1
|
Chi J, Li Y, Zhang N, Liu H, Chen Z, Li J, Huang X. Fosfomycin Enhances the Inhibition Ability of Linezolid Against Biofilms of Vancomycin-Resistant Enterococcus faecium in vitro. Infect Drug Resist 2023; 16:7707-7719. [PMID: 38144225 PMCID: PMC10748582 DOI: 10.2147/idr.s428485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose We explored the inhibition ability of linezolid/fosfomycin combination against biofilms of vancomycin-resistant Enterococcus faecium (VREfm) and tried to provide a theoretical basis for the treatment of VREfm biofilm-associated infections. Methods Four clinical isolates of VREfm (No.2, No.4, No.5, and No.6) were used for this study, which were collected from the First Affiliated Hospital of Anhui Medical University. The checkerboard method was used to assess the synergistic effect of linezolid and fosfomycin. The inhibition ability of biofilm biomass was evaluated by crystal violet staining, and the metabolic activity was tested by an Alamar blue cell viability assay. Changes in biofilm formation-related genes of the strains after incubating with drugs were investigated via the quantitative real-time polymerase chain reaction (RT-qPCR). Results The fractional inhibitory concentration index (FICI) showed that linezolid combined with fosfomycin had a synergistic effect on all four VREfm isolates. Compared with linezolid monotherapy, linezolid combined with fosfomycin led to a significant decrease in biofilm biomass and metabolic activity, especially in the mature biofilm. The results of RT-qPCR showed linezolid combined with fosfomycin inhibition biofilm formation through the inhibition of cylA, ebpA, and gelE transcription in VREfm in the initial and mature stages. To the mature biofilm, the combination also reduced the expression of asa1, atlA, and esp. Conclusion The combination of linezolid and fosfomycin represented stronger inhibitory effect on the biofilm formation of VREfm than linezolid alone.
Collapse
Affiliation(s)
- Jie Chi
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Yaowen Li
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Huiping Liu
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| | - Zhifeng Chen
- Department of Pharmacy, Tongling Municipal Hospital, Tongling, Anhui, People’s Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, People’s Republic of China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
2
|
Tzalis S, Ioannou P, Billiari E, Kofteridis DP, Karakonstantis S. Daptomycin as an option for lock therapy: a systematic literature review. Future Microbiol 2023; 18:917-928. [PMID: 37622290 DOI: 10.2217/fmb-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
Aim: To review preclinical and clinical data relevant to daptomycin lock therapy in catheter-related bloodstream infection (CRBSI). Methods: Systematic review in PubMed, Scopus and clinical trial registries. Results: Preclinical data demonstrate daptomycin lock solution stability and compatibility with heparin, good biofilm penetration, bactericidal activity against biofilm-embedded bacteria, and high efficacy in vitro and in animal catheter infection models. Clinical data remain limited (two case reports and five case series totaling n = 65 CRBSI episodes), albeit promising (successful catheter salvage in about 80% of cases). Conclusion: Despite theoretical advantages of daptomycin, clinical data remain scarce. Comparative studies versus alternative lock solutions are needed, as well as studies to define optimal daptomycin lock regimen (including optimal concentration, dwell time and lock duration).
Collapse
Affiliation(s)
- Sotirios Tzalis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
| | - Petros Ioannou
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Eleni Billiari
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- School of Medicine, University of Crete, Heraklion, Crete, 71500, Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| | - Stamatis Karakonstantis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, 71500,Greece
- Infectious Diseases, University Hospital of Heraklion, Heraklion, Crete, 71500, Greece
| |
Collapse
|
3
|
Deng X, Xu H, Li D, Chen J, Yu Z, Deng Q, Li P, Zheng J, Zhang H. Mechanisms of Rapid Bactericidal and Anti-Biofilm Alpha-Mangostin In Vitro Activity against Staphylococcus aureus. Pol J Microbiol 2023; 72:199-208. [PMID: 37314356 DOI: 10.33073/pjm-2023-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/16/2023] [Indexed: 06/15/2023] Open
Abstract
Alpha-mangostin (α-mangostin) was discovered as a potent natural product against Gram-positive bacteria, whereas the underlying molecular mechanisms are still unclear. This study indicated that α-mangostin (at 4 × MIC) rapidly killed Staphylococcus aureus planktonic cells more effectively (at least 2-log10 CFU/ml) than daptomycin, vancomycin and linezolid at 1 and 3 h in the time-killing test. Interestingly, this study also found that a high concentration of α-mangostin (≥4×MIC) significantly reduced established biofilms of S. aureus. There were 58 single nucleotide polymorphisms (SNPs) in α-mangostin nonsensitive S. aureus isolates by whole-genome sequencing, of which 35 SNPs were located on both sides of the sarT gene and 10 SNPs in the sarT gene. A total of 147 proteins with a different abundance were determined by proteomics analysis, of which 91 proteins increased, whereas 56 proteins decreased. The abundance of regulatory proteins SarX and SarZ increased. In contrast, the abundance of SarT and IcaB was significantly reduced (they belonged to SarA family and ica system, associated with the biofilm formation of S. aureus). The abundance of cell membrane proteins VraF and DltC was augmented, but the abundance of cell membrane protein UgtP remarkably decreased. Propidium iodide and DiBaC4(3) staining assay revealed that the fluorescence intensities of DNA and the cell membrane were elevated in the α-mangostin treated S. aureus isolates. In conclusion, this study reveals that α-mangostin was effective against S. aureus planktonic cells by targeting cell membranes. The anti-biofilm effect of α-mangostin may be through inhibiting the function of SarT and IcaB.
