1
|
Bustos IG, Martín-Loeches I, Acosta-González A, Chotirmall SH, Dickson RP, Reyes LF. Exploring the complex relationship between the lung microbiome and ventilator-associated pneumonia. Expert Rev Respir Med 2023; 17:889-901. [PMID: 37872770 DOI: 10.1080/17476348.2023.2273424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Understanding the presence and function of a diverse lung microbiome in acute lung infections, particularly ventilator-associated pneumonia (VAP), is still limited, evidencing significant gaps in our knowledge. AREAS COVERED In this comprehensive narrative review, we aim to elucidate the contribution of the respiratory microbiome in the development of VAP by examining the current knowledge on the interactions among microorganisms. By exploring these intricate connections, we endeavor to enhance our understanding of the disease's pathophysiology and pave the way for novel ideas and interventions in studying the respiratory tract microbiome. EXPERT OPINION The conventional perception of lungs as sterile is deprecated since it is currently recognized the existence of a diverse microbial community within them. However, despite extensive research on the role of the respiratory microbiome in healthy lungs, respiratory chronic diseases and acute lung infections such as pneumonia are not fully understood. It is crucial to investigate further the relationship between the pathophysiology of VAP and the pulmonary microbiome, elucidating the mechanisms underlying the interactions between the microbiome, host immune response and mechanical ventilation for the development of VAP.
Collapse
Affiliation(s)
- Ingrid G Bustos
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Doctorado de Biociencias, Department of Engineering, Universidad de la Sabana, Chia, Colombia
| | - Ignacio Martín-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin, Ireland
| | - Alejandro Acosta-González
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Bioprospection Research Group (GIBP), Department of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, School of Medicine, Universidad de La Sabana, Chia, Colombia
- Critical Care Department, Clinica Universidad de La Sabana, Chia, Colombia
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Li C, Lu F, Chen J, Ma J, Xu N. Probiotic Supplementation Prevents the Development of Ventilator-Associated Pneumonia for Mechanically Ventilated ICU Patients: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials. Front Nutr 2022; 9:919156. [PMID: 35879981 PMCID: PMC9307490 DOI: 10.3389/fnut.2022.919156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Ventilator-associated pneumonia (VAP) is one of the common critical complications of nosocomial infection (NI) in invasive mechanically ventilated intensive care unit (ICU) patients. The efficacy of total parenteral nutrition (TPN), enteral nutrition and/or adjuvant peripheral parenteral nutrition (EPN) supplemented with or without probiotic, prebiotic, and synbiotic therapies in preventing VAP among these patients has been questioned. We aimed to systematically and comprehensively summarize all available studies to generate the best evidence of VAP prevention for invasive mechanically ventilated ICU patients. Methods Randomized controlled trials (RCTs) for the administration of TPN, EPN, probiotics-supplemented EPN, prebiotics-supplemented EPN, and synbiotics-supplemented EPN for VAP prevention in invasive mechanically ventilated ICU patients were systematically retrieved from four electronic databases. The incidence of VAP was the primary outcome and was determined by the random-effects model of a Bayesian framework. The secondary outcomes were NI, ICU and hospital mortality, ICU and hospital length of stay, and mechanical ventilation duration. The registration number of Prospero is CRD42020195773. Results A total of 8339 patients from 31 RCTs were finally included in network meta-analysis. The primary outcome showed that probiotic-supplemented EPN had a higher correlation with the alleviation of VAP than EPN in critically invasive mechanically ventilated patients (odds ratio [OR] 0.75; 95% credible intervals [CrI] 0.58–0.95). Subgroup analyses showed that probiotic-supplemented EPN prevented VAP in trauma patients (OR 0.30; 95% CrI 0.13–0.83), mixed probiotic strain therapy was more effective in preventing VAP than EPN therapy (OR 0.55; 95% CrI 0.31–0.97), and low-dose probiotic therapy (less than 1010 CFU per day) was more associated with lowered incidence of VAP than EPN therapy (OR 0.16; 95% CrI 0.04–0.64). Secondary outcomes indicated that synbiotic-supplemented EPN therapy was more significantly related to decreased incidence of NI than EPN therapy (OR 0.34; 95% CrI 0.11–0.85). Prebiotic-supplemented EPN administration was the most effective in preventing diarrhea (OR 0.05; 95% CrI 0.00–0.71). Conclusion Probiotic supplementation shows promise in reducing the incidence of VAP in critically invasive mechanically ventilated patients. Currently, low quality of evidence reduces strong clinical recommendations. Further high-quality RCTs are needed to conclusively prove these findings. Systamatic Review Registration [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020195773], identifier [CRD42020195773].
