1
|
Akrami S, Ekrami A, Jahangirimehr F, Yousefi Avarvand A. High prevalence of multidrug-resistant Pseudomonas aeruginosa carrying integron and exoA, exoS, and exoU genes isolated from burn patients in Ahvaz, southwest Iran: A retrospective study. Health Sci Rep 2024; 7:e2164. [PMID: 38903659 PMCID: PMC11187163 DOI: 10.1002/hsr2.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Background Pseudomonas aeruginosa as an opportunistic pathogen produces several virulence factors. This study evaluated the relative frequency of exoenzymes (exo) A, U and S genes and integron classes (I, II, and III) among multi-drug-resistant clinical P. aeruginosa isolates from burn patients in Ahvaz, southwest of Iran. Methods In this cross-sectional study P. aeruginosa isolates were recovered from 355 wound samples. The antimicrobial susceptibility test was done by disk agar diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute. MDR isolates were defined if they showed simultaneous resistance to 3 antibiotics. Extensively drug-resistant was defined as nonsusceptibility to at least one agent in all but two or fewer antimicrobial categories. The presence of class I, II, and III integrons and virulence genes was determined using a PCR assay on extracted DNA. Results Overall, 145 clinical P. aeruginosa isolates were confirmed with biochemical and PCR tests. Overall, 35% (52/145) of the isolates were taken from males and 64% (93/145) from female hospitalized burn patients. The highest resistance rates of P. aeruginosa isolates to antibiotics were related to piperacillin 59% (n = 86/145) and piperacillin-tazobactam 57% (n = 83/145). A total of 100% of isolates were resistant to at least one antibiotic. MDR and XDR P. aeruginosa had a frequency of 60% and 29%, respectively. The prevalence of integron classes I, II, and III in P. aeruginosa was 60%, 7.58%, and 3.44%, respectively. IntI was more common in MDR and XDR P. aeruginosa isolates. In addition, 70(48%) of P. aeruginosa isolates did not harbor integron genes. Besides, exoA, exoS, and exoU in P. aeruginosa had a frequency of 55%, 55%, and 56%, respectively. Conclusion It was found that P. aeruginosa as a potent pathogen with strong virulence factors and high antibiotic resistance in the health community can cause refractory diseases in burn patients.
Collapse
Affiliation(s)
- Sousan Akrami
- Department of Microbiology, School of MedicineTehran University of Medical SciencesTehranIran
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Alireza Ekrami
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | | | - Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
- Infectious and Tropical Diseases Research Center, Health Research InstituteAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
2
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
3
|
Jeon JH, Jang KM, Lee JH, Kang LW, Lee SH. Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159497. [PMID: 36257427 DOI: 10.1016/j.scitotenv.2022.159497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance is a major global public health concern. Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of its high levels of resistance to many antibiotics, particularly those considered as last-resort antibiotics, such as carbapenems. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antibiotic resistance genes (ARGs), including the mobilization of ARGs within and between species. We conducted an in-depth, systematic investigation of the occurrence and dissemination of ARGs associated with MGEs in A. baumannii. We focused on a cross-sectoral approach that integrates humans, animals, and environments. Four strategies for the prevention of ARG dissemination through MGEs have been discussed: prevention of airborne transmission of ARGs using semi-permeable membrane-covered thermophilic composting; application of nanomaterials for the removal of emerging pollutants (antibiotics) and pathogens; tertiary treatment technologies for controlling ARGs and MGEs in wastewater treatment plants; and the removal of ARGs by advanced oxidation techniques. This review contemplates and evaluates the major drivers involved in the transmission of ARGs from the cross-sectoral perspective and ARG-transfer prevention processes.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|
4
|
Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol 2021; 79:27. [PMID: 34905085 DOI: 10.1007/s00284-021-02706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa, resistant to multiple antibacterial agents including carbapenems, is of great global public health concern. There is limited data available regarding incidence of Metallo-Beta Lactamase producing P. aeruginosa, their molecular basis of resistance in particular carbapenem resistance and any genetic relatedness among circulating clinical isolates in Southwest Nigeria. Four hundred and thirty P. aeruginosa isolates were collected from seven tertiary care hospitals (predominantly from wound, ear, and urinary tract infections) and verified by PCR targeting oprI and oprL. Antibiotic susceptibility using 16 selected antibiotics and MBL screening was performed. The integrons (class 1, 2 and 3) and carbapenemase genes- blaGES, blaNMC-A, blaBIC-1, blaSME, blaIMP, blaVIM, blaSPM, blaNDM, blaAIM, blaDIM, blaSIM, blaGIM, blaOXA-48, blaOXA-58 were detected by PCR and were sequenced. Quantitative real-time polymerase chain reaction was used to quantify expression levels of eight efflux pump genes, ampC cephalosporinase and outer membrane porin, oprD. The isolates were genotyped using Enterobacterial Repetitive Intergenic Consensus sequence Polymerase Chain Reaction (ERIC-PCR). Four hundred and thirty P. aeruginosa isolates were subjected to antibiotic susceptibility testing, revealing that 109 (25.4%) isolates were multidrug-resistant, 47 (10.9%) were extensively drug-resistant and 25 (5.8%) were pandrug-resistant. MBL was seen in 17.0% (73/430) isolates. MBL-encoding genes; blaVIM-5 and blaNDM-1 were detected in 86.3% (63/73) isolates, with blaVIM-5 and blaNDM-1 in 35.6% (26/73) and 38.4% (28/73), respectively, whereas co-occurrence of blaVIM-5 and blaNDM-1 was found in 12.3% (9/73). Forty-one (56.2%) carbapenem-resistant P. aeruginosa strains carried class 1 integrons, while co-occurrence of class 1 and 2 integrons was seen in 12.3%. qPCR results indicated that MexXY-OprM was highly expressed pump in 58.9%, ampC upregulated in 26.0%, while oprD porin was downregulated in 65.8% isolates. ERIC-PCR results suggest that carbapenem-resistant strains exhibit genetic heterogeneity. The high incidence of MBL-encoding genes and integrons in diversified clinical P. aeruginosa from southwestern Nigeria is of great concern. The co-occurrence of blaVIM-5 and blaNDM-1 as well as resistance in general manifesting a gradient based on genotypic variation suggests that there is a strong need for efficient surveillance programs and antibiotic stewardship.
