1
|
Duval D, Evans B, Sanders A, Hill J, Simbo A, Kavoi T, Lyell I, Simmons Z, Qureshi M, Pearce-Smith N, Arevalo CR, Beck CR, Bindra R, Oliver I. Non-pharmaceutical interventions to reduce COVID-19 transmission in the UK: a rapid mapping review and interactive evidence gap map. J Public Health (Oxf) 2024; 46:e279-e293. [PMID: 38426578 PMCID: PMC11141784 DOI: 10.1093/pubmed/fdae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Non-pharmaceutical interventions (NPIs) were crucial in the response to the COVID-19 pandemic, although uncertainties about their effectiveness remain. This work aimed to better understand the evidence generated during the pandemic on the effectiveness of NPIs implemented in the UK. METHODS We conducted a rapid mapping review (search date: 1 March 2023) to identify primary studies reporting on the effectiveness of NPIs to reduce COVID-19 transmission. Included studies were displayed in an interactive evidence gap map. RESULTS After removal of duplicates, 11 752 records were screened. Of these, 151 were included, including 100 modelling studies but only 2 randomized controlled trials and 10 longitudinal observational studies.Most studies reported on NPIs to identify and isolate those who are or may become infectious, and on NPIs to reduce the number of contacts. There was an evidence gap for hand and respiratory hygiene, ventilation and cleaning. CONCLUSIONS Our findings show that despite the large number of studies published, there is still a lack of robust evaluations of the NPIs implemented in the UK. There is a need to build evaluation into the design and implementation of public health interventions and policies from the start of any future pandemic or other public health emergency.
Collapse
Affiliation(s)
- D Duval
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - B Evans
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - A Sanders
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - J Hill
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - A Simbo
- Evaluation and Epidemiological Science Division, UKHSA, Colindale NW9 5EQ, UK
| | - T Kavoi
- Cheshire and Merseyside Health Protection Team, UKHSA, Liverpool L3 1DS, UK
| | - I Lyell
- Greater Manchester Health Protection Team, UKHSA, Manchester M1 3BN, UK
| | - Z Simmons
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - M Qureshi
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - N Pearce-Smith
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Arevalo
- Research, Evidence and Knowledge Division, UK Health Security Agency (UKHSA), London E14 5EA, UK
| | - C R Beck
- Evaluation and Epidemiological Science Division, UKHSA, Salisbury SP4 0JG, UK
| | - R Bindra
- Clinical and Public Health Response Division, UKHSA, London E14 5EA, UK
| | - I Oliver
- Director General Science and Research and Chief Scientific Officer, UKHSA, London E14 5EA, UK
| |
Collapse
|
2
|
The Diagnostic Accuracy of SARS-CoV-2 Nasal Rapid Antigen Self-Test: A Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:life13020281. [PMID: 36836639 PMCID: PMC9961889 DOI: 10.3390/life13020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), a disease that quickly spread into a pandemic. As such, management of the COVID-19 pandemic is deemed necessary, and it can be achieved by using reliable diagnostic tests for SARS-CoV-2. The gold standard for the diagnosis of SARS-CoV-2 is a molecular detection test using the reverse transcription polymerase chain reaction technique (rt-PCR), which is characterized by various disadvantages in contrast with the self-taken nasal rapid antigen tests that produce results faster, have lower costs and do not require specialized personnel. Therefore, the usefulness of self-taken rapid antigen tests is indisputable in disease management, facilitating both the health system and the examinees. Our systematic review aims to access the diagnostic accuracy of the self-taken nasal rapid antigen tests. METHODS This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was used to assess the risk of bias in the included studies. All the studies included in this systematic review were found after searching the two databases, Scopus and PubΜed. All but original articles were excluded from this systematic review, while all the studies concerning self-taken rapid antigen tests with a nasal sample and using rt-PCR as a reference test were included. Meta-analysis results and plots were obtained using RevMan software and the MetaDTA website. RESULTS All 22 studies included in this meta-analysis demonstrated a specificity of self-taken rapid antigen tests greater than 98%, which exceeds the minimum required yield for the diagnosis of SARS-CoV-2, according to the WHO. Notwithstanding, the sensitivity varies (from 40% to 98.7%), which makes them in some cases unsuitable for the diagnosis of positive cases. In the majority of the studies, the minimum required performance set by the WHO was achieved, which is 80% compared with rt-PCR tests. The pooled sensitivity of self-taken nasal rapid antigen tests was calculated as 91.1% and the pooled specificity was 99.5%. CONCLUSIONS In conclusion, self-taken nasal rapid antigen tests have many advantages over rt-PCR tests, such as those related to the rapid reading of the results and their low cost. They also have considerable specificity and some self-taken rapid antigen test kits also have remarkable sensitivity. Consequently, self-taken rapid antigen tests have a wide range of utility but are not able to completely replace rt-PCR tests.