Collapse
Affiliation(s)
- Cong Li
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Fangjie Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Jing Chen
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Ma
- Department of Critical Care Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Jiawei Ma,
| | - Nana Xu
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Nana Xu,
| |
Collapse
|
3
|
Intestinal Flora: A Potential Mechanism by Which Yinlai Decoction Treats Lipopolysaccharide-Induced Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3034714. [PMID: 35368748 PMCID: PMC8967558 DOI: 10.1155/2022/3034714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/16/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Background. We intended to explore the mechanism of Yinlai decoction in the treatment of lipopolysaccharide (LPS)-induced pneumonia from the perspective of intestinal flora. Methods. Thirty Sprague–Dawley rats were randomly assigned to the blank control group (N), the pneumonia group (P), and the Yinlai decoction group (PT). The rat pneumonia model was established using LPS inhalation (0.5 mg/mL, 5 mL, 30 min/day, 3 days). Yinlai decoction was administered intragastrically (2 mL/100 g, 3 days). Lung tissue pathology, organ indexes, serum inflammatory factors, tumor necrosis factor-alpha (TNF-α), and intestinal flora changes were measured. Results. Lung tissue inflammation was prevented by Yinlai decoction. IL-6 levels showed a higher tendency to be higher, and IL-12 and TNF-α were significantly higher in the PT group than in the P group. The structure of the intestinal flora in the P differed from that in the N. The relative abundance of 10 out of 12 microflora was significantly higher in the P group than in the N and PT groups. In the PT group, the structure and the distribution of microbial groups were like those of the N group. Conclusions. Yinlai decoction inhibited LPS-induced lung and systemic inflammation in rats and may help the intestinal flora restore equilibrium by inhibiting the colonization of pathogenic bacteria and adjusting the ratio between probiotics and pathogenic bacteria. Intestinal flora may serve as a mediator of Yinlai decoction’s effect on LPS-induced pneumonia.
Collapse
|
4
|
AL-Dulaimi M, Algburi A, Abdelhameed A, Mazanko MS, Rudoy DV, Ermakov AM, Chikindas ML. Antimicrobial and Anti-Biofilm Activity of Polymyxin E Alone and in Combination with Probiotic Strains of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against Clinical Isolates of Selected Acinetobacter spp.: A Preliminary Study. Pathogens 2021; 10:1574. [PMID: 34959528 PMCID: PMC8707300 DOI: 10.3390/pathogens10121574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/23/2023] Open
Abstract
Acinetobacter spp., the nosocomial pathogen, forms strong biofilms and is resistant to numerous antibiotics, causing persistent infections. This study investigates the antibacterial and anti-biofilm activity of polymyxin E alone and in combination with the cell-free supernatants (CFS) of the tested probiotic bacilli, Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against the selected Acinetobacter spp. starins. Three isolates of Acinetobacter spp., designated as Acinetobacter spp. isolate 1; Acinetobacter spp. isolate 2, and Acinetobacter spp. isolate 3, were collected from patients with burns, wounds, and blood infections, respectively. Bacterial identification and antibiotic susceptibility testing were conducted using the VITEK2 system. Auto-aggregation and coaggregation of the tested bacilli strains with the selected Acinetobacter spp. isolates were evaluated. A disk diffusion assay was used to identify the microorganism's susceptibility to the selected antibiotics, alone and in combination with the CFS of the bacilli. The MIC and MBIC (minimum inhibitory and minimum biofilm inhibitory concentrations) of polymyxin E combined with bacilli CFS were determined. Acinetobacter spp. isolates were (i) sensitive to polymyxin E, (ii) able to form a strong biofilm, and (iii) resistant to the tested antibiotics and the CFS of tested bacilli. Significant inhibition of biofilm formation was noticed when CFS of the tested bacilli were combined with polymyxin E. The bacilli CFS showed synergy with polymyxin E against planktonic cells and biofilms of the isolated pathogens.