Collapse
Affiliation(s)
- Xiangbin Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Hongbo Xu
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Duoyun Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinlian Chen
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Zhijian Yu
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Qiwen Deng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Peiyu Li
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jinxin Zheng
- 1Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Haigang Zhang
- 2Department of Critical Care Medicine and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
4
|
Wang L, Zhang Y, Lin Y, Cao J, Xu C, Chen L, Wang Y, Sun Y, Zheng X, Liu Y, Zhou T. Resveratrol Increases Sensitivity of Clinical Colistin-Resistant Pseudomonas aeruginosa to Colistin In Vitro and In Vivo. Microbiol Spectr 2023; 11:e0199222. [PMID: 36475724 PMCID: PMC9927286 DOI: 10.1128/spectrum.01992-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections caused by colistin-resistant P. aeruginosa strains pose a serious threat to public health. It is therefore urgent to find new strategies to deal with these bacterial infections. We aimed to investigate the efficacy and mechanisms of the colistin/resveratrol combination in eradicating colistin-resistant P. aeruginosa isolates and their biofilms both in vitro and in vivo. The results revealed that six clinically isolated colistin-resistant P. aeruginosa strains were multidrug resistant (MDR) strains, and resveratrol showed no antimicrobial activity against eight P. aeruginosa strains. Checkerboard assay and time-kill assays indicated that the combination therapy of resveratrol and colistin indicated a remarkable synergistic effect in vitro, and biofilm assays and SEM indicated synergistic antibiofilm activity. Furthermore, this combination could efficiently eliminate MDR bacteria in a murine infection model and improve the survival rate of Galleria mellonella. Fluorescence analysis, ALP, and β-galactosidase activity test results indicated that the colistin/resveratrol combination increased the membrane permeability of bacteria. In conclusion, our results may provide an efficient alternative pathway against colistin-resistant P. aeruginosa infections. IMPORTANCE P. aeruginosa is a ubiquitous Gram-negative opportunistic pathogen associated with a wide array of life-threatening acute and chronic infections. However, the improper and excessive use of antibiotics has contributed to the increasing emergence of multidrug-resistant (MDR) P. aeruginosa, even colistin-resistant strains, which presents a major challenge to clinical anti-infection treatment. Resveratrol, a naturally occurring polyphenolic antioxidant, can effectively slow down or avoid the occurrence and development of bacterial resistance and is expected to offer a promising strategy to overcome bacterial infections. In this study, colistin/resveratrol combination could synergistically damage the bacterial cell membrane, thereby inducing cell lysis while addressing the emergence of drug resistance. Moreover, this combination therapy may provide an efficient alternative pathway to combat the colistin-resistant P. aeruginosa in clinical practice.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Chunyan Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Liqiong Chen
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Yao Sun
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Xuecheng C, Liang H, Yanpeng X, Yurong Z, Yue L, Yalan P, Zhong C, Jie Z, Zhijian Y, Shiqing H. Development of 2‐Alkyl‐5‐((phenylsulfonyl)oxy)‐1
H
‐indole‐3‐carboxylate Derivatives as Potential Anti‐Biofilm Agents. ChemistrySelect 2023. [DOI: 10.1002/slct.202204226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chen Xuecheng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Hu Liang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Xiong Yanpeng
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Yurong
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Luo Yue
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Peng Yalan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| | - Chen Zhong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Zhang Jie
- School of Animal Pharmaceutical Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 People's Republic of China
| | - Yu Zhijian
- Department of Infectious Diseases and the Key Lab of Endogenous Infection Shenzhen Nanshan People's Hospital, the 6th Affiliated Hospital of Shenzhen University Medical School Shenzhen 518052 China
