1
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
2
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
3
|
Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis 2018; 75:3078540. [PMID: 28369428 DOI: 10.1093/femspd/ftx033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
A range of vaccines is available for preventing life-threatening diseases caused by infection with Neisseria meningitidis (meningococcus, Men). Capsule polysaccharide (CPS)-conjugate vaccines are successful prophylactics for serogroup MenA, MenC, MenW and MenY infections, and outer membrane vesicle (OMV) vaccines have been used successfully for controlling clonal serogroup MenB infections. MenB vaccines based on recombinant proteins identified by reverse vaccinology (Bexsero™) and proteomics (Trumenba™) approaches have recently been licensed and Bexsero™ has been introduced into the UK infant immunisation programme. In this review, we chart the development of these licensed vaccines. In addition, we discuss the plethora of novel vaccinology approaches that have been applied to the meningococcus with varying success in pre-clinical studies, but which provide technological platforms for application to other pathogens. These strategies include modifying CPS, lipooligosaccharide and OMV; the use of recombinant proteins; structural vaccinology approaches of designing synthetic peptide/mimetope vaccines, DNA vaccines and engineered proteins; epitope presentation on biological and synthetic particles; through vaccination with live-attenuated pathogen(s), or with heterologous bacteria expressing vaccine antigens, or to competitive occupation of the nasopharyngeal niche by commensal bacterial spp. After close to a century of vaccine research, it is possible that meningococcal disease may be added, shortly, to the list of diseases to have been eradicated worldwide by rigorous vaccination campaigns.
Collapse
|
4
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
5
|
Masforrol Y, Gil J, García D, Noda J, Ramos Y, Betancourt L, Guirola O, González S, Acevedo B, Besada V, Reyes O, González LJ. A deeper mining on the protein composition of VA-MENGOC-BC®: An OMV-based vaccine against N. meningitidis serogroup B and C. Hum Vaccin Immunother 2017; 13:2548-2560. [PMID: 29083947 DOI: 10.1080/21645515.2017.1356961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein composition of an Outer Membrane Vesicle (OMV) preparation that constitutes the active pharmaceutical ingredient of VA-MENGOC-BC®, an effective vaccine against Neisseria meningitidis serogroups B, and C is presented. This preparation has a high lipid content and five abundant membrane proteins (FetA, PorA, PorB, RmpM, and Opc), constituting approximately 70% of the total protein mass. The protein composition was determined by combining the use of the Hexapeptide Ligand Library and an orthogonal tandem fractionation of tryptic peptides by reverse-phase chromatography at alkaline and acid pH. This approach equalizes the concentration of tryptic peptides derived from low- and high-abundance proteins as well as considerably simplifying the number of peptides analyzed by LC-MS/MS, enhancing the possibility of identifying low-abundance species. Fifty-one percent of the proteins originally annotated as membrane proteins in the genome of the MC58 strain were identified. One hundred and sixty-eight low-abundance cytosolic proteins presumably occluded within OMV were also identified. Four (NadA, NUbp, GNA2091, and fHbp), out of the five antigens constituting the Bexsero® vaccine, were detected in this OMV preparation. In particular, fHbp is also the active principle of the Trumenba® vaccine developed by Pfizer. The HpuA and HpuB gene products (not annotated in the MC58 genome) were identified in the CU385 strain, a clinical isolate that is used to produce this OMV. Considering the proteins identified here and previous work done by our group, the protein catalogue of this OMV preparation was extended to 266 different protein species.
Collapse
Affiliation(s)
- Yordanka Masforrol
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jeovanis Gil
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Darien García
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jesús Noda
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Yassel Ramos
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Lázaro Betancourt
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osmany Guirola
- c Bioinformatics Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Sonia González
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Boris Acevedo
- e Quality Assurance Departments, Center for Genetic Engineering and Biotechnology, Havana , Cuba
| | - Vladimir Besada
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osvaldo Reyes
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Luis Javier González
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
6
|
Inhibition of the alternative pathway of nonhuman infant complement by porin B2 contributes to virulence of Neisseria meningitidis in the infant rat model. Infect Immun 2014; 82:2574-84. [PMID: 24686052 DOI: 10.1128/iai.01517-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis utilizes capsular polysaccharide, lipooligosaccharide (LOS) sialic acid, factor H binding protein (fHbp), and neisserial surface protein A (NspA) to regulate the alternative pathway (AP) of complement. Using meningococcal mutants that lacked all four of the above-mentioned molecules (quadruple mutants), we recently identified a role for PorB2 in attenuating the human AP; inhibition was mediated by human fH, a key downregulatory protein of the AP. Previous studies showed that fH downregulation of the AP via fHbp or NspA is specific for human fH. Here, we report that PorB2-expressing quadruple mutants also regulate the AP of baby rabbit and infant rat complement. Blocking a human fH binding region on PorB2 of the quadruple mutant of strain 4243 with a chimeric protein that comprised human fH domains 6 and 7 fused to murine IgG Fc enhanced AP-mediated baby rabbit C3 deposition, which provided evidence for an fH-dependent mechanism of nonhuman AP regulation by PorB2. Using isogenic mutants of strain H44/76 that differed only in their PorB molecules, we confirmed a role for PorB2 in resistance to killing by infant rat serum. The PorB2-expressing strain also caused higher levels of bacteremia in infant rats than its isogenic PorB3-expressing counterpart, thus providing a molecular basis for increased survival of PorB2 isolates in this model. These studies link PorB2 expression with infection of infant rats, which could inform the choice of meningococcal strains for use in animal models, and reveals, for the first time, that PorB2-expressing strains of N. meningitidis regulate the AP of baby rabbits and rats.