Collapse
Affiliation(s)
- Oluwatoyin B Olaniran
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
| | - Olufemi E Adeleke
- Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Ahmed Donia
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Kohsar University Murree, Murree, Pakistan.
| |
Collapse
|
5
|
Yalda M, Sadat TZ, Elham RMN, Mohammad TS, Neda M, Mohammad M. Distribution of Class 1-3 Integrons in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Inpatients in Shiraz, South of Iran. Ethiop J Health Sci 2021; 31:719-724. [PMID: 34703170 PMCID: PMC8512929 DOI: 10.4314/ejhs.v31i4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background Health-care-associated infection (HAI) is effect on patients for the time of staying in the hospital. Opportunistic pathogens including Pseudomonas aeruginosa are the most dangerous biological agents in nosocomial infections. This study aimed to assess the prevalence of 3 classes of integrons carrying to carbapenem resistance in P. aeruginosa strains collected from Nemazee hospital. Methods This cross-sectional study was conducted on clinical P. aeruginosa isolates were collected from Nemazee hospital. The identification of the isolates was performed by routine biochemical tests. Antimicrobial sensitivity testing was determined using the disk diffusion method against imipenem and meropenem. The int1, int2 and int3 genes were detected using the polymerase chain reaction (PCR). Results Seventy-five clinical isolates of P. aeruginosa were recovered from various clinical infections. A carbapenem-resistant phenotype was detected in 42.7% (imipenem) and 29.3% (meropenem) of isolates. As the PCR results, 48 (64%) and 15 (20%) isolates were identified as being positive for class 1 and class 2 integrons, respectively. Class 3 integrons were not found among the studied isolates. Conclusions Our data demonstrate the importance of class 1 and 2 integrons in carbapenem resistant P. aeruginosa strains. Therefore, integrons play an important role in acquisition and dissemination of carbapenem resistance genes among these pathogens, so, management of infection control policies and the appropriate use of antibiotics is essential for control the spreading of antibiotics resistance genes.
Collapse
Affiliation(s)
- Malekzadegan Yalda
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tabatabaei Zahra Sadat
- Student research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mohagheghzadeh Neda
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motamedifar Mohammad
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Nikibakhsh M, Firoozeh F, Badmasti F, Kabir K, Zibaei M. Molecular study of metallo-β-lactamases and integrons in Acinetobacter baumannii isolates from burn patients. BMC Infect Dis 2021; 21:782. [PMID: 34372787 PMCID: PMC8353788 DOI: 10.1186/s12879-021-06513-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Productions of metallo-β-lactamases enzymes are the most common mechanism of antibiotic resistance to all beta-lactam classes (except monobactams) in Acinetobacter baumannii. MBLs are usually associated with gene cassettes of integrons and spread easily among bacteria. The current study was performed to detect the genes encoding MBLs and integron structures in A. baumannii isolates from burn patients. METHODS This study was performed on 106 non-duplicate A. baumannii isolates from burn patients referred to Shahid Motahari Hospital in Tehran. Antibiotic susceptibility of A. baumannii isolates was performed using disk diffusion and broth microdilution method in accordance with the CLSI guidelines. The presence of class 1 integron and associated gene cassettes as well as MBLs-encoding genes including blaVIM, and blaIMP were investigated using PCR and sequencing techniques. RESULTS In this cross-sectional study all (100%) of the A. baumannii isolates examined were multidrug resistant. All isolates were sensitive to colistin and simultaneously all were resistant to imipenem. PCR assays showed the presence of blaVIM and blaIMP genes in 102 (96.2%) and 62 (58.5%) isolates of A. baumannii respectively. In addition, 62 (58.5%) of the A. baumannii isolates carried integron class 1, of which 49 (79.0%) were identified with at least one gene cassette. Three types of integron class 1 gene cassettes were identified including: arr2, cmlA5, qacE1 (2300 bp); arr-2, ereC, aadA1, cmlA7, qacE1 (4800 bp); and aac(3)-Ic, cmlA5 (2250 bp). CONCLUSION A high prevalence of MBLs genes, especially blaVIM, was identified in the studied MDR A. baumannii isolates. In addition, most of the strains carried class 1 integrons. Furthermore, the gene cassettes arrays of integrons including cmlA5 and cmlA7 were detected, for the first time, in A. baumannii strains in Iran.
Collapse
Affiliation(s)
- Mahnaz Nikibakhsh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran
| | - Farzaneh Firoozeh
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, P.O. Box: 3149779453, Karaj, Iran. .,Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Kourosh Kabir
- Department of Community Medicine and Epidemiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Zibaei
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
7
|
Zhao Y, Chen X, Hu X, Shi Y, Zhao X, Xu J, Ding H, Wu R, Huang J, Zhao Z. Characterization of a carbapenem-resistant Citrobacter amalonaticus coharbouring bla IMP-4 and qnrs1 genes. J Med Microbiol 2021; 70. [PMID: 34170219 DOI: 10.1099/jmm.0.001364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Members of the genus Citrobacter are facultative anaerobic Gram-negative bacilli belonging to the Enterobacterales [Janda J Clin Microbiol 1994; 32(8):1850-1854; Arens Clin Microbiol Infect 1997;3(1):53-57]. Formerly, Citrobacter species were occasionally reported as nosocomial pathogens with low virulence [Pepperell Antimicrob Agents Chemother 2002;46(11):3555-60]. Now, they are consistently reported to cause nosocomial infections of the urinary tract, respiratory tract, bone, peritoneum, endocardium, meninges, intestines, bloodstream and central nervous system. Among Citrobacter species, the most common isolates are C. koseri and C. freundii, while C. amalonaticus has seldom been isolated [Janda J Clin Microbiol 1994; 32(8):1850-1854; Marak Infect Dis (Lond) 2017;49(7):532-9]. Further, Citrobacter spp. are usually susceptible to carbapenems, aminoglycosides, tetracyclines and colistin [Marak Infect Dis (Lond) 2017;49(7):532-9].Hypothesis/Gap Statement. As C. amalonaticus is rare, only one clinical isolate, coharbouring carbapenem resistance gene bla IMP-4 and quinolone resistance gene qnrs1, has been reported.Aim. To characterize a carbapenem-resistant C. amalonaticus strain from PR China coharbouring bla IMP-4 and qnrs1.Methodology. Three hundred and forty nonrepetitive carbapenem-resistant Enterobacterales (CRE) strains were collected during 2011-2018. A carbapenem-resistant C. amalonaticus strain was detected and confirmed using a VITEK mass spectrometry-based microbial identification system and 16S rRNA sequencing. Minimum inhibitory concentrations (MICs) for clinical antimicrobials were obtained by the broth microdilution method. Whole-genome sequencing (WGS) was performed for antibiotic resistance gene analysis, and a phylogenetic tree of C. amalonaticus strains was constructed using the Bacterial Pan Genome Analysis (BPGA) tool. The transferability of the resistance plasmid was verified by conjugal transfer.Results. A rare carbapenem-resistant C. amalonaticus strain (CA71) was recovered from a patient with cerebral obstruction and the sequences of 16S rRNA gene shared more than 99 % similarity with C. amalonaticus CITRO86, FDAARGOS 165. CA71 is resistant to β-lactam, quinolone and aminoglycoside antibiotics, and even imipenem and meropenem (MICs of 2 and 4 mg l-1 respectively), and is only sensitive to polymyxin B and tigecycline. Six antibiotic resistance genes were detected via WGS, including the β-lactam genes bla IMP-4, bla CTX-M-18 and bla Sed1, the quinolone gene qnrs1, and the aminoglycoside genes AAC(3)-VIIIa, AadA24. Interestingly, bla IMP-4 and qnrs1 coexist on an IncN1-type plasmid (pCA71-IMP) and successfully transferred to Escherichia coli J53 via conjugal transfer. Phylogenetic analysis showed that CA71 is most similar to C. amalonaticus strain CJ25 and belongs to the same evolutionary cluster along with seven other strains.Conclusion. To the best of our knowledge, this is the first report of a carbapenem-resistant C. amalonaticus isolate coharbouring bla IMP-4 and qnrs1.
