to prove their ability to confirm invasive fungal disease diagnosis and identify causative agents. Two methods targeting different fungal rDNA regions were used, and the obtained PCR products were sequenced directly or after cloning. In total, 106 BALF samples from 104 patients were tested. After sequencing, we obtained 578 sequences. Four hundred thirty-seven sequences were excluded from further analysis due to duplication (n = 335) or similarity with sequences detected in the extraction control sample (n = 102); 141 unique sequences were analyzed. Altogether, 23/141 (16%) of the fungi detected belonged to pathogenic species, and 63/141 (45%) were identified as various yeasts; a variety of environmental or very rare fungal human pathogens represented 29/141 (21%) of the total and 26/141 (18%) were described as uncultured fungus. Panfungal PCR detected fungal species that would be missed by specific methods in only one case (probable cryptococcosis). Panfungal PCR followed by sequencing has limited use for testing BALF samples due to frequent commensal or environmental fungal species pickup.
Collapse
|