1
|
Kumar D, Kumar A. Cellular Attributes of Candida albicans Biofilm-Associated in Resistance Against Multidrug and Host Immune System. Microb Drug Resist 2023; 29:423-437. [PMID: 37428599 DOI: 10.1089/mdr.2022.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
One of the ubiquitous hospital-acquired infections is associated with Candida albicans fungus. Usually, this commensal fungus causes no harm to its human host, as it lives mutually with mucosal/epithelial tissue surface cells. Nevertheless, due to the activity of various immune weakening factors, this commensal starts reinforcing its virulence attributes with filamentation/hyphal growth and building an absolute microcolony composed of yeast, hyphal, and pseudohyphal cells, which is suspended in an extracellular gel-like polymeric substance (EPS) called biofilms. This polymeric substance is the mixture of the secreted compounds from C. albicans as well as several host cell proteins. Indeed, the presence of these host factors makes their identification and differentiation process difficult by host immune components. The gel-like texture of the EPS makes it sticky, which adsorbs most of the extracolonial compounds traversing through it that aid in penetration hindrance. All these factors further contribute to the multidrug resistance phenotype of C. albicans biofilm that is spotlighted in this article. The mechanisms it employs to escape the host immune system are also addressed effectively. The article focuses on cellular and molecular determinants involved in the resistance of C. albicans biofilm against multidrug and the host immune system.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
2
|
Zhang T, Kalimuthu S, Rajasekar V, Xu F, Yiu YC, Hui TKC, Neelakantan P, Chu Z. Biofilm inhibition in oral pathogens by nanodiamonds. Biomater Sci 2021; 9:5127-5135. [PMID: 33997876 DOI: 10.1039/d1bm00608h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex microbial communities, e.g., biofilms residing in our oral cavity, have recognized clinical significance, as they are typically the main cause for infections. Particularly, they show high resistance to conventional antibiotics, and alternatives including nanotechnology are being intensively explored nowadays to provide more efficient therapeutics. Diamond nanoparticles, namely, nanodiamonds (NDs) with many promising physico-chemical properties, have been demonstrated to work as an effective antibacterial agent against planktonic cells (free-floating state). However, little is known about the behaviors of NDs against biofilms (sessile state). In this study, we uncovered their role in inhibiting biofilm formation and their disrupting effect on preformed biofilms in several selected orally and systemically important organisms. The current findings will advance the mechanistic understanding of NDs on oral pathogens and might accelerate corresponding clinical translation.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio 2019; 10:mBio.01179-19. [PMID: 31213561 PMCID: PMC6581863 DOI: 10.1128/mbio.01179-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial communities have a great impact in health and disease. C. albicans interacts with multiple microorganisms in the oral cavity, frequently forming polymicrobial biofilms. We report on the synergistic interactions between C. albicans and the Gram-positive bacterium S. gordonii, for which we have examined the different contributions of adhesive interactions, filamentation, and the extracellular matrix to the formation of dual-species biofilms. Our results demonstrate that growth in the presence of the bacterium can restore the biofilm-forming ability of different C. albicans mutant strains with defects in adhesion and filamentation. The mixed-species biofilms also show high levels of resistance to antibacterial and antifungal antibiotics, and our results indicate that the fungal biofilm matrix protects bacterial cells within these mixed-species biofilms. Our observations add to a growing body of evidence indicating a high level of complexity in the reciprocal interactions and consortial behavior of fungal/bacterial biofilms. Fungal and bacterial populations coexist in the oral cavity, frequently forming mixed-species biofilms that complicate treatment against polymicrobial infections. However, despite relevance to oral health, the bidirectional interactions between these microbial populations are poorly understood. In this study, we aimed to elucidate the mechanisms underlying the interactions between the fungal species Candida albicans and the bacterial species Streptococcus gordonii as they coexist in mixed-species biofilms. Specifically, the interactions of different C. albicans mutant strains deficient in filamentation (efg1Δ/Δ and brg1Δ/Δ), adhesive interactions (als3Δ/Δ and bcr1Δ/Δ), and production of matrix exopolymeric substances (EPS) (kre5Δ/Δ, mnn9Δ/Δ, rlm1Δ/Δ, and zap1Δ/Δ) were evaluated with S. gordonii under different conditions mimicking the environment in the oral cavity. Interestingly, our results revealed that growth of the biofilm-deficient C. albicansals3Δ/Δ and bcr1Δ/Δ mutant strains in synthetic saliva or with S. gordonii restored their biofilm-forming ability. Moreover, challenging previous observations indicating an important role of morphogenetic conversions in the interactions between these two species, our results indicated a highly synergistic interaction between S. gordonii and the C. albicans filamentation-deficient efg1Δ/Δ and brg1Δ/Δ deletion mutants, which was particularly noticeable when the mixed biofilms were grown in synthetic saliva. Importantly, dual-species biofilms were found to exhibit increase in antimicrobial resistance, indicating that components of the fungal exopolymeric material confer protection to streptococcal cells against antibacterial treatment. Collectively, these findings unravel a high degree of complexity in the interactions between C. albicans and S. gordonii in mixed-species biofilms, which may impact homeostasis in the oral cavity.