Collapse
Affiliation(s)
- Munaf AL-Dulaimi
- Educational Laboratories, Baqubah General Hospital, Baqubah 32001, Iraq;
| | - Ammar Algburi
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
- Biotechnology Department, College of Science, University of Diyala, Baqubah 32001, Iraq
| | - Alyaa Abdelhameed
- Scholarship and Cultural Relations Department, University of Diyala, Baqubah 32001, Iraq;
| | - Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Dmitry V. Rudoy
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia; (M.S.M.); (D.V.R.); (A.M.E.); (M.L.C.)
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| |
Collapse
|
5
|
Zhao L, Mao Y, Yu H, Liu H, Wang C, Liu J, Han Y, Bi Y, Zhang D. The Preventive Effects of Lactobacillus casei on Acute Lung Injury Induced by Lipopolysaccharide. Indian J Microbiol 2021; 61:370-382. [PMID: 34092818 PMCID: PMC8169435 DOI: 10.1007/s12088-021-00949-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Lactobacillus has been reported to inhibit acute lung injury (ALI). However, the molecular mechanism of Lactobacillus casei (L. casei) in preventing ALI has not been identified, so we investigated whether L. casei pretreatment could inhibit the activation of TLR4/MyD88/NF-κB signaling pathway following ALI. ALI model was established by intraperitoneal injection of 2 mg/kg lipopolysaccharide (LPS) to female BALB/c mice. In L. casei LC2W group, mice were intragastrically administrated L. casei LC2W for a week, before the ALI modeling. The serum of normal BALB/c mice after intragastric administration of L. casei LC2W was used for in vitro cell assays. The serum was pre-incubated with mouse macrophage cell line (RAW264.7) and human lung cell line (HLF-A), then LPS was added to co-incubate. Compared with ALI model group, L. casei LC2W pretreatment significantly reduced lung pathological damage, the number of neutrophils and total cells in bronchoalveolar lavage fluid. Besides, L. casei LC2W pretreatment could significantly reverse the abnormal expression of ICAM-1, IL-6, TNF-α and IL-10 in lung tissue and serum, plus, L. casei LC2W significantly reduced the phosphorylation levels of IRAK-1 and NF-κB p65. In vitro, the serum decreased the up-regulation of IL-6 and TNF-α in cell lines induced by LPS. In conclusion, L. casei LC2W intragastric administration pretreatment could significantly improve LPS-induced ALI in mice, probably through circulation to reach the lungs so as to inhibit the inflammatory response induced by activation of TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lihui Zhao
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Ying Mao
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Haiming Yu
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - He Liu
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Chao Wang
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Jianwei Liu
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Yutong Han
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Yang Bi
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| | - Donghai Zhang
- the Second Affiliated Hospital of Qiqihar Medical University, No. 37 Zhonghua West Road, Jianhua DistrictHeilongjiang Province, Qiqihar City, 161000 China
| |
Collapse
|
6
|