| | - Han Shiqing
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
6
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
7
|
Liu X, Xiong Y, Shi Y, Deng X, Deng Q, Liu Y, Yu Z, Li D, Zheng J, Li P. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front Microbiol 2022; 13:970901. [PMID: 36338074 PMCID: PMC9634178 DOI: 10.3389/fmicb.2022.970901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2023] Open
Abstract
This study aims to evaluate the in vitro antibacterial and anti-biofilm activities of licochalcone A on Enterococcus faecalis and to investigate the possible target genes of licochalcone A in E. faecalis. This study found that licochalcone A had antibacterial activities against E. faecalis, with the MIC50 and MIC90 were 25 μM. Licochalcone A (at 4 × MIC) indicated a rapid bactericidal effect on E. faecalis planktonic cells, and killed more E. faecalis planktonic cells (at least 3-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 2, 4, and 6 h of the time-killing test. Licochalcone A (at 10 × MIC) significantly reduced the production of E. faecalis persister cells (at least 2-log10 cfu/ml) than vancomycin, linezolid, or ampicillin at the 24, 48, 72, and 96 h of the time-killing test. Licochalcone A (at 1/4 × MIC) significantly inhibited the biofilm formation of E. faecalis. The RNA levels of biofilm formation-related genes, agg, esp, and srtA, markedly decreased when the E. faecalis isolates were treated with licochalcone A at 1/4 × MIC for 6 h. To explore the possible target genes of licochalcone A in E. faecalis, the licochalcone A non-sensitive E. faecalis clones were selected in vitro by induction of wildtype strains for about 140 days under the pressure of licochalcone A, and mutations in the possible target genes were detected by whole-genome sequencing. This study found that there were 11 nucleotide mutations leading to nonsynonymous mutations of 8 amino acids, and among these amino acid mutations, there were 3 mutations located in transcriptional regulator genes (MarR family transcriptional regulator, TetR family transcriptional regulator, and MerR family transcriptional regulator). In conclusion, this study found that licochalcone A had an antibacterial effect on E. faecalis, and significantly inhibited the biofilm formation of E. faecalis at subinhibitory concentrations.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiangbin Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yansong Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
8
|
Lagatolla C, Mehat JW, La Ragione RM, Luzzati R, Di Bella S. In Vitro and In Vivo Studies of Oritavancin and Fosfomycin Synergism against Vancomycin-Resistant Enterococcus faecium. Antibiotics (Basel) 2022; 11:antibiotics11101334. [PMID: 36289992 PMCID: PMC9598191 DOI: 10.3390/antibiotics11101334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic options for infections caused by vancomycin-resistant enterococci are currently suboptimal. Combination regimens where fosfomycin is used alongside existing treatments are emerging given the proven synergistic potential and PK/PD properties. In the studies presented here, we tested five vanA and five vanB clinical isolates of Enterococcus faecium using a combination of oritavancin + fosfomycin both in vitro (checkerboard, time killing) and in vivo (Galleria mellonella). The combination of oritavancin and fosfomycin increased drug susceptibility, showing a synergistic effect in 80% of isolates and an additive effect in the remaining isolates. The combination restored fosfomycin susceptibility in 85% of fosfomycin-resistant isolates. Time killing on four selected isolates demonstrated that the combination of oritavancin and fosfomycin provided a CFU/mL reduction > 2 log10 compared with the most effective drug alone and prevented the bacterial regrowth seen after 8−24 h at sub-inhibitory drug concentrations. In addition, the combination was also tested in a biofilm assay with two isolates, and a strong synergistic effect was observed in one isolate and an additive effect in the other. Finally, we demonstrated in vivo (Galleria mellonella) a higher survival rate of the larvae treated with the combination therapy compared to monotherapy (fosfomycin or oritavancin alone). Our study provides preclinical evidence to support trials combining oritavancin and fosfomycin for VRE BSI in humans, even when biofilm is involved.