Collapse
Affiliation(s)
- Yunan Zhao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Xuefeng Chen
- People's Hospital of Liandu City, Lishui, PR China
| | - Xiaolei Hu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Yang Shi
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Xinmi Zhao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Jianfen Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Hui Ding
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Rongzhen Wu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Jiansheng Huang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| | - Zhigang Zhao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, PR China
| |
Collapse
|
8
|
Ngoi ST, Chong CW, Ponnampalavanar SSLS, Tang SN, Idris N, Abdul Jabar K, Gregory MJ, Husain T, Teh CSJ. Genetic mechanisms and correlated risk factors of antimicrobial-resistant ESKAPEE pathogens isolated in a tertiary hospital in Malaysia. Antimicrob Resist Infect Control 2021; 10:70. [PMID: 33892804 PMCID: PMC8062948 DOI: 10.1186/s13756-021-00936-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Knowledge on the epidemiology, genotypic and phenotypic features of antimicrobial-resistant (AMR) ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli) and their association with hospital-acquired infections (HAIs) are limited in Malaysia. Therefore, we evaluated the AMR features and resistance mechanisms of the ESKAPEE pathogens collected in a tertiary hospital located in the capital of Malaysia. METHODS A total of 378 AMR-ESKAPEE strains were obtained based on convenience sampling over a nine-month study period (2019-2020). All strains were subjected to disk diffusion and broth microdilution assays to determine the antimicrobial susceptibility profiles. Polymerase chain reaction (PCR) and DNA sequence analyses were performed to determine the AMR genes profiles of the non-susceptible strains. Chi-square test and logistic regression analyses were used to correlate the AMR profiles and clinical data to determine the risk factors associated with HAIs. RESULTS High rates of multidrug resistance (MDR) were observed in A. baumannii, K. pneumoniae, E. coli, and S. aureus (69-89%). All organisms except E. coli were frequently associated with HAIs (61-94%). Non-susceptibility to the last-resort drugs vancomycin (in Enterococcus spp. and S. aureus), carbapenems (in A. baumannii, P. aeruginosa, and Enterobacteriaceae), and colistin (in Enterobacteriaceae) were observed. Both A. baumannii and K. pneumoniae harbored a wide array of extended-spectrum β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaOXA). Metallo-β-lactamase genes (blaVEB, blaVIM, blaNDM) were detected in carbapenem-resistant strains, at a higher frequency compared to other local reports. We detected two novel mutations in the quinolone-resistant determining region of the gyrA in fluoroquinolone-resistant E. coli (Leu-102-Ala; Gly-105-Val). Microbial resistance to ampicillin, methicillin, and cephalosporins was identified as important risk factors associated with HAIs in the hospital. CONCLUSION Overall, our findings may provide valuable insight into the microbial resistance pattern and the risk factors of ESKAPEE-associated HAIs in a tertiary hospital located in central Peninsular Malaysia. The data obtained in this study may contribute to informing better hospital infection control in this region.
Collapse
Affiliation(s)
- Soo Tein Ngoi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | | | - Soo Nee Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Michael J Gregory
- United States Naval Medical Research Unit Two (NAMRU-2), Phnom Penh, Cambodia
| | - Tupur Husain
- United States Naval Medical Research Unit Two (NAMRU-2), Phnom Penh, Cambodia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Heidarzadeh S, Enayati Kaliji Y, Pourpaknia R, Mohammadzadeh A, Ghazali-Bina M, Saburi E, Vazini H, Khaledi A. A Meta-Analysis of the Prevalence of Class 1 Integron and Correlation with Antibiotic Resistance in Pseudomonas aeruginosa Recovered from Iranian Burn Patients. J Burn Care Res 2020; 40:972-978. [PMID: 31326983 DOI: 10.1093/jbcr/irz135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of integrons has been highlighted in antibiotic resistance among Pseudomonas aeruginosa isolates. Therefore, we here reviewed the prevalence of class 1 integrons and their correlations with antibiotic resistance of P. aeruginosa isolated from Iranian burn patients. This review was conducted according to the guidelines of Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). Cross-sectional and cohort studies published from January 1, 2000 until December 31, 2018 were enrolled. Meta-analysis was performed by Comprehensive Meta-Analysis (CMA) software using the random effects model, Cochran's Q, and I2 tests. Publication bias was estimated by Funnel plot and Egger's linear regression test. Nine out of 819 studies met the eligibility criteria. The overall combined prevalence of class 1 integrons in P. aeruginosa isolates was 69% (95% confidence interval [CI]: 50.5-83%). The highest combined resistance was reported against Cloxacillin (87.7%), followed by Carbenicillin (79.1%) and Ceftriaxone (77.3%). The combined prevalence of multidrug-resistant (MDR) isolates was 79.3% (95% CI: 31.1-97%). Also, a significant correlation was noted between the presence of class 1 integrons and antibiotic resistance in 55.5% of the included studies (P < .05). The results showed high prevalence of class 1 integrons, antibiotic resistance, and MDR strains in P. aeruginosa isolated from Iranian burn patients. Also, most of the included studies showed a significant correlation between the presence of class 1 integrons and antibiotic resistance.