Collapse
|
3
|
Daily use of lateral flow devices by contacts of confirmed COVID-19 cases to enable exemption from isolation compared with standard self-isolation to reduce onward transmission of SARS-CoV-2 in England: a randomised, controlled, non-inferiority trial. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1074-1085. [PMID: 36228640 PMCID: PMC9625116 DOI: 10.1016/s2213-2600(22)00267-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Background In the UK, during the study period (April to July, 2021), all contacts of people with COVID-19 were required to self-isolate for 10 days, which had adverse impacts on individuals and society. Avoiding the need to self-isolate for those who remain uninfected would be beneficial. We investigated whether daily use of lateral flow devices (LFDs) to test for SARS-CoV-2, with removal of self-isolation for 24 h if negative, could be a safe alternative to self-isolation as a means to minimise onward transmission of the virus. Methods We conducted a randomised, controlled, non-inferiority trial in adult contacts identified by COVID-19 contact tracing in England. Consenting participants were randomly assigned to self-isolation (single PCR test, 10-day isolation) or daily contact testing (DCT; seven LFD tests, two PCR tests, no isolation if negative on LFD); participants from a single household were assigned to the same group. Participants were prospectively followed up, with the effect of each intervention on onward transmission established from routinely collected NHS Test and Trace contact tracing data for participants who tested PCR-positive for SARS-CoV-2 during the study period and tertiary cases arising from their contacts (ie, secondary contacts). The primary outcome of the study was the attack rate, the percentage of secondary contacts (close contacts of SARS-CoV-2-positive study participants) who became COVID-19 cases (tertiary cases) in each group. Attack rates were derived from Bernoulli regression models using Huber-White (robust) sandwich estimator clustered standard errors. Attack rates were adjusted for household exposure, vaccination status, and ability to work from home. The non-inferiority margin was 1·9%. The primary analysis was a modified intention-to-treat analysis excluding those who actively withdrew from the study as data from these participants were no longer held. This study is registered with the Research Registry (number 6809). Data collection is complete; analysis is ongoing. Findings Between April 29 and July 28, 2021, 54 923 eligible individuals were enrolled in the study, with final group allocations (following withdrawals) of 26 123 (52·6%) participants in the DCT group and 23 500 (47·4%) in the self-isolation group. Overall, 4694 participants tested positive for SARS-CoV-2 by PCR (secondary cases), 2364 (10·1%) in the self-isolation group and 2330 (8·9%) in the DCT group. Adjusted attack rates (among secondary contacts) were 7·5% in the self-isolation group and 6·3% in the DCT group (difference of –1·2% [95% CI –2·3 to –0·2]; significantly lower than the non-inferiority margin of 1·9%). Interpretation DCT with 24 h exemption from self-isolation for essential activities appears to be non-inferior to self-isolation. This study, which provided evidence for the UK Government's daily lateral flow testing policy for vaccinated contacts of COVID-19 cases, indicated that daily testing with LFDs could allow individuals to reduce the risk of onward transmission while minimising the adverse effects of self-isolation. Although contacts in England are no longer required to isolate, the findings will be relevant for future policy decisions around COVID-19 or other communicable infections. Funding UK Government Department of Health and Social Care.
Collapse
|
4
|
Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst Rev 2022; 7:CD013705. [PMID: 35866452 PMCID: PMC9305720 DOI: 10.1002/14651858.cd013705.pub3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Pawana Sharma
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sarah Berhane
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Susanna S van Wyk
- Centre for Evidence-based Health Care, Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicholas Nyaaba
- Infectious Disease Unit, 37 Military Hospital, Cantonments, Ghana
| | - Julie Domen
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Melissa Taylor
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Clare Davenport
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | | | | | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mariska Mg Leeflang
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | | | - René Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam Public Health, Amsterdam, Netherlands
| | - Jan Y Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Sian Taylor-Phillips
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ann Van den Bruel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Jonathan J Deeks
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| |
Collapse
|