Collapse
|
4
|
Fennel oil: A promising antifungal agent against biofilm forming fluconazole resistant Candida albicans causing vulvovaginal candidiasis. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
6
|
Gizińska M, Staniszewska M, Ochal Z. Novel Sulfones with Antifungal Properties: Antifungal Activities and Interactions with Candida spp. Virulence Factors. Mini Rev Med Chem 2019; 19:12-21. [PMID: 30246638 DOI: 10.2174/1389557518666180924121209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023]
Abstract
Since candidiasis is so difficult to eradicate with an antifungal treatment and the existing antimycotics display many limitations, hopefully new sulfone derivatives may overcome these deficiencies. It is pertinent to study new strategies such as sulfone derivatives targeting the virulence attributes of C. albicans that differentiate them from the host. During infections, the pathogenic potential of C. albicans relies on the virulence factors as follows: hydrolytic enzymes, transcriptional factors, adhesion, and development of biofilms. In the article we explored how the above-presented C. albicans fitness and virulence attributes provided a robust response to the environmental stress exerted by sulfones upon C. albicans; C. albicans fitness and virulence attributes are fungal properties whose inactivation attenuates virulence. Our understanding of how these mechanisms and factors are inhibited by sulfones has increased over the last years. As lack of toxicity is a prerequisite for medical approaches, sulfones (non-toxic as assessed in vitro and in vivo) may prove to be useful for reducing C. albicans pathogenesis in humans. The antifungal activity of sulfones dealing with these multiple virulence factors and fitness attributes is discussed.
Collapse
Affiliation(s)
- Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
7
|
Borowiecki P, Wińska P, Bretner M, Gizińska M, Koronkiewicz M, Staniszewska M. Synthesis of novel proxyphylline derivatives with dual Anti-Candida albicans and anticancer activity. Eur J Med Chem 2018. [PMID: 29533875 DOI: 10.1016/j.ejmech.2018.02.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections.
Collapse
Affiliation(s)
- Paweł Borowiecki
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Patrycja Wińska
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | | | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland.
| |
Collapse
|
8
|
Panariello BHD, Klein MI, Pavarina AC, Duarte S. Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J Oral Microbiol 2017; 9:1385372. [PMID: 29081917 PMCID: PMC5646609 DOI: 10.1080/20002297.2017.1385372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/21/2017] [Indexed: 10/29/2022] Open
Abstract
Background: Infections caused by Candida spp. have been associated with formation of a biofilm, i.e. a complex microstructure of cells adhering to a surface and embedded within an extracellular matrix (ECM). Methods: The ECMs of a wild-type (WT, SN425) and two Candida albicans mutant strains, Δ/Δ tec1 (CJN2330) and Δ/Δ efg1 (CJN2302), were evaluated. Colony-forming units (cfu), total biomass (mg), water-soluble polysaccharides (WSPs), alkali-soluble polysaccharides (ASPs), proteins (insoluble part of biofilms and matrix proteins), and extracellular DNA (eDNA) were quantified. Variable-pressure scanning electron microscopy and confocal scanning laser microscopy were performed. The biovolume (μm3/μm2) and maximum thickness (μm) of the biofilms were quantified using COMSTAT2. Results: ASP content was highest in WT (mean ± SD: 74.5 ± 22.0 µg), followed by Δ/Δ tec1 (44.0 ± 24.1 µg) and Δ/Δ efg1 (14.7 ± 5.0 µg). The protein correlated with ASPs (r = 0.666) and with matrix proteins (r = 0.670) in the WT strain. The population in Δ/Δ efg1 correlated with the protein (r = 0.734) and its biofilms exhibited the lowest biomass and biovolume, and maximum thickness. In Δ/Δ tec1, ASP correlated with eDNA (r = 0.678). Conclusion: ASP production may be linked to C. albicans cell filamentous morphology.