Collapse
Affiliation(s)
| | - Jai W. Mehat
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto Marcello La Ragione
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
9
|
Wang L, Zhang Y, Liu S, Huang N, Zeng W, Xu W, Zhou T, Shen M. Comparison of Anti-Microbic and Anti-Biofilm Activity Among Tedizolid and Radezolid Against Linezolid-Resistant Enterococcus faecalis Isolates. Infect Drug Resist 2021; 14:4619-4627. [PMID: 34764658 PMCID: PMC8577528 DOI: 10.2147/idr.s331345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background The emergence and spread of linezolid-resistant Enterococcus faecalis (E. faecalis) have emerged as a serious threat to human health globally. Therefore, this study aims to compare the anti-microbic as well as the anti-biofilm activity of linezolid, tedizolid, and radezolid against linezolid-resistant E. faecalis. Methods A total of 2128 E. faecalis isolates were assessed from the First Affiliated Hospital of Wenzhou Medical University from 2011 to 2019. Antibiotic sensitivity was evaluated using the micro broth dilution method. Oxazolidinone-resistant chromosomal and plasmid-borne genes such as cfr, cfr(A), cfr(B), cfr(C), cfr(D), optrA, and poxtA were detected by PCR and then sequenced to detect the presence of mutations in the domain V of the 23S rRNA and the ribosomal proteins L3, L4, and L22. Conjugation experiments were conducted using the broth method. The inhibition and eradication of biofilm were evaluated through crystal violet staining, whereas the efflux pump activities were detected by agar dilution. Results Out of 2128 isolated E. faecalis, 71 (3.34%) were linezolid-resistant isolates in which the MICs of tedizolid and radezolid ranged from 1 to 4 μg/mL and 0.5–1 μg/mL, respectively. The MIC50/MIC90 of tedizolid and radezolid were 4 and 8-fold lower than the linezolid, respectively. Out of 71 resistant isolates, 57 (80.28%) carried optrA, 1 (1.41%) carried cfr, 4 (5.63%) carried optrA and cfr, and 6 (8.45%) carried optrA and cfr(D), with no mutations of 23S rRNA gene and ribosomal proteins L3, L4, and L22. Besides, the transfer rate of the optrA, cfr, and cfr(D) was 17.91%, 0% and 0%, respectively. Radezolid showed more effectiveness in eradicating biofilm (8 × MIC). However, tedizolid was more effective than radezolid and linezolid in inhibiting the biofilm formation (1/4 MIC, 1/8MIC, and 1/16MIC). Additionally, in combination with CCCP, the MICs of radezolid in all linezolid-resistant isolates decreased ≥4-fold. Conclusion Radezolid showed greater antimicrobial activity than tedizolid and linezolid against linezolid-resistant E. faecalis. However, both tedizolid and radezolid showed differential activity on biofilm inhibition, eradication, and efflux pump compared to linezolid. Thus, our study might bring important clinical value in the application of these drugs for resistant pathogenic strains.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
Chen Z, Song K, Shang Y, Xiong Y, Lyu Z, Chen J, Zheng J, Li P, Wu Y, Gu C, Xie Y, Deng Q, Yu Z, Zhang J, Qu D. Selection and Identification of Novel Antibacterial Agents against Planktonic Growth and Biofilm Formation of Enterococcus faecalis. J Med Chem 2021; 64:15037-15052. [PMID: 34657423 DOI: 10.1021/acs.jmedchem.1c00939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
YycFG, one of the two-component systems involved in the regulation of biofilm formation, has attracted increasing interest as a potential target of antibacterial and antibiofilm agents. YycG inhibitors for Staphylococcus aureus and Staphylococcus epidermidis have been developed, but Enterococcus faecalis remains underexplored. Herein, we selected and identified novel candidate molecules against E. faecalis targeting histidine kinase YycG using high-throughput virtual screening; six molecules (compound-16, -30, -42, -46, -59, and -62) with low cytotoxicity toward mammalian cells were verified as potential YycG inhibitors through an autophosphorylation test and binding kinetics. Compound-16 inhibited planktonic cells of E. faecalis, including the vancomycin- or linezolid-resistant strains. In contrast, compound-62 did not affect planktonic growth but significantly inhibited biofilm formation in static and dynamic conditions. Compound-62 combined with ampicillin could synergistically eradicate the biofilm-embedded viable bacteria. The study demonstrates that YycG inhibitors may be valuable approaches for the development of novel antimicrobial agents for difficult-to-treat bacterial infections.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Kun Song