Collapse
Affiliation(s)
- Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Reza Pourpaknia
- Department of Medical Genetics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Mohammadzadeh
- Department of Microbiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mehran Ghazali-Bina
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Saburi
- Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamadan, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Kizny Gordon A, Phan HTT, Lipworth SI, Cheong E, Gottlieb T, George S, Peto TEA, Mathers AJ, Walker AS, Crook DW, Stoesser N. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J Antimicrob Chemother 2020; 75:873-882. [PMID: 31960024 PMCID: PMC7069471 DOI: 10.1093/jac/dkz526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hospital outbreaks of carbapenemase-producing organisms, such as blaIMP-4-containing organisms, are an increasing threat to patient safety. OBJECTIVES To investigate the genomic dynamics of a 10 year (2006-15) outbreak of blaIMP-4-containing organisms in a burns unit in a hospital in Sydney, Australia. METHODS All carbapenem-non-susceptible or MDR clinical isolates (2006-15) and a random selection of equivalent or ESBL-producing environmental isolates (2012-15) were sequenced [short-read (Illumina), long-read (Oxford Nanopore Technology)]. Sequence data were used to assess genetic relatedness of isolates (Mash; mapping and recombination-adjusted phylogenies), perform in silico typing (MLST, resistance genes and plasmid replicons) and reconstruct a subset of blaIMP plasmids for comparative plasmid genomics. RESULTS A total of 46/58 clinical and 67/96 environmental isolates contained blaIMP-4. All blaIMP-4-positive organisms contained five or more other resistance genes. Enterobacter cloacae was the predominant organism, with 12 other species mainly found in either the environment or patients, some persisting despite several cleaning methods. On phylogenetic analysis there were three genetic clusters of E. cloacae containing both clinical and environmental isolates, and an additional four clusters restricted to either reservoir. blaIMP-4 was mostly found as part of a cassette array (blaIMP-4-qacG2-aacA4-catB3) in a class 1 integron within a previously described IncM2 plasmid (pEl1573), with almost complete conservation of this cassette across the species over the 10 years. Several other plasmids were also implicated, including an IncF plasmid backbone not previously widely described in association with blaIMP-4. CONCLUSIONS Genetic backgrounds disseminating blaIMP-4 can persist, diversify and evolve amongst both human and environmental reservoirs during a prolonged outbreak despite intensive prevention efforts.
Collapse
Affiliation(s)
- A Kizny Gordon
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H T T Phan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - S I Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Cheong
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - T Gottlieb
- Department of Microbiology & Infectious Diseases, Concord Repatriation General Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - S George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
| | - T E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A J Mathers
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - A S Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - D W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford/Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - N Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Haghi F, Nezhad BB, Zeighami H. Effect of subinhibitory concentrations of imipenem and piperacillin on Pseudomonas aeruginosa toxA and exoS transcriptional expression. New Microbes New Infect 2019; 32:100608. [PMID: 31719997 PMCID: PMC6838800 DOI: 10.1016/j.nmni.2019.100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 11/25/2022] Open
|
12
|
Cho HH. Molecular Detection of Virulence Factors in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from a Tertiary Hospital in Daejeon. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Hye Hyun Cho
- Department of Biomedical Laboratory Science, Daejeon Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
13
|
Abaza AF, El Shazly SA, Selim HSA, Aly GSA. Metallo-Beta-Lactamase Producing Pseudomonas aeruginosa in a Healthcare Setting in Alexandria, Egypt. Pol J Microbiol 2019; 66:297-308. [PMID: 29319510 DOI: 10.5604/01.3001.0010.4855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa has emerged as a major healthcare associated pathogen that creates a serious public health disaster in both developing and developed countries. In this work we aimed at studying the occurrence of metallo-beta-lactamase (MBL) producing P. aeruginosa in a healthcare setting in Alexandria, Egypt. This cross sectional study included 1583 clinical samples that were collected from patients admitted to Alexandria University Students' Hospital. P. aeruginosa isolates were identified using standard microbiological methods and were tested for their antimicrobial susceptibility patterns using single disc diffusion method according to the Clinical and Laboratory Standards Institute recommendations. Thirty P. aeruginosa isolates were randomly selected and tested for their MBL production by both phenotypic and genotypic methods. Diagnostic Epsilometer test was done to detect metallo-beta-lactamase enzyme producers and polymerase chain reaction test was done to detect imipenemase (IMP), Verona integron-encoded (VIM) and Sao Paulo metallo-beta-lactamase (IMP) encoding genes. Of the 1583 clinical samples, 175 (11.3%) P. aeruginosa isolates were identified. All the 30 (100%) selected P. aeruginosa isolates that were tested for MBL production by Epsilometer test were found to be positive; where 19 (63.3%) revealed blaSPM gene and 11 (36.7%) had blaIMP gene. blaVIM gene was not detected in any of the tested isolates. Isolates of MBL producing P. aeruginosa were highly susceptible to polymyxin B 26 (86.7%) and highly resistant to amikacin 26 (86.7%). MBL producers were detected phenotypically by Epsilometer test in both carbapenem susceptible and resistant P. aeruginosa isolates. blaSPM was the most commonly detected MBL gene in P. aeruginosa isolates.
Collapse
Affiliation(s)
- Amani F Abaza
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Soraya A El Shazly
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S A Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Gehan S A Aly
- Alexandria University Students' Hospital, Alexandria, Egypt
| |
Collapse
|
14
|
Amin M, Navidifar T, Saleh Shooshtari F, Goodarzi H. Association of the genes encoding Metallo-β-Lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infect Drug Resist 2019; 12:1171-1180. [PMID: 31190906 PMCID: PMC6526166 DOI: 10.2147/idr.s196575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Metallo-β-Lactamases (MBL) are usually encoded on the gene cassettes harboring integrons and disseminated easily among Acinetobacter baumannii isolates. This study was aimed to investigate the association of the genes encoding MBL with the presence of class 1 and 2 integrons among multidrug-resistant (MDR) A.baumannii isolates. Methodology: A total of 85 non-duplicated A.baumannii isolates were collected and evaluated for the amplification of blaOXA-51. The presence of genes encoding MBLs, including blaIMP, blaVIM, blaSIM, blaSPM, blaGIM, blaDIM and blaNDM, as well as intI 1 and intI 2 was evaluated by PCR. Also, the production of MBLs was screened phenotypically by the combination of EDTA and meropenem. Results: In this study, 77 out of 85 isolates were MDR. Also, 34 isolates had only intI 1, 10 had only intI 2 and 15 had both intI 1 and intI 2. The phenotypic detection of MBLs was found in 30 isolates, among which blaVIM was as the most common the gene encoding MBL followed by blaIMP, blaSPM and blaSIM. The gene cassettes analysis revealed that class 1 integron is often responsible for transferring the genes harboring MBLs. Conclusion: The production of MBLs among A. baumannii strains is one of the main mechanisms of resistance to carbapenems. Therefore, the development of inexpensive screening methods for the phenotypic detection of MBLs in clinical laboratories settings is essential. Also, our data revealed that the class 1 integron is often responsible for the dissemination of the MBL genes among A. baumannii isolates.