Collapse
Affiliation(s)
- Beatriz Helena Dias Panariello
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Marlise I. Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araraquara, Brazil
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
9
|
Staniszewska M, Bondaryk M, Ochal Z. Role of Virulence Determinants in Candida albicans' Resistance to Novel 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone. J Fungi (Basel) 2017; 3:jof3030032. [PMID: 29371550 PMCID: PMC5715941 DOI: 10.3390/jof3030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of KEX2, SAP4-6, EFG1, and CPH1 in the virulence of Candida under a novel compound 2-bromo-2-chloro-2-(4-chlorophenylsulfonyl)-1-phenylethanone (Compound 4). We examined whether the exposure of C. albicans cells to Compound 4, non-cytotoxic to mammalian cells, reduces their adhesion to the human epithelium. We next assessed whether the exposure of C. albicans cells to Compound 4 modulates the anti-inflammatory response (IL-10) and induces human macrophages to respond to the Candida cells. There was a marked reduction in the growth of the sap4Δsap5Δsap6Δ mutant cells when incubated with Compound 4. Under Compound 4 (minimal fungicidal concentration MFC = 0.5–16 µg/mL): (1) wild type strain SC5314 showed a resistant phenotype with down-regulation of the KEX2 expression; (2) the following mutants of C.albicans: sap4Δ, sap5Δ, sap6Δ, and cph1Δ displayed decreased susceptibility with the paradoxical effect and up-regulation of the KEX2 expression compared to SC5314; (3) the immune recognition of C. albicans by macrophages and (4) the stimulation of IL-10 were not blocked ex vivo. The effect of deleting KEX2 in C. albicans had a minor impact on the direct activation of Compound 4’s antifungal activity. The adhesion of kex2Δ is lower than that of the wild parental strain SC5314, and tends to decrease if grown in the presence of a sub-endpoint concentration of Compound 4. Our results provide evidence that SAP4–6 play a role as regulators of the anti-Candida resistance to Compound 4. Compound 4 constitutes a suitable core to be further exploited for lead optimization to develop potent antimycotics.
Collapse
Affiliation(s)
- Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw 00-791, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, Warsaw 00-791, Poland.
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland.
| |
Collapse
|
10
|
Li X, Yu C, Huang X, Sun S. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans. PLoS One 2016; 11:e0168936. [PMID: 28006028 PMCID: PMC5179115 DOI: 10.1371/journal.pone.0168936] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/08/2016] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases in the clinic. The emergence of drug resistance in Candida albicans has become a noteworthy phenomenon due to the extensive use of antifungal agents and the development of biofilms. This study showed that budesonide potentiates the antifungal effect of fluconazole against fluconazole-resistant Candida albicans strains both in vitro and in vivo. In addition, our results demonstrated, for the first time, that the combination of fluconazole and budesonide can reverse the resistance of Candida albicans by inhibiting the function of drug transporters, reducing the formation of biofilms, promoting apoptosis and inhibiting the activity of extracellular phospholipases. This is the first study implicating the effects and mechanisms of budesonide against Candida albicans alone or in combination with fluconazole, which may ultimately lead to the identification of new potential antifungal targets.