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Yongpeng Shang
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Yanpeng Xiong
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Zhihui Lyu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qiwen Deng
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Oliva A, Stefani S, Venditti M, Di Domenico EG. Biofilm-Related Infections in Gram-Positive Bacteria and the Potential Role of the Long-Acting Agent Dalbavancin. Front Microbiol 2021; 12:749685. [PMID: 34745053 PMCID: PMC8569946 DOI: 10.3389/fmicb.2021.749685] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Infections caused by Gram-positive bacteria are a major public health problem due to their increasing resistance to antibiotics. Staphylococcus and Enterococcus species' resistance and pathogenicity are enhanced by their ability to form biofilm. The biofilm lifestyle represents a significant obstacle to treatment because bacterial cells become highly tolerant to a wide range of antimicrobial compounds normally effective against their planktonic forms. Thus, novel therapeutic strategies targeting biofilms are urgently needed. The lipoglycopeptide dalbavancin is a long-acting agent for treating acute bacterial skin and skin structure infections caused by a broad range of Gram-positive pathogens. Recent studies have shown promising activity of dalbavancin against Gram-positive biofilms, including methicillin-resistant S. aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and vancomycin-susceptible enterococci. This review outlines the mechanisms regulating biofilm development in Staphylococcus and Enterococcus species and the clinical impact of biofilm-related infections. In addition, it discusses the clinical implications and potential therapeutic perspectives of the long-acting drug dalbavancin against biofilm-forming Gram-positive pathogens.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | - Stefania Stefani
- Laboratory of Molecular Medical Microbiology and Antimicrobial Resistance Research (Mmarl), Department of Biomedical and Biotechnological Sciences (Biometec), University of Catania, Catania, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, “La Sapienza” University of Rome, Rome, Italy
| | | |
Collapse
|
12
|
Tong J, Jiang Y, Xu H, Jin X, Zhang L, Ying S, Yu W, Qiu Y. In vitro Antimicrobial Activity of Fosfomycin, Rifampin, Vancomycin, Daptomycin Alone and in Combination Against Vancomycin-Resistant Enterococci. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3049-3055. [PMID: 34285472 PMCID: PMC8285921 DOI: 10.2147/dddt.s315061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022]
Abstract
Purpose The emergence of vancomycin resistant Enterococci (VRE) is shortening the choices for clinical anti-infective therapy. The aim of this study was to investigate the mechanism of vancomycin resistance and evaluate the effect of fosfomycin (FM), rifampin (RIF), vancomycin (VAN), linezolid (LNZ), daptomycin (DAP) alone or in combination against VRE. Methods Eight VRE isolates were collected. A total of 18 antibiotics susceptibility tests were further done for VRE. Whole genome sequencing and bioinformatics analysis were performed. The effect of FM, RIF, VNA, LNZ, DAP alone or in combination was determined using anti-biofilm testing and the time-kill assay. Results All isolates were susceptible to LNZ and DPA. The high-level resistance determinant of VAN in these strains was due to VanA-type cassette. MLST revealed two different STs for vancomycin-resistant Enterococcus faecium (VREm) and four different STs for vancomycin-resistant E. faecalis (VREs). Virulence genes in VREs were more than VREm, especially for 4942 isolated from blood. Gene acm and uppS were only identified in VREm, while virulence genes related to cytolysin were only found in E. faecalis. Further in vitro studies indicated FM (83 mg/L) combined with DAP (20.6 mg/L) and DAP monotherapy (47.1 mg/L) had bactericidal effect against VRE isolates at 24h. Conclusion High-level resistance determinant of VAN in tested isolates was due to VanA-type cassette. FM combined with DAP is a potential therapeutic option for VRE infections.