Collapse
Affiliation(s)
- Mansour Amin
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Navidifar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farkhondeh Saleh Shooshtari
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Goodarzi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Phoon HY, Hussin H, Hussain BM, Thong KL. Molecular Characterization of Extended-Spectrum Beta Lactamase- and Carbapenemase-Producing Pseudomonas aeruginosa Strains from a Malaysian Tertiary Hospital. Microb Drug Resist 2018; 24:1108-1116. [DOI: 10.1089/mdr.2017.0258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hannah Y.P. Phoon
- Pathology Department, Ampang Hospital, Ampang, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Mohanam L, Menon T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J Med Res 2018; 146:S46-S52. [PMID: 29205195 PMCID: PMC5735570 DOI: 10.4103/ijmr.ijmr_29_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES The emergence and rapid spread of carbapenem resistance mediated by metallo-beta-lactamase (MBL) in Pseudomonas aeruginosa is of major concern due to limited therapeutic options. This study was aimed at detecting the presence of MBL and its association with integrons in imipenem-resistant P. aeruginosa isolates and to determine their genetic relatedness. METHODS A total of 213 P. aeruginosa isolates were collected from two tertiary care centres and tested against anti-pseudomonal antibiotics by antimicrobial susceptibility testing, followed by the detection of MBL production by combined disk method. Minimum inhibitory concentration (MIC) of meropenem was determined by E-test. Multiplex polymerase chain reaction (PCR) was performed for the detection of blaSPM, blaIMP, blaVIM, blaNDM, blaGIM and blaSIM. PCR was carried out to characterize the variable region of class 1 integron. Transcongujation assay was carried out for the confirmation of plasmid-mediated resistance. Enterobacterial repetitive intergenic consensus sequence (ERIC)-PCR was performed for determining the genetic relatedness among P. aeruginosa isolates. RESULTS Of the 213 P. aeruginosa isolates, 22 (10%) were found to be carbapenem resistant and these were from pus 18 (82%), urine 2 (9%), sputum 1 (5%) and tracheal wash 1 (5%). Among 22 isolates, 18 (81.8%) were found to be MBL producers by phenotypic method and MIC range of meropenem was 8 to >32 μg/ml. PCR amplification showed that 20 (91%) isolates carried any one of the MBL genes tested: blaVIM and blaNDM in seven (32%) and six (27%) isolates, respectively; blaVIM and blaNDMin three (14%); blaIMP and blaNDM in two (9%); blaVIM and blaIMP in one (5%) isolate. The blaVIM, blaIMP and blaNDM were found to co-exist in one isolate. None of the isolates were positive for blaSPM, blaSIM and blaGIM. All 22 isolates carried class I integron. Of the 20 MBL-positive isolates, transconjugants were obtained for 15 isolates. ERIC-PCR analysis showed all isolates to be clonally independent. INTERPRETATION & CONCLUSIONS Our results showed 10.3 per cent of carbapenem resistance among P. aeruginosa isolates, and the coexistence of MBL-encoding genes among P. aeruginosa mediated by class I integron.
Collapse
Affiliation(s)
- Lavanya Mohanam
- Department of Microbiology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Thangam Menon
- Department of Microbiology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
17
|
Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug-resistant Pseudomonas aeruginosa in Malaysia. J Glob Antimicrob Resist 2018; 13:271-273. [DOI: 10.1016/j.jgar.2018.01.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022] Open
|
18
|
Mobaraki S, Aghazadeh M, Soroush Barhaghi MH, Yousef Memar M, Goli HR, Gholizadeh P, Samadi Kafil H. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. Biomedicine (Taipei) 2018; 8:2. [PMID: 29480797 PMCID: PMC5825915 DOI: 10.1051/bmdcn/2018080102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background: The presence of Class 1, 2 and 3 integrons in clinical isolates of Pseudomonas aeruginosa with multi-drug resistance phenotype has rendered the organism as a new concern. Objective: This study aimed to investigate the prevalence of Class 1, 2 and 3 integrons in multi-drug resistant clinical isolates of Pseudomonas aeruginosa collected from hospitals in the city of Tabriz Materials and Methods: A total of 200 P. aeruginosa non-duplicated clinical isolates were collected from inpatients and outpatients in different wards of hospitals from May to November 2016. The bacteria were identified by conventional microbiological methods. Antibiotic susceptibility test was performed by disk diffusion method and the presence of integrons was analyzed by polymerase chain reaction (PCR). Results: Colistin was the most effective antibiotic, while 98% of the isolates were resistant to cefotaxime. Fifty-three percent of the isolates were recorded as multi-drug resistant (MDR) phenotype; however, 27.5% of the isolates were resistant to more than 8 antibiotics. In this study, 55 (27.5%), 51 (25.5%), and 30 (15%) clinical isolates of P. aeruginosa were positive for Class 1, 2 and 3 integrons, respectively. aac(6)II in Class I integrons and dfrA1 in ClassII and aacA7 in Class II integrons were the most prevalent genes. Resistance to aminoglycosides were the most common genes harbored by integrons. Conclusion: The results of this study showed that the prevalence of Class 1, 2 and 3 in integron genes in most P. aeruginosa strains islated from different parts and equipment used in the hospital. The role of these transferable genetic agents has been proven in the creation of resistance. Therefore, it is essential to use management practices to optimize the use of antibiotics, preferably based on the results of antibiogram and trace coding genes for antibiotic resistance.
Collapse
Affiliation(s)
- Shahram Mobaraki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Yousef Memar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hamid Reza Goli
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, I.R. Iran - Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Halaji M, Rezaei A, Zalipoor M, Faghri J. Investigation of Class I, II, and III Integrons Among Acinetobacter Baumannii Isolates from Hospitalized Patients in Isfahan, Iran. Oman Med J 2018; 33:37-42. [PMID: 29467997 DOI: 10.5001/omj.2018.07] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objectives This study aimed to determine the prevalence of class I, II, and III integrons among clinical Acinetobacter baumannii isolates collected from hospitalized patients. Methods This cross-sectional study was conducted at two teaching hospitals in Isfahan, Iran, from October 2015 to October 2016. A total of 147 non-duplicate A. baumannii isolates were collected from clinical specimens and identified as A. baumannii using standard microbiological methods and confirmed by genotyping. Antimicrobial susceptibility was determined using disc diffusion method, and the presence of integron genes was performed using the polymerase chain reaction. Results Out of 147 confirmed A. baumannii isolates, 97.3% of isolates were extensive drug-resistant (XDR) and 2.7% were multidrug-resistant (MDR). Class I and II integrons were detected in 63.9% and 78.2% of the A. baumannii, respectively. Class III integron was not detected in any of the isolates. Conclusion Our results show a high prevalence of classes I and II integrons which may play a key role in the acquisition of MDR and XDR phenotype among A. baumannii isolates in our region. Therefore, use of appropriate infection control in clinical settings and implementation of treatment strategies is necessary for our hospitals.