Collapse
Affiliation(s)
- Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Xin Huang
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
11
|
Fungal Biofilms: Update on Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:37-47. [DOI: 10.1007/5584_2016_7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Cannon R, Holmes A. Learning the ABC of oral fungal drug resistance. Mol Oral Microbiol 2015; 30:425-37. [DOI: 10.1111/omi.12109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 01/07/2023]
Affiliation(s)
- R.D. Cannon
- Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| | - A.R. Holmes
- Sir John Walsh Research Institute; University of Otago; Dunedin New Zealand
| |
Collapse
|
13
|
Holland LM, Schröder MS, Turner SA, Taff H, Andes D, Grózer Z, Gácser A, Ames L, Haynes K, Higgins DG, Butler G. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 2014; 10:e1004365. [PMID: 25233198 PMCID: PMC4169492 DOI: 10.1371/journal.ppat.1004365] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. Candida species are among the most common causes of fungal infection worldwide. Infections can be both community-based and hospital-acquired, and are particularly associated with immunocompromised individuals. Candida albicans is the most commonly isolated species and is the best studied. However, other species are becoming of increasing concern. Candida parapsilosis causes outbreaks of infection in neonatal wards, and is one of the few Candida species that is transferred from the hands of healthcare workers. C. parapsilosis, like C. albicans, grows as biofilms (cell communities) on the surfaces of indwelling medical devices like feeding tubes. We describe here the construction of a set of tools that allow us to characterize the virulence properties of C. parapsilosis, and in particular its ability to grow as biofilms. We find that some of the regulatory mechanisms are shared with C. albicans, but others are unique to each species. Our tools, based on selectively deleting regulatory genes, will provide a major resource to the fungal research community.
Collapse
Affiliation(s)
- Linda M. Holland
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Markus S. Schröder
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Siobhán A. Turner
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Heather Taff
- Departments of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - David Andes
- Departments of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Zsuzsanna Grózer
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Lauren Ames
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Ken Haynes
- School of Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Desmond G. Higgins
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- School of Biomedical and Biomolecular Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
14
|
Arzmi M, Alshwaimi E, Harun WW, Razak FA, Farina F, McCullough M, Cirillo N. Gaining More Insight into the Determinants of Candida Species Pathogenicity in the Oral Cavity. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Candida infection (candidiasis) is potentially life threatening and can occur in almost all anatomical sites, including the mouth. Candida species are in fact the most common fungal pathogens isolated from the oral cavity and frequently cause superficial infections such as oral candidiasis and denture-associated erythematous stomatitis. Whilst systemic dissemination of Candida from intraoral foci is rare and largely due to severe deficits of the host immune defenses, the development of localized oral candidiasis is most commonly related to a variety of non-immune determinants such as Candida virulence factors and permissive oral microenvironment. In particular, phenotypic switching and dental biofilm have emerged as major determinants for the pathogenicity of Candida and are currently the subject of intense research. An understanding of the molecular aspects underlying the biological behavior of Candida will be the key to the development of effective preventive as well as therapeutic measures for invasive and oral candidiasis.
Collapse
Affiliation(s)
- M.H. Arzmi
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, VIC, Australia
- Department of Basic Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - E. Alshwaimi
- Department of Restorative Dental Sciences, College of Dentistry, University of Dammam, KSA
| | - W.H.A. Wan Harun
- Department of Oral Biology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - F. Abdul Razak
- Department of Oral Biology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - F. Farina
- Facultatea de Medicina si Medicina Dentara Titu Maiorescu, Bucharest, Romania
- Centro per l'Innovazione, la Ricerca, l'Istruzione, la Salute (IRIS), Italy
| | - M.J. McCullough
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, VIC, Australia
| | - N. Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, VIC, Australia
- Centro per l'Innovazione, la Ricerca, l'Istruzione, la Salute (IRIS), Italy
| |
Collapse
|
15
|
Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 2014; 6:77-90. [DOI: 10.4155/fmc.13.189] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Invasive fungal infections are associated with very high mortality rates ranging from 20–90% for opportunistic fungal pathogens such as Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Fungal resistance to antimycotic treatment can be genotypic (due to resistant strains) as well as phenotypic (due to more resistant fungal lifestyles, such as biofilms). With regard to the latter, biofilms are considered to be critical in the development of invasive fungal infections. However, there are only very few antimycotics, such as miconazole (azoles), echinocandins and liposomal formulations of amphotericin B (polyenes), which are also effective against fungal biofilms. Interestingly, these antimycotics all induce reactive oxygen species (ROS) in fungal (biofilm) cells. This review provides an overview of the different classes of antimycotics and novel antifungal compounds that induce ROS in fungal planktonic and biofilm cells. Moreover, different strategies to further enhance the antibiofilm activity of such ROS-inducing antimycotics will be discussed.