Tranberg A, Klarin B, Johansson J, Påhlman LI. Efficacy of Lactiplantibacillus plantarum 299 and 299v against nosocomial oropharyngeal pathogens in vitro and as an oral prophylactic treatment in a randomized, controlled clinical trial. Microbiologyopen 2020; 10:e1151. [PMID: 33350604 PMCID: PMC7885009 DOI: 10.1002/mbo3.1151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Background Disturbance in the oropharyngeal microbiota is common in hospitalized patients and contributes to the development of nosocomial pneumonia. Lactiplantibacillus plantarum 299 and 299v (Lp299 and Lp299v) are probiotic bacteria with beneficial effects on the human microbiome. Aim To investigate how Lp299 and Lp299v affect the growth of nosocomial oropharyngeal pathogens in vitro and to evaluate the efficacy in vivo when these probiotics are administered prophylactically in hospitalized patients. Methods The in vitro effect of Lp299 and Lp299v on nosocomial respiratory tract pathogens was evaluated using two methods, the co‐culture and agar overlay. In the clinical study, patients were randomized to orally receive either probiotics or placebo twice daily during their hospital stay. Oropharyngeal swabs were analyzed at inclusion and every fourth day throughout hospitalization. Findings All tested pathogens were completely inhibited by both Lp299 and Lp299v using the agar‐overlay method. In the co‐culture experiment, Lp299 and Lp299v significantly (p < 0.05) reduced the growth of all pathogens except for Enterococcus faecalis co‐incubated with Lp299. In the clinical study, daily oral treatment with Lp299 and Lp299v did not influence the development of disturbed oropharyngeal microbiota or nosocomial infection. Proton pump inhibitors, antibiotics, and steroid treatment were identified as risk factors for developing disturbed oropharyngeal microbiota. Conclusions Lp299 and Lp299v inhibited pathogen growth in vitro but did not affect the oropharyngeal microbiota in vivo. The ClinicalTrials.gov Identifier for this study is NCT02303301.
Collapse
Affiliation(s)
- Anna Tranberg
- Division of Intensive and Perioperative Care, Skåne University Hospital Lund, Lund, Sweden
| | - Bengt Klarin
- Division of Intensive and Perioperative Care, Skåne University Hospital Lund, Lund, Sweden
| | - Julia Johansson
- Division of Intensive and Perioperative Care, Skåne University Hospital Lund, Lund, Sweden
| | - Lisa I Påhlman
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Ji T, Zhu X, Shang F, Zhang X. Preventive Effect of Probiotics on Ventilator-Associated Pneumonia: A Meta-analysis of 2428 Patients. Ann Pharmacother 2020; 55:949-962. [PMID: 33349001 DOI: 10.1177/1060028020983021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Researchers had contradictory conclusions about the role of probiotics in preventing ventilator-associated pneumonia (VAP), which has led to the controversial use of probiotics in mechanically ventilated patients. OBJECTIVE To explore the efficacy and safety of probiotics in preventing VAP. METHODS A literature search was conducted in 7 medical databases. Two investigators assessed literature quality independently and collected data. The primary outcome was the incidence of VAP. Secondary outcomes included 16 measures. Sensitivity analysis and subgroup and meta-regression analyses were performed to analyze the source of heterogeneity. P values <0.05 were considered statistically significant, and CIs were set at 95%. A random-effects model was set when I2 <50%, otherwise a fixed-effects model was used. RESULTS A total of 20 randomized controlled studies with a total of 2428 patients were analyzed. Pooled results showed positive effects of probiotics on the reduction of VAP incidence (risk ratio [RR] = 0.672; P < 0.001; I2 = 11.3%), length of ICU stay (WMD = -1.417; P = 0.012; I2 = 90.7%), oropharyngeal (RR = 0.866; P = 0.031; I2 = 12.4%) and gastric (RR = 0.645; P < 0.001; I2 = 30.2%) colonization. CONCLUSIONS AND RELEVANCE Probiotics can reduce the incidence of VAP and reduce oropharyngeal and gastric bacterial colonization. The results also suggest that probiotics do not cause adverse effects.