Collapse
|
7
|
Quantification by LC–MSE of outer membrane vesicle proteins of the Bexsero® vaccine. Vaccine 2014; 32:1273-9. [DOI: 10.1016/j.vaccine.2014.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/09/2013] [Accepted: 01/02/2014] [Indexed: 01/24/2023]
|
8
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
9
|
Unal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol 2010; 33:395-408. [PMID: 21153593 DOI: 10.1007/s00281-010-0231-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 01/26/2023]
Abstract
Gram-negative bacteria have the ability to produce outer membrane-derived vesicles (OMVs) that are released into the extracellular milieu. Even though this intriguing phenomenon is well-known since many years, various aspects of bacterial OMVs are not fully described and are still in the process of being characterized in detail. One major reason for this is that depending on the bacterial species and its respective ecological niche, OMVs exhibit an enormous functional diversity. Research of the past years has clearly shown that OMVs of many pathogenic bacteria contribute to the virulence potential by enriching virulence factors and delivering them over long distances, superseding direct bacterial contact with their host. The subsequent interaction of OMVs with the host can occur at different levels regarding the type of immune response or the target cell type and may lead to different outcomes ranging from non-immunogenic activation or a pro-inflammatory response to cytotoxicity. In contrast to being virulence factors, OMVs are used for vaccination purposes in the combat against bacterial pathogens, and recent research thus is focused on to indirectly aim these versatile bacterial weapons against themselves.
Collapse
Affiliation(s)
- Can M Unal
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | | | | |
Collapse
|
10
|
Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, White B, Parkhill J, Maiden MCJ. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics 2010; 11:652. [PMID: 21092259 PMCID: PMC3091772 DOI: 10.1186/1471-2164-11-652] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. RESULTS Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. CONCLUSION The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.
Collapse
|
11
|
Ingolotti M, Kawalekar O, Shedlock DJ, Muthumani K, Weiner DB. DNA vaccines for targeting bacterial infections. Expert Rev Vaccines 2010; 9:747-63. [PMID: 20624048 DOI: 10.1586/erv.10.57] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA vaccination has been of great interest since its discovery in the 1990s due to its ability to elicit both humoral and cellular immune responses. DNA vaccines consist of a DNA plasmid containing a transgene that encodes the sequence of a target protein from a pathogen under the control of a eukaryotic promoter. This revolutionary technology has proven to be effective in animal models and four DNA vaccine products have recently been approved for veterinary use. Although few DNA vaccines against bacterial infections have been tested, the results are encouraging. Because of their versatility, safety and simplicity a wider range of organisms can be targeted by these vaccines, which shows their potential advantages to public health. This article describes the mechanism of action of DNA vaccines and their potential use for targeting bacterial infections. In addition, it provides an updated summary of the methods used to enhance immunogenicity from codon optimization and adjuvants to delivery techniques including electroporation and use of nanoparticles.