Collapse
|
16
|
Connolly LA, Riccombeni A, Grózer Z, Holland LM, Lynch DB, Andes DR, Gácser A, Butler G. The APSES transcription factor Efg1 is a global regulator that controls morphogenesis and biofilm formation in Candida parapsilosis. Mol Microbiol 2013; 90:36-53. [PMID: 23895281 PMCID: PMC3912905 DOI: 10.1111/mmi.12345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2013] [Indexed: 11/30/2022]
Abstract
Efg1 (a member of the APSES family) is an important regulator of hyphal growth and of the white-to-opaque transition in Candida albicans and very closely related species. We show that in Candida parapsilosis Efg1 is a major regulator of a different morphological switch at the colony level, from a concentric to smooth morphology. The rate of switching is at least 20-fold increased in an efg1 knockout relative to wild type. Efg1 deletion strains also have reduced biofilm formation, attenuated virulence in an insect model, and increased sensitivity to SDS and caspofungin. Biofilm reduction is more dramatic in in vitro than in in vivo models. An Efg1 paralogue (Efh1) is restricted to Candida species, and does not regulate concentric-smooth phenotype switching, biofilm formation or stress response. We used ChIP-seq to identify the Efg1 regulon. A total of 931 promoter regions bound by Efg1 are highly enriched for transcription factors and regulatory proteins. Efg1 also binds to its own promoter, and negatively regulates its expression. Efg1 targets are enriched in binding sites for 93 additional transcription factors, including Ndt80. Our analysis suggests that Efg1 has an ancient role as regulator of development in fungi, and is central to several regulatory networks.
Collapse
Affiliation(s)
- Leona A Connolly
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Alessandro Riccombeni
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Zsuzsana Grózer
- Department of Microbiology, University of SzegedH-6726, Szeged Kozep fasor 52, Hungary
| | - Linda M Holland
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - Denise B Lynch
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| | - David R Andes
- Departments of Medicine and Microbiology and Immunology, University of WisconsinMadison, WI, USA
| | - Attila Gácser
- Department of Microbiology, University of SzegedH-6726, Szeged Kozep fasor 52, Hungary
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science Conway Institute, University College DublinBelfield, Dublin 4, Ireland
| |
Collapse
|
17
|
Miyamoto M, Furuichi Y, Komiyama T. The high-osmolarity glycerol- and cell wall integrity-MAP kinase pathways of Saccharomyces cerevisiae are involved in adaptation to the action of killer toxin HM-1. Yeast 2012; 29:475-85. [PMID: 23065846 DOI: 10.1002/yea.2927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/07/2012] [Accepted: 09/07/2012] [Indexed: 11/08/2022] Open
Abstract
Fps1p is an aquaglyceroporin important for turgor regulation of Saccharomyces cerevisiae. Previously we reported the involvement of Fps1p in the yeast-killing action of killer toxin HM-1. The fps1 cells showed a high HM-1-resistant phenotype in hypotonic medium and an HM-1-susceptible phenotype in hypertonic medium. This osmotic dependency in HM-1 susceptibility was similar to those observed in Congo red, but different from those observed in other cell wall-disturbing agents. These results indicate that HM-1 exerts fungicidal activity mainly by binding and inserting into the yeast cell wall structure, rather than by inhibiting 1,3-β-glucan synthase. We next determined HM-1-susceptibility and diphospho-MAP kinase inductions in S. cerevisiae. In the wild-type cell, expressions of diphospho-Hog1p and -Slt2p, and mRNA transcription of CWP1 and HOR2, were induced within 1 h after an addition of HM-1. ssk1 and pbs2 cells, but not sho1 and hkr1 cells, showed HM-1-sensitive phenotypes and lacked inductions of phospho-Hog1p in response to HM-1. mid2, rom2 and bck1 cells showed HM-1-sensitive phenotypes and decreased inductions of phospho-Slt2p in response to HM-1. From these results, we postulated that the Sln1-Ypd1-Ssk1 branch of the high-osmolality glycerol (HOG) pathway and plasma membrane sensors of the cell wall integrity (CWI) pathway detect cell wall stresses caused by HM-1. We further suggested that activations of both HOG and CWI pathways have an important role in the adaptive response to HM-1 toxicity.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| | | | | |
Collapse
|