Collapse
Affiliation(s)
- Mehrdad Halaji
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aliakbar Rezaei
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zalipoor
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamshid Faghri
- Department of Microbiology, School of medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Haghi F, Zeighami H, Monazami A, Toutouchi F, Nazaralian S, Naderi G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb Pathog 2017; 115:251-256. [PMID: 29273509 DOI: 10.1016/j.micpath.2017.12.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
Abstract
Multidrug resistant Pseudomonas aeruginosa has frequently been reported as the cause of nosocomial outbreaks of burn wound infections. The pathogenesis of P. aeruginosa is partly due to the production of several cell-associated and extracellular virulence factors. A total of 93 P. aeruginosa isolated from burn wound infections were investigated for antimicrobial susceptibility and distribution of virulence genes. All (100%) isolates were resistant to one or more antimicrobial agents. The most frequent resistance found against ampicillin (91.4%), co-trimoxazole (77.4%), gentamicin (68.8%), cefotaxime (50.5%), aztreonam and piperacillin (41.9%). A total of 88 (94.6%) isolates were resistant to at least three different classes of antimicrobial agents and considered as multidrug resistance MDR. All isolates carried at least two or more different virulence genes. The most prevalent virulence gene was toxA (97.8%), followed by plcH (96.7%), phzI (96.7%), exoY (93.1%) and phzII (90.3%). exoU was not detected in P. aeruginosa isolates. The frequency of pilB (17.2%), exoT (20.4%), pilA (24.7%) and phzS/phzH (27.9%) was lower than other virulence genes. Twenty nine (31.2%) isolates had simultaneously 8 virulence genes, 22 (23.7%) isolates had 6 virulence genes and 19 (20.4%) isolates had 7 virulence genes. All MDR isolates carried at least 5 virulence factors. These results indicate a high frequency and heterogeneity of virulence gene profiles among multidrug resistant P. aeruginosa isolates recovered from burn wound infections. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals.
Collapse
Affiliation(s)
- Fakhri Haghi
- Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Habib Zeighami
- Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Arefeh Monazami
- Department of Microbiology, Zanjan Islamic Azad University, Zanjan, Iran
| | - Farnaz Toutouchi
- Department of Microbiology, Zanjan Islamic Azad University, Zanjan, Iran
| | - Shima Nazaralian
- Department of Microbiology, Zanjan Islamic Azad University, Zanjan, Iran
| | - Ghazal Naderi
- Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Khorvash F, Yazdani M, Shabani S, Soudi A. Pseudomonas aeruginosa-producing Metallo-β-lactamases (VIM, IMP, SME, and AIM) in the Clinical Isolates of Intensive Care Units, a University Hospital in Isfahan, Iran. Adv Biomed Res 2017; 6:147. [PMID: 29285477 PMCID: PMC5735557 DOI: 10.4103/2277-9175.219412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Pseudomonas aeruginosa is a severe challenge for antimicrobial therapy, due to the chromosomal mutations or exhibition of intrinsic resistance to various antimicrobial agents such as most β-lactams. We undertook this study to evaluate the existence of SME, IMP, AIM, and VIM metallo-β-lactamases (MBL) encoding genes among P. aeruginosa strains isolated from Intensive Care Unit (ICU) patients in Al-Zahra Hospital in Isfahan, Iran. Materials and Methods: In a retrospective cross-sectional study that was conducted between March 2012 and April 2013, a total of 48 strains of P. aeruginosa were collected from clinical specimens of bedridden patients in ICU wards. Susceptibility test was performed by disc diffusion method. All of the meropenem-resistant strains were subjected to modified Hodge test for detection of carbapenemases. Multiplex polymerase chain reaction was performed for detection of blaVIM, blaIMP, blaAIM, and blaSME genes. Results: In disk diffusion method, imipenem and meropenem showed the most and colistin the least resistant antimicrobial agents against P. aeruginosa strains. Of the 48 isolates, 36 (75%) were multidrug resistant (MDR). Amplification of β-lactamase genes showed the presence of blaVIM genes in 7 (%14.6) strains and blaIMP genes in 15 (31.3%) strains. All of the isolates were negative for blaSME and blaAIM genes. We could not find any statistically significant difference among the presence of this gene and MDR positive, age, or source of the specimen. Conclusion: As patients with infections caused by MBL-producing bacteria are at an intensified risk of treatment failure, fast determination of these organisms is necessary. Our findings may provide useful insights in replace of the appropriate antibiotics and may also prevent MBLs mediated resistance problem.
Collapse
Affiliation(s)
- Farzin Khorvash
- Department of Infectious Diseases, Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Yazdani
- Department of Infectious Diseases, Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Shabani
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aliasghar Soudi
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
22
|
Hajiahmadi F, Ghale ES, Alikhani MY, Mordadi A, Arabestani MR. Detection of Integrons and Staphylococcal Cassette Chromosome mec Types in Clinical Methicillin-resistant Coagulase Negative Staphylococci Strains. Osong Public Health Res Perspect 2017; 8:47-53. [PMID: 28443223 PMCID: PMC5402849 DOI: 10.24171/j.phrp.2017.8.1.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Objectives Integrons are thought to play an important role in the spread of antibiotic resistance. This study investigates class 1 and 2 integron-positive methicillin-resistant coagulase-negative staphylococci strains isolated in Iran and characterizes their patterns of antimicrobial resistance. Methods Hundred clinical isolates of coagulase-negative staphylococci were characterized for integron content and staphylococcal cassette chromosome mec (SCCmec) type. Results Sixteen isolates carried class 1 (intI1) integrons and four isolates carried class 2 (intI2) integrons. One resistance gene array was identified among the class 1 integrons (aadA1 cassette). The distribution of SCCmec types in 50 methicillin-resistant coagulase-negative staphylococci strains showed that SCCmec types III and V dominated among the tested strains. Conclusion This is the first report of methicillin-resistant coagulase-negative staphylococci strains that carry two mobile genetic elements, including class 1 and 2 integrons and SCCmec, in Iran.
Collapse
Affiliation(s)
- Fahimeh Hajiahmadi
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Elham Salimi Ghale
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Alireza Mordadi
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
IMP-27, a Unique Metallo-β-Lactamase Identified in Geographically Distinct Isolates of Proteus mirabilis. Antimicrob Agents Chemother 2016; 60:6418-21. [PMID: 27503648 PMCID: PMC5038328 DOI: 10.1128/aac.02945-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
A novel metallo-β-lactamase gene, blaIMP-27, was identified in unrelated Proteus mirabilis isolates from two geographically distinct locations in the United States. Both isolates harbor blaIMP-27 as part of the first gene cassette in a class 2 integron. Antimicrobial susceptibility testing indicated susceptibility to aztreonam, piperacillin-tazobactam, and ceftazidime but resistance to ertapenem. However, hydrolysis assays indicated that ceftazidime was a substrate for IMP-27.