Collapse
Affiliation(s)
- Jiepeng Tong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yiheng Jiang
- Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuehang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuaibing Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
13
|
Zhan Q, Xu Y, Zhan L, Wang B, Guo Y, Wu X, Ai W, Song Z, Yu F. Chromone Derivatives CM3a Potently Eradicate Staphylococcus aureus Biofilms by Inhibiting Cell Adherence. Infect Drug Resist 2021; 14:979-986. [PMID: 33737820 PMCID: PMC7961208 DOI: 10.2147/idr.s301483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction The ability of Staphylococcus aureus to form biofilms is associated with high mortality and treatment costs. Established biofilms cannot be eradicated by many conventional antibiotics due to the development of antibiotic tolerance by S. aureus. Here we report the synthesis and biological characterization of novel small-molecule compounds with antibiofilm activity. Chromone 5-maleimide substitution compounds (CM3a) showed favorable antibacterial activity against S. aureus. Methods CM3A with antibacterial activity was synthesized and screened. The minimum inhibitory concentration (MIC) of CM3a were determined by the broth microdilution method. Biofilm eradication assay and colony count methods were used to investigate the effect of CM3a on S. aureus biofilm disruption and killing. Changes in biofilm architecture when subjected to CM3a, were visualized using confocal laser scanning microscopy (CLSM). CCK-8 assay and survival rate of Galleria mellonella larvae were used to test the toxicity of CM3a. Results The minimum inhibitory concentration (MIC) of CM3a against S. aureus was about 26.4 μM. Biofilm staining and laser scanning confocal microscopy analysis showed that CM3a eradicated S. aureus biofilms by reducing the viability of the constituent bacterial cells. On the other hand, CM3a showed negligible toxicity against mouse alveolar epithelial cells and Galleria mellonella larvae. Conclusion Chromone derivatives CM3a has therapeutic potential as a safe and effective compound for the treatment of S. aureus infection.
Collapse
Affiliation(s)
- Qing Zhan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanlei Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lingling Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Yinjuan Guo
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Xiaocui Wu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| | - Wenxiu Ai
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Zengqiang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200082, People's Republic of China
| |
Collapse
|
14
|
Xie N, Jiang L, Chen M, Zhang G, Liu Y, Li J, Huang X. In vitro and in vivo Antibacterial Activity of Linezolid Plus Fosfomycin Against Staphylococcus aureus with Resistance to One Drug. Infect Drug Resist 2021; 14:639-649. [PMID: 33658805 PMCID: PMC7917344 DOI: 10.2147/idr.s290332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Objective The purpose of this study is to assess the in vitro/vivo activities of linezolid plus fosfomycin against Staphylococcus aureus (S. aureus) isolates with varying susceptibility to the study drugs. Methods The increasing concentration stepwise method was used to induce S. aureus resistant strains. The in vitro antibacterial activity of linezolid combined with fosfomycin against S. aureus in vitro was studied by time-kill curve and PAE. The transmission electron microscopy (TEM) was employed to observe the cell morphology of bacteria treated with drug, and the changes of cell wall thickness were recorded. The Galleria mellonella infection model was established to demonstrate the in vivo efficacy of linezolid and fosfomycin against S. aureus with varying susceptibility. Results The antibiotic combination showed excellent synergistic or additive effects on the original and the linezolid-resistant strain, but showed indifferent effect for fosfomycin-resistant strain. TEM images showed that fosfomycin alone and in combined could reduce the cell wall thickness of the strains resistant to linezolid and cell lysis, while linezolid increases the cell wall thickness of the strains resistant to fosfomycin. In the Galleria mellonella infection model, the survival rate of the antibiotic combined was improved compared with that of the single drug. There was a good correlation between in vivo efficacy and in vitro susceptibility. Conclusion The type of interaction expressed in the test combination was highly dependent on fosfomycin resistance.
