1
|
Hassan MA, Syed F, Singh GP, Pakala R, Gasmelseed H. Brevundimonas diminuta-Induced Lung Abscess in an Immunocompetent Adult: A Rare Case Report. Cureus 2023; 15:e42371. [PMID: 37621835 PMCID: PMC10445504 DOI: 10.7759/cureus.42371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Lung abscesses caused by Brevundimonas diminuta (B. diminuta) are a rare occurrence, particularly in immunocompetent adults. We present the case of a 47-year-old male with a history of COPD, bipolar disorder, and seizure disorder, who presented with a productive cough, worsening shortness of breath, yellow sputum, weight loss, and fatigue over a period of three weeks. Clinical examination revealed decreased breath sounds in the left upper lung zones. Laboratory investigations showed an elevated white cell count, while blood cultures identified B. diminuta. Imaging with computed tomography (CT) confirmed the presence of a 4.2x2.0 cm cavitary lesion consistent with a lung abscess. The patient was successfully treated with a combination of Ampicillin/Sulbactam and Azithromycin, followed by a course of oral Augmentin. Given the size of the abscess and favorable response to antibiotic therapy, invasive procedures were deemed unnecessary. This case underscores the importance of considering unusual pathogens in the etiology of lung abscesses, even in immunocompetent individuals, and highlights the successful management with appropriate antibiotic therapy.
Collapse
Affiliation(s)
| | - Faisal Syed
- Internal Medicine, Howard University Hospital, Washington, USA
| | - Gagan P Singh
- Internal Medicine/Gastroenterology, Howard University Hospital, Washington, USA
| | - Ramya Pakala
- Internal Medicine, Howard University Hospital, Washington, USA
| | - Huda Gasmelseed
- Internal Medicine, Howard University Hospital, Washington, USA
| |
Collapse
|
2
|
Zhou JC, Wang YF, Zhu D, Zhu YG. Deciphering the distribution of microbial communities and potential pathogens in the household dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162250. [PMID: 36804982 DOI: 10.1016/j.scitotenv.2023.162250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The reliance of modern society on indoor environments increasing has made them crucial sites for human exposure to microbes. Extensive research has identified ecological drivers that influence indoor microbial assemblages. However, few studies have examined the dispersion of microbes in different locations of identical indoor environments. In this study, we employed PacBio Sequel full-length amplicon sequencing to examine the distribution of microbes at distinct locations in a single home and to identify the potential pathogens and microbial functions. Microbial communities differed considerably among the indoor sampling sites (P < 0.05). In addition, bacterial diversity was influenced by human activities and contact with the external environment at different sites, whereas fungal diversity did not significantly differ among the sites. Potential pathogens, including bacteria and fungi, were significantly enriched on the door handle (P < 0.05), suggesting that door handles may be hotpots for potential pathogens in the household. A high proportion of fungal allergens (34.37 %-56.50 %), which can cause skin diseases and asthma, were observed. Co-occurrence network analysis revealed the essential ecological role of microbial interactions in the development of a healthy immune system. Overall, we revealed the differences in microbial communities at different sampling sites within a single indoor environment, highlighting the distribution of potential pathogens and ecological functions of microbes, and providing a new perspective and information for assessing indoor health from a microbiological viewpoint.
Collapse
Affiliation(s)
- Jia-Cheng Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; International School of Beijing, Beijing 101318, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Nivedhita S, Shyni Jasmin P, Sarvajith M, Nancharaiah YV. Effects of oxytetracycline on aerobic granular sludge process: Granulation, biological nutrient removal and microbial community structure. CHEMOSPHERE 2022; 307:136103. [PMID: 35995202 DOI: 10.1016/j.chemosphere.2022.136103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Formation of aerobic granular sludge (AGS), process performance and microbial community structure were investigated in lab-scale sequencing batch reactors (SBR) operated without and with oxytetracycline (OTC). Granulation of activated sludge and appearance of AGS was observed in parallel SBRs operated without and with OTC. However, formation of well-settling aerobic granules was relatively faster in the SBR fed with 100 μg/L OTC and observed within 2 weeks of start-up. Ammonium, total nitrogen, and phosphorus removals were quickly established in the AGS cultivated without OTC. In contrast, nitrogen and phosphorus removals were lower in the OTC fed SBR. But, a gradual improvement in nitrogen and phosphorus removals was observed. After 45 days, nitrogen and phosphorous removals were stabilized at 99% and 70%, respectively, due to establishment of OTC-tolerant community. qPCR revealed the impact of OTC on ammonium oxidizing bacteria, polyphosphate accumulating organisms and their enrichment during exposure to OTC. Ammonium and phosphorus were majorly removed via nitritation-denitritation and enhanced biological phosphorus removal (EBPR) pathways, respectively, in the presence of OTC. Brevundimonas (35%), Thaurea (14%) sp. Ca. Competibacter (5.6%), and Ca. Accumulibacter (4.2%) were enriched in OTC-fed AGS. Of the two OTC-tolerant strains isolated, Micrococcus luteus exhibited growth and efficient OTC biotransformation at different OTC concentrations. Moreover, M. luteus was predominantly growing in the form of aggregates. Key traits such as tolerance, biotransformation and high autoaggregation ability allowed a niche for this strain in the granules. This work has important implications in understanding the effect of antibiotics on AGS and designing AGS based treatment for antibiotic-laden wastewaters.
Collapse
Affiliation(s)
- S Nivedhita
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India
| | - P Shyni Jasmin
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India
| | - M Sarvajith
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603 102, Tamil Nadu, India