Collapse
|
24
|
Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis 2015; 15:122. [PMID: 25880997 PMCID: PMC4396152 DOI: 10.1186/s12879-015-0861-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/02/2015] [Indexed: 01/01/2023] Open
Abstract
Background Pseudomonas aeruginosa is an important nosocomial pathogen, commonly causing infections in immunocompromised patients. The aim of this study was to examine the genetic relatedness of metallo-beta-lactamase (MBL) producing carbapenem resistant Pseudomonas aeruginosa clinical isolates collected from 2 tertiary hospitals in Cairo, Egypt using Multi Locus sequence typing (MLST). Methods Phenotypic and genotypic detection of metallo-beta-lactamase for forty eight non-duplicate carbapenem resistant P. aeruginosa isolates were carried out. DNA sequencing and MLST were done. Results The blaVIM-2 gene was highly prevalent (28/33 strains, 85%) among 33 MBL-positive P.aeruginosa isolates. MLST revealed eleven distinct Sequence Types (STs). A unique ST233 clone producing VIM-2 was documented by MLST in P.aeruginosa strains isolated from Cairo university hospitals. The high prevalence of VIM-2 producers was not due to the spread of a single clone. Conclusions The findings of the present study clearly demonstrate that clones of VIM-2 positive in our hospitals are different from those reported from European studies. Prevalence of VIM-2 producers of the same clone was detected from surgical specimens whereas oncology related specimens were showing diverse clones.
Collapse
Affiliation(s)
- Mai Mahmoud Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, 4th Industrial Zone, Banks Complex، 6th of October, Giza, Egypt.
| | - Mohamed Hamed Al-Agamy
- Department of Pharmaceutics and Microbiology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia. .,Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | | | - Magdy Aly Amin
- Department of Microbiology and Immunology, Faculty of pharmacy, Cairo University, El Aini, As Sayedah Zeinab, Cairo, Egypt.
| | - Seif El Din Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
25
|
Gheorghe I, Novais Â, Grosso F, Rodrigues C, Chifiriuc MC, Lazar V, Peixe L. Snapshot on carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in Bucharest hospitals reveals unusual clones and novel genetic surroundings for blaOXA-23. J Antimicrob Chemother 2015; 70:1016-20. [PMID: 25630639 DOI: 10.1093/jac/dku527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The present study was designed to provide a snapshot on carbapenemase-producing Pseudomonas aeruginosa (n=11) and Acinetobacter baumannii (n=7) isolates in hospitalized patients (November 2011, January-March 2012) from two main hospitals in Bucharest, south Romania. METHODS Clonality among isolates was established by PFGE, MLST and Fourier transform infrared spectroscopy. Carbapenemases were screened by the Blue-Carba test, PCR and sequencing. Transferability of blaOXA-23 was tested by conjugation and plasmid typing (number, size and identity) was assessed by S1-PFGE, replicon typing, hybridization and PCR mapping. RESULTS All P. aeruginosa isolates carried chromosomally located blaVIM-2, associated with a common class 1 integron (aacA7-blaVIM-2) or an atypical configuration (aacA7-blaVIM-2-dfrB5-tniC). These isolates belonged to unusual lineages; mostly ST233 disseminated in one hospital unit, with ST364 and ST1074 also being detected. A. baumannii isolates carried blaOXA-23 in Tn2008, which was found truncating a TnaphA6 transposon located in a common 60 kb GR6 (aci6) pABKp1-like conjugative plasmid in highly related CC92 clones (ST437, ST764 and ST765), where CC stands for clonal complex. CONCLUSIONS Our results show the spread of VIM-2-producing P. aeruginosa and OXA-23-producing A. baumannii clinical isolates in two hospitals from Bucharest and highlight a peculiar population structure in this Eastern European country. Also, we demonstrate the dissemination of a common and conjugative aci6 pABKp1-like plasmid scaffold in different A. baumannii clones and we report the first known identification of Tnaph6-carrying pACICU2-like plasmids in Europe.
Collapse
Affiliation(s)
- Irina Gheorghe
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Ângela Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Filipa Grosso
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Rodrigues
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | - Veronica Lazar
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients. ScientificWorldJournal 2014; 2014:132971. [PMID: 25379514 PMCID: PMC4213392 DOI: 10.1155/2014/132971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/19/2014] [Indexed: 12/12/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to many antibiotics. Ceftazidime (CAZ), the synthetic β-lactam, is normally used as the first-line antibiotic therapy for treatment of melioidosis. However, acquired CAZ resistance can develop in vivo during treatment with CAZ, leading to mortality if therapy is not switched to a different antibiotic(s) in a timely manner. In this study, susceptibilities of 81 B. pseudomallei isolates to nine different antimicrobial agents were determined using the disk diffusion method, broth microdilution test and Etest. Highest percentage of susceptibility was demonstrated to CAZ, amoxicillin/clavulanic acid, meropenem, imipenem, and trimethoprim/sulfamethoxazole. Although these drugs demonstrated the highest percentage of susceptibility in B. pseudomallei, the overall results underline the importance of the emergence of resistance in this organism. PCR results showed that, of the 81 B. pseudomallei, six multidrug resistant (MDR) isolates carried bpeB, amrB, and BPSS1119 and penA genes. Genotyping of the isolates using random amplified polymorphic DNA analysis showed six different PCR fingerprinting patterns generated from the six MDR isolates clusters (A) and eight PCR fingerprinting patterns generated for the remaining 75 non-MDR isolates clusters (B).
Collapse
|
27
|
Doosti M, Ramazani A, Garshasbi M. Identification and characterization of metallo-β-lactamases producing Pseudomonas aeruginosa clinical isolates in University Hospital from Zanjan Province, Iran. IRANIAN BIOMEDICAL JOURNAL 2014; 17:129-33. [PMID: 23748890 DOI: 10.6091/ibj.1107.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Infectious by Pseudomonas aeruginosa has spread worldwide and metallo-beta-lactamases (MBL) are being reported with increasing frequency. The aim of this study was to investigate the antibiotic susceptibility and distribution of blaVIM and blaIMP genes in P. aeruginosa isolates from Zanjan Province of Iran. METHODS A total of 70 P. aeruginosa isolates were identified from patients admitted at intensive care units. The antimicrobial susceptibility was tested by disk diffusion (Kirby-Bauer) method and for production of MBL using double-disk synergy test (DDST). After DNA extraction, the presence of blaVIM and blaIMP genes and class 1 integron were detected by PCR. RESULTS Most of the isolates were resistant to meropenem, cefotaxime and imipenem (IPM). Also, 44/70 (62.85%) IPM resistant isolates were confirmed by DDST. Of the 44 clinical isolates, 41 (93%) isolates showed MIC≥4 µg/ml for IPM. Based on the DDST results, 36 (87.8%) were confirmed to be MBL producers. PCR amplification showed that 23/41 (56%) carried blaVIM and 10/41 (24.3%) possessed blaIMP gene. Also, 31/44 (70.5%) isolates contained class 1 integron gene. CONCLUSION Our results highlight that the genes for Verona integron-encoded metallo-β-lactamase, IPM β-lactamases and class 1 integrons were predominantly present among the IPM-resistant P. aeruginosa tested in our province and also the frequency of blaVIM type is higher than blaIMP. This is the first report of P. aeruginosa strains producing blaIMP with high frequency from Zanjan province of Iran.