Collapse
Affiliation(s)
- Ting Ji
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xingxing Zhu
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Futai Shang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiangcheng Zhang
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
8
|
Tavares LM, de Jesus LCL, da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel Strategies for Efficient Production and Delivery of Live Biotherapeutics and Biotechnological Uses of Lactococcus lactis: The Lactic Acid Bacterium Model. Front Bioeng Biotechnol 2020; 8:517166. [PMID: 33251190 PMCID: PMC7672206 DOI: 10.3389/fbioe.2020.517166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Lactic acid bacteria (LAB) are traditionally used in fermentation and food preservation processes and are recognized as safe for consumption. Recently, they have attracted attention due to their health-promoting properties; many species are already widely used as probiotics for treatment or prevention of various medical conditions, including inflammatory bowel diseases, infections, and autoimmune disorders. Some LAB, especially Lactococcus lactis, have been engineered as live vehicles for delivery of DNA vaccines and for production of therapeutic biomolecules. Here, we summarize work on engineering of LAB, with emphasis on the model LAB, L. lactis. We review the various expression systems for the production of heterologous proteins in Lactococcus spp. and its use as a live delivery system of DNA vaccines and for expression of biotherapeutics using the eukaryotic cell machinery. We have included examples of molecules produced by these expression platforms and their application in clinical disorders. We also present the CRISPR-Cas approach as a novel methodology for the development and optimization of food-grade expression of useful substances, and detail methods to improve DNA delivery by LAB to the gastrointestinal tract. Finally, we discuss perspectives for the development of medical applications of recombinant LABs involving animal model studies and human clinical trials, and we touch on the main safety issues that need to be taken into account so that bioengineered versions of these generally recognized as safe organisms will be considered acceptable for medical use.
Collapse
Affiliation(s)
- Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís C L de Jesus
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales F da Silva
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Viviane L Batista
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil.,FAMINAS - BH, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Kuhn T, Koch M, Fuhrmann G. Probiomimetics-Novel Lactobacillus-Mimicking Microparticles Show Anti-Inflammatory and Barrier-Protecting Effects in Gastrointestinal Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003158. [PMID: 32885611 DOI: 10.1002/smll.202003158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/14/2020] [Indexed: 06/11/2023]
Abstract
There is a lack of efficient therapies to treat increasingly prevalent autoimmune diseases, such as inflammatory bowel disease and celiac disease. Membrane vesicles (MVs) isolated from probiotic bacteria have shown tremendous potential for treating intestinal inflammatory diseases. However, possible dilution effects and rapid elimination in the gastrointestinal tract may impair their application. A cell-free and anti-inflammatory therapeutic system-probiomimetics-based on MVs of probiotic bacteria (Lactobacillus casei and Lactobacillus plantarum) coupled to the surface of microparticles is developed. The MVs are isolated and characterized for size and protein content. MV morphology is determined using cryoelectron microscopy and is reported for the first time in this study. MVs are nontoxic against macrophage-like dTHP-1 and enterocyte-like Caco-2 cell lines. Subsequently, the MVs are coupled onto the surface of microparticles according to facile aldehyde-group functionalization to obtain probiomimetics. A significant reduction in proinflammatory TNF-α level (by 86%) is observed with probiomimetics but not with native MVs. Moreover, it is demonstrated that probiomimetics have the ability to ameliorate inflammation-induced loss of intestinal barrier function, indicating their potential for further development into an anti-inflammatory formulation. These engineered simple probiomimetics that elicit striking anti-inflammatory effects are a key step toward therapeutic MV translation.
Collapse
Affiliation(s)
- Thomas Kuhn
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, Saarbrücken, 66123, Germany
| | - Marcus Koch
- INM - Leibniz-Institut für Neue Materialien, Campus D2 2, Saarbrücken, D-66123, Germany
| | - Gregor Fuhrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Pharmacy, Saarland University, Campus E8 1, Saarbrücken, 66123, Germany
| |
Collapse
|
10
|
Guo C, Lei M, Wang Y, Hua L, Xue S, Yu D, Zhang C, Wang D. Oral Administration of Probiotic Lactobacillus Casei Shirota Decreases Pneumonia and Increases Pulmonary Functions after Single Rib Fracture: A Randomized Double-Blind, Placebo-Controlled Clinical Trial. J Food Sci 2018; 83:2222-2226. [PMID: 30020533 DOI: 10.1111/1750-3841.14220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/04/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Considerate proportion of elderly patients with a rib fracture is susceptible to pulmonary complications, especially pneumonia. We aimed to assess the effect of oral administration of the probiotic Lactobacillus casei Shirota (LcS) on pneumonia and pulmonary functions among elderly patients with single rib fracture. The current study including 204 eligible elderly patients with a single rib fracture was conducted. Patients were randomly assigned to receive oral administration of skimmed milk containing either a commercial probiotic LcS or placebo daily for 1 mo after the fracture, followed by pneumonia assessments, pulmonary function testing including forced expiratory volume (FEV), negative inspiratory pressure (NIP), and forced vital capacity (FVC), as well as evaluation of potential adverse effects including myocardial infarction, acute kidney injury, nonunion of fractured bone, or stroke. After 1 mo consumption, patients in the LcS group exhibited decreased pneumonia and increased recovery of pulmonary functions, in terms of FEV, FVC, and NIP, compared to the placebo group. No difference was observed in incidence of adverse events between the 2 groups. In patients with a single rib fracture, oral administration of the probiotic LcS was associated with a lower incidence of pneumonia and increased pulmonary functions without causing severe adverse effects. PRACTICAL APPLICATION To conclude, after 1-mo LcS consumption, in patients with a single rib fracture, oral administration of the probiotic LcS was associated with a lower incidence of pneumonia and increased pulmonary functions without causing severe adverse effects.