Collapse
Affiliation(s)
- Mariana Ingolotti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
12
|
Yero D, Vipond C, Climent Y, Sardiñas G, Feavers IM, Pajón R. Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. MICROBIOLOGY-SGM 2010; 156:3596-3608. [PMID: 20817647 DOI: 10.1099/mic.0.043182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular diversity of a novel Neisseria meningitidis antigen, encoded by the ORF NMB0088 of MC58 (FadL-like protein), was assessed in a panel of 64 diverse meningococcal strains. The panel consisted of strains belonging to different serogroups, serotypes, serosubtypes and MLST sequence types, of different clinical sources, years and countries of isolation. Based on the sequence variability of the protein, the FadL-like protein has been divided into four variant groups in this species. Antigen variants were associated with specific serogroups and MLST clonal complexes. Maximum-likelihood analyses were used to determine the relationships among sequences and to compare the selection pressures acting on the encoded protein. Furthermore, a model of population genetics and molecular evolution was used to detect natural selection in DNA sequences using the non-synonymous : synonymous substitution (d(N) : d(S)) ratio. The meningococcal sequences were also compared with those of the related surface protein in non-pathogenic commensal Neisseria species to investigate potential horizontal gene transfer. The N. meningitidis fadL gene was subject to only weak positive selection pressure and was less diverse than meningococcal major outer-membrane proteins. The majority of the variability in fadL was due to recombination among existing alleles from the same or related species that resulted in a discrete mosaic structure in the meningococcal population. In general, the population structuring observed based on the FadL-like membrane protein indicates that it is under intermediate immune selection. However, the emergence of a new subvariant within the hyperinvasive lineages demonstrates the phenotypic adaptability of N. meningitidis, probably in response to selective pressure.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Gretel Sardiñas
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Rolando Pajón
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
13
|
Tsolakos N, Lie K, Bolstad K, Maslen S, Kristiansen PA, Høiby EA, Wallington A, Vipond C, Skehel M, Tang CM, Feavers IM, Wedege E, Wheeler JX. Characterization of meningococcal serogroup B outer membrane vesicle vaccines from strain 44/76 after growth in different media. Vaccine 2010; 28:3211-8. [DOI: 10.1016/j.vaccine.2010.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
14
|
Pajon R, Yero D, Niebla O, Climent Y, Sardiñas G, García D, Perera Y, Llanes A, Delgado M, Cobas K, Caballero E, Taylor S, Brookes C, Gorringe A. Identification of new meningococcal serogroup B surface antigens through a systematic analysis of neisserial genomes. Vaccine 2009; 28:532-41. [PMID: 19837092 DOI: 10.1016/j.vaccine.2009.09.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/22/2009] [Accepted: 09/29/2009] [Indexed: 12/13/2022]
Abstract
The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.
Collapse
Affiliation(s)
- Rolando Pajon
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Ave 31, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sardiñas G, Climent Y, Rodríguez Y, González S, García D, Cobas K, Caballero E, Pérez Y, Brookes C, Taylor S, Gorringe A, Delgado M, Pajón R, Yero D. Assessment of vaccine potential of the Neisseria-specific protein NMB0938. Vaccine 2009; 27:6910-7. [PMID: 19751688 DOI: 10.1016/j.vaccine.2009.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/19/2009] [Accepted: 09/01/2009] [Indexed: 11/17/2022]
Abstract
The availability of complete genome sequence of Neisseria meningitidis serogroup B strain MC58 and reverse vaccinology has allowed the discovery of several novel antigens. Here, we have explored the potential of N. meningitidis lipoprotein NMB0938 as a vaccine candidate, based on investigation of gene sequence conservation and the antibody response elicited after immunization in mice. This antigen was previously identified by a genome-based approach as an outer membrane lipoprotein unique to the Neisseria genus. The nmb0938 gene was present in all 37 Neisseria isolates analyzed in this study. Based on amino acid sequence identity, 16 unique sequences were identified which clustered into three variants with identities ranging from 92 to 99%, with one cluster represented by the Neisseria lactamica strains. Recombinant protein NMB0938 (rNMB0938) was expressed in Escherichia coli and purified after solubilization of the insoluble fraction. Antisera produced in mice against purified rNMB0938 reacted with a range of meningococcal strains in whole-cell ELISA and western blotting. Using flow cytometry, it was also shown that anti-rNMB0938 antibodies bound to the surface of the homologous meningococcal strain and activated complement deposition. Moreover, antibodies against rNMB0938 elicited complement-mediated killing of meningococcal strains from both sequence variants and conferred passive protection against meningococcal bacteremia in infant rats. According to our results, NMB0938 represents a promising candidate to be included in a vaccine to prevent meningococcal disease.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Cubanacan, Habana 10600, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li H, Xiong XP, Peng B, Xu CX, Ye MZ, Yang TC, Wang SY, Peng XX. Identification of Broad Cross-Protective Immunogens Using Heterogeneous Antiserum-Based Immunoproteomic Approach. J Proteome Res 2009; 8:4342-9. [PMID: 19640004 DOI: 10.1021/pr900439j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Li
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Xiao-Peng Xiong
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Bo Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Chang-Xin Xu
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Ming-Zhi Ye
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Tian-Ci Yang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - San-Ying Wang
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-Sen University, University City, Guangzhou 510006, People’s Republic of China, School of Life Sciences, Xiamen University, Xiamen 361005, People’s Republic of China, and Center of Clinical Laboratory, Xiamen Zhongshan Hospital, Xiamen University, Xiamen 361004, Fujian, People’s Republic of China
| |
Collapse
|
17
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|