Collapse
Affiliation(s)
- Masoumeh Doosti
- Dept. of Microbiology, Faculty of Basic Sciences, Sciences and Research Branch, Islamic Azad University, Markazi, Iran
| | - Ali Ramazani
- Dept. of Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Garshasbi
- Dept. of Microbiology, Faculty of Basic Sciences, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
28
|
Zeighami H, Haghi F, Hajiahmadi F. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran. J Chemother 2014; 27:145-51. [PMID: 24571248 DOI: 10.1179/1973947814y.0000000180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Integrons are considered to play a significant role in the evolution and spread of antibiotic resistance genes. A total of 349 clinical isolates of Escherichia coli and Klebsiella pneumoniae were investigated for molecular characterization of integrons and betalactamases. Antimicrobial susceptibility testing was also performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. The frequency of extended spectrum betalactamases (ESBL) or metallo-betalactamases (MBL)-producing isolates, patient demographics, and the susceptibility to various antimicrobial agents were described. BlaCTX-M was the most frequently detected betalactamase in all isolates. Moreover, MBL producing K. pneumoniae carried blaIMP and blaVIM at 100 and 41·6%, respectively but no MBL-positive E. coli was detected. Class 1 integrons were more frequent among E. coli and K. pneumoniae isolates in comparison with class 2 integrons and the frequency of intI2 in K. pneumoniae was significantly higher than E. coli isolates. Five different resistance gene arrays were identified among class 1 integrons. Dihydrofolate reductase (dfrA) and aminoglycoside adenyltransferase (aad) gene cassettes were found to be predominant in the class 1 integrons. These results indicate that class 1 integrons are widespread among ESBL-producing isolates of K. pneumoniae and E. coli and appropriate surveillance and control measures are essential to prevent further dissemination of these elements among Enterobacteriaceae in our country.
Collapse
|
29
|
Kiddee A, Henghiranyawong K, Yimsabai J, Tiloklurs M, Niumsup PR. Nosocomial spread of class 1 integron-carrying extensively drug-resistant Pseudomonas aeruginosa isolates in a Thai hospital. Int J Antimicrob Agents 2013; 42:301-6. [DOI: 10.1016/j.ijantimicag.2013.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
30
|
Edelstein MV, Skleenova EN, Shevchenko OV, D'souza JW, Tapalski DV, Azizov IS, Sukhorukova MV, Pavlukov RA, Kozlov RS, Toleman MA, Walsh TR. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. THE LANCET. INFECTIOUS DISEASES 2013; 13:867-76. [DOI: 10.1016/s1473-3099(13)70168-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Cicek AC, Saral A, Duzgun AO, Cizmeci Z, Kayman T, Balci PO, Dal T, Firat M, Yazici Y, Sancaktar M, Ozgumus OB, Sandalli C. Screening of Class 1 and Class 2 Integrons in Clinical Isolates of Pseudomonas aeruginosa Collected from Seven Hospitals in Turkey: A Multicenter Study. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmm.2013.34034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Spread of VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from Iaşi, Romania. ACTA ACUST UNITED AC 2013. [DOI: 10.2478/rrlm-2013-0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kor SB, Choo QC, Chew CH. New integron gene arrays from multiresistant clinical isolates of members of the Enterobacteriaceae and Pseudomonas aeruginosa from hospitals in Malaysia. J Med Microbiol 2012. [PMID: 23180481 DOI: 10.1099/jmm.0.053645-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated 147 multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from hospitalized patients in Malaysia. Class 1 integrons were the most dominant class identified (45.6%). Three isolates were shown to contain class 2 integrons (2.0%), whilst one isolate harboured both class 1 and 2 integrons. No class 3 integrons were detected in this study. In addition, the sul1 gene was amplified in 35% of isolates and was significantly associated with the presence of integrase genes in an integron structure. RFLP and DNA sequencing analyses revealed the presence of 19 different cassette arrays among the detected integrons. The most common gene cassettes were those encoding resistance towards aminoglycosides (aad) and trimethoprim (dfr). As far as is known, this study is the first to identify integron-carrying cassette arrays such as aadA2-linF, aacC3-cmlA5 and aacA4-catB8-aadA1 in the Malaysian population. Patients' age was demonstrated as a significant risk factor for the acquisition of integrons (P=0.028). Epidemiological typing using PFGE also demonstrated a clonal relationship among isolates carrying identical gene cassettes in Klebsiella pneumoniae and P. aeruginosa but not in Escherichia coli isolates.
Collapse
Affiliation(s)
- Sue-Bee Kor
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Perak, Malaysia
| | - Quok-Cheong Choo
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Perak, Malaysia
| | - Choy-Hoong Chew
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Perak, Malaysia
| |
Collapse
|
34
|
Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J. Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. ScientificWorldJournal 2012; 2012:654939. [PMID: 22792048 PMCID: PMC3385599 DOI: 10.1100/2012/654939] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/12/2012] [Indexed: 02/02/2023] Open
Abstract
Carbapenems are the primary choice of treatment for severe Pseudomonas aeruginosa infection. However, the emergence of carbapenem resistance due to the production of metallo-β-lactamases (MBLs) is of global concern. In this study, 90 imipenem- (IPM- or IP-) resistant P. aeruginosa (IRPA) isolates, including 32 previously tested positive and genotyped for MBL genes by PCR, were subjected to double-disk synergy test (DDST), combined disk test (CDT), and imipenem/imipenem-inhibitor (IP/IPI) E-test to evaluate their MBLs detection capability. All three methods were shown to have a sensitivity of 100%. However, DDST was the most specific of the three (96.6%), followed by IP/IPI E-test interpreted based on the single criteria of IP/IPI ≥8 as positive (62.1%), and CDT was the least specific (43.1%). Based on the data from this evaluation, we propose that only IRPA with IP MIC >16 μg/mL and IP/IPI ≥8 by IP/IPI E-test should be taken as positive for MBL activity. With the new dual interpretation criteria, the MBL IP/IPI E-test was shown to achieve 100% sensitivity as well as specificity for the IRPA in this study. Therefore, the IP/IPI E-test is a viable alternative phenotypic assay to detect MBL production in IRPA in our population in circumstances where PCR detection is not a feasible option.
Collapse
Affiliation(s)
- Yalda Khosravi
- Department of Medical Microbiology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|