Collapse
Affiliation(s)
- Chunhua Guo
- Dept. of Orthopedics, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Min Lei
- Dept. of Nutrition and Diet, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Yong Wang
- Dept. of Orthopedics, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Limei Hua
- Dept. of Nutrition, Bethune Int. Heping Hospital, No. 398, Zhong Shan West Road, Shijiazhuang, 050082, Hebei Province, China
| | - Sujuan Xue
- Dept. of Nutrition and Diet, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Dan Yu
- Dept. of Nutrition and Diet, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Chunhua Zhang
- Dept. of Emergency Medicine, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Dawei Wang
- Dept. of Oral and Maxillofacial Surgery, the Third Hospital of Hebei Medical Univ., No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| |
Collapse
|
11
|
Rhodes NJ, Cruce CE, O'Donnell JN, Wunderink RG, Hauser AR. Resistance Trends and Treatment Options in Gram-Negative Ventilator-Associated Pneumonia. Curr Infect Dis Rep 2018; 20:3. [PMID: 29511909 DOI: 10.1007/s11908-018-0609-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Hospital-acquired and ventilator-associated pneumonia (VAP) are frequent causes of infection among critically ill patients. VAP is the most common hospital-acquired bacterial infection among mechanically ventilated patients. Unfortunately, many of the nosocomial Gram-negative bacteria that cause VAP are increasingly difficult to treat. Additionally, the evolution and dissemination of multi- and pan-drug resistant strains leave clinicians with few treatment options. VAP patients represent a dynamic population at risk for antibiotic failure and under-dosing due to altered antibiotic pharmacokinetic parameters. Since few antibiotic agents have been approved within the last 15 years, and no new agents specifically targeting VAP have been approved to date, it is anticipated that this problem will worsen. Given the public health crisis posed by resistant Gram-negative bacteria, it is essential to establish a firm understanding of the current epidemiology of VAP, the changing trends in Gram-negative resistance in VAP, and the current issues in drug development for Gram-negative bacteria that cause VAP. RECENT FINDINGS Rapid identification technologies and phenotypic methods, new therapeutic strategies, and novel treatment paradigms have evolved in an attempt to improve treatment outcomes for VAP; however, clinical data supporting alternative treatment strategies and adjunctive therapies remain sparse. Importantly, new classes of antimicrobials, novel virulence factor inhibitors, and beta-lactam/beta-lactamase inhibitor combinations are currently in development. Conscientious stewardship of new and emerging therapeutic agents will be needed to ensure they remain effective well into the future.
Collapse
Affiliation(s)
- Nathaniel J Rhodes
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA. .,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA.
| | - Caroline E Cruce
- Department of Pharmacy Practice, Midwestern University, Chicago College of Pharmacy, 555 31st St., Downers Grove, IL, 60515, USA.,Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
| | - J Nicholas O'Donnell
- Department of Pharmacy Practice, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Richard G Wunderink
- Department of Internal Medicine, Division of Pulmonary Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Internal Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|