Collapse
Affiliation(s)
- Na Xie
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Lifang Jiang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Mingtao Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guijun Zhang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Xiaohui Huang
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
15
|
Xiong Y, Chen J, Sun X, Xu G, Li P, Deng Q, Yu Z, Chen Z, Zheng J. The Antibacterial and Antibiofilm Activity of Telithromycin Against Enterococcus spp. Isolated From Patients in China. Front Microbiol 2021; 11:616797. [PMID: 33519776 PMCID: PMC7841295 DOI: 10.3389/fmicb.2020.616797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023] Open
Abstract
Telithromycin has been reported to possess robust in vitro antibacterial activity against many species of gram-positive bacteria, and telithromycin is also effective against Staphylococcus aureus biofilms. However, the in vitro antimicrobial susceptibility of telithromycin against clinical enterococci isolates in China is rarely reported and the impacts of telithromycin on the biofilm formation and eradication of enterococci remain elusive. Therefore, this study aimed to explore the inhibitory effects of telithromycin on planktonic cells and biofilms of Enterococcus strains. A total of 280 Enterococcus faecalis and 122 Enterococcus faecium isolates were collected from individual inpatients in China. The 50% minimum inhibitory concentration (MIC50) values of telithromycin against the E. faecalis and E. faecium strains carrying erythromycin-resistant methylase (erm) genes such as the ermA, ermB, or ermC, were 2 and 4 μg/mL, respectively. In addition, these isolates were typed using multilocus sequence typing (MLST) based on housekeeping genes. The predominant sequence types (STs) of E. faecalis were ST16, ST30, and ST179, and the main STs of E. faecium isolates were ST18, ST78, and ST80. Among these major STs, 87.1% (135/158) of E. faecalis and 80.4% (41/51) of E. faecium carried erm genes. Furthermore, at the subinhibitory concentrations (1/4 and 1/8 × MIC) of telithromycin, the biofilm formation of 16 E. faecalis isolates were inhibited by approximately 35%. Moreover, treatment with 8 × MIC of telithromycin or ampicillin led to an almost 40% reduction in the established biofilms of E. faecalis isolates, whereas vancomycin or linezolid with 8 × MIC had minimal effects. The combination of telithromycin and ampicillin resulted in an almost 70% reduction in the established biofilms of E. faecalis. In conclusion, these results revealed that telithromycin significantly decreased the planktonic cells of both E. faecalis and E. faecium. In addition, the data further demonstrated that telithromycin has the robust ability to inhibit E. faecalis biofilms and the combination of telithromycin and ampicillin improved antibiofilm activity. These in vitro antibacterial and antibiofilm activities suggest that telithromycin could be a potential candidate for the treatment of enterococcal infections.
Collapse
Affiliation(s)
- Yanpeng Xiong
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Xiang Sun
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People’s Hospital, Shenzhen University of School Medicine, Shenzhen, China
- Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People’s Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
16
|
Yu W, Zhang J, Tong J, Zhang L, Zhan Y, Huang Y, Qiu Y. In Vitro Antimicrobial Activity of Fosfomycin, Vancomycin and Daptomycin Alone, and in Combination, Against Linezolid-Resistant Enterococcus faecalis. Infect Dis Ther 2020; 9:927-934. [PMID: 32964392 PMCID: PMC7680468 DOI: 10.1007/s40121-020-00342-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/10/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction Enterococcus faecalis is a significant cause of nosocomial infections and is difficult to treat because of intrinsic and acquired resistance to many antibiotics. In addition, the emergence of linezolid-resistant E. faecalis (LZR-Efa) is reducing the choices available for anti-infective therapy. The aim of this study was to examine the in vitro antibacterial effects of fosfomycin (FM), vancomycin (VAN) and daptomycin (DAP), alone and in combination, against LZR-Efa. Methods Five LZR-Efa strains and E. faecalis ATCC 29212 were studied. The antibacterial effects of FM, and of FM, VAN and DAP, were assessed using the time–kill assay. Biofilm formation and elimination were evaluated by crystal violet staining. Results When used at concentrations greater than 0.5 × MIC, FM did not produce dose-dependent effects against LZR-Efa isolates. The use of DAP (47.1 mg/L) alone, and FM (83 mg/L) combined with DAP (20.6 mg/L), produced a persistent inhibitory effect against both planktonic LZR-Efa isolates and those forming biofilms. In addition, FM and VAN combined with glucose-6-phosphate produced visible eradication effects against biofilms grown for 24 h, while DAP alone or combined with FM resulted in the best eradication activity against biofilms grown for 72 h prior to exposure. Conclusion The use of FM combined with DAP provided the best potential therapeutic option for treating LZR-Efa infections out of those tested. In addition, the optimum treatment for biofilm elimination depended on the stage of biofilm formation. Electronic supplementary material The online version of this article (10.1007/s40121-020-00342-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Zhang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiepeng Tong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaqiong Zhan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yicheng Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics (Basel) 2020; 9:antibiotics9080500. [PMID: 32785114 PMCID: PMC7460049 DOI: 10.3390/antibiotics9080500] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections. In patients with systemic involvement, intravenous fosfomycin is usually administered as a partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper clinical management of severe bacterial infections. We performed a systematic review to point out fosfomycin’s synergistic properties, when administered with other antibiotics, in order to help clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions, while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%) and cephalosporins (33%) in Enterobactaerales; with linezolid (74%), tetracyclines (72%) and daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances. Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms, make fosfomycin a good partner drug in clinical practice.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | | | - Alberto Enrico Maraolo
- First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy;
| | | | - Riccardo Pol
- Department of Infectious Diseases, Udine University, 33100 Udine, Italy;
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
| | - Francesca Montagnani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Antonio Lovecchio
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
- Correspondence:
| |
Collapse
|
18
|
Zheng J, Chen Z, Lin Z, Sun X, Bai B, Xu G, Chen J, Yu Z, Qu D. Radezolid Is More Effective Than Linezolid Against Planktonic Cells and Inhibits Enterococcus faecalis Biofilm Formation. Front Microbiol 2020; 11:196. [PMID: 32117185 PMCID: PMC7033516 DOI: 10.3389/fmicb.2020.00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to compare the effects of radezolid and linezolid on planktonic and biofilm cells of Enterococcus faecalis. A total of 302 E. faecalis clinical isolates were collected, and the minimum inhibitory concentrations (MICs) of radezolid and linezolid were determined by the agar dilution method. Changes in the transcriptome of a high-level, in vitro-induced linezolid-resistant isolate were assessed by RNA sequencing and RT-qPCR, and the roles of efflux pump-related genes were confirmed by overexpression analysis. Biofilm biomass was evaluated by crystal violet staining and the adherent cells in the biofilms were quantified according to CFU numbers. The MIC50/MIC90 values of radezolid (0.25/0.50 mg/L) against the 302 E. faecalis clinical isolates were eightfold lower than those of linezolid (2/4 mg/L). The radezolid MICs against the high-level linezolid-resistant isolates (linezolid MICs ≥ 64 mg/L) increased to ≥ 4 mg/L with mutations in the four copies of the V domain of the 23S rRNA gene. The mRNA expression level of OG1RF_12220 (mdlB2, multidrug ABC superfamily ATP-binding cassette transporter) increased in the high-level linezolid-resistant isolates, and radezolid and linezolid MICs against the linezolid-sensitive isolate increased with overexpression of OG1RF_12220. Radezolid (at 1/4 or 1/8× the MIC) inhibited E. faecalis biofilm formation to a greater extent than linezolid, which was primarily achieved through the inhibition of ahrC, esp, relA, and relQ transcription in E. faecalis. In conclusion, radezolid is more effective than linezolid against planktonic E. faecalis cells and inhibits biofilm formation by this bacterium.
Collapse
Affiliation(s)
- Jinxin Zheng
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiang Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Zheng JX, Tu HP, Sun X, Xu GJ, Chen JW, Deng QW, Yu ZJ, Qu D. In vitro activities of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin. J Med Microbiol 2020; 69:120-131. [PMID: 31916929 DOI: 10.1099/jmm.0.001122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Staphylococcus aureus biofilms are difficult to treat and the effect of telithromycin treatment is still unclear.Aim. This study aimed to explore the effect of telithromycin against Staphylococcus aureus biofilms compared with azithromycin, clindamycin, vancomycin and daptomycin.Methodology. Eight methicillin-susceptible and eight methicillin-resistant S. aureus isolates (MSSA and MRSA, respectively) were used for this study. Biofilm biomasses were detected by crystal violet staining and the adherent cells in the established biofilms were quantified by determination of colony-forming units (c.f.u.). The RNA levels of biofilm formation-related genes were determined by RT-qPCR.Results. Telithromycin [8× minimum inhibitory concentration (MIC)] eradicated more established biofilms than azithromycin or clindamycin in the four MSSA isolates, and eliminated the established biofilms of six MRSA isolates more effectively than vancomycin or daptomycin. Telithromycin (8× MIC) killed more adherent cells in the established biofilms than azithromycin or clindamycin in the six MSSA isolates, and killed more adherent cells than vancomycin in all eight MRSA isolates. Daptomycin also showed an excellent effect on the adherent cells of MRSA isolates, with similarresults to telithromycin. The effect of a subinhibitory concentration of telithromycin (1/4× MIC) was significantly superior to that of azithromycin or clindamycin, inhibiting the biofilm formation of six MSSA isolates and seven MRSA isolates more effectively than vancomycin or daptomycin. The RNA levels of agrA, agrC, clfA, icaA and sigB decreased when treated with telithromycin (1/4× MIC).Conclusions. Telithromycin is more effective than azithromycin, clindamycin, vancomycin, or daptomycin against S. aureus biofilms.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Hao-Peng Tu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Xiang Sun
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Guang-Jian Xu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Jun-Wen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Qi-Wen Deng
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhi-Jian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| |
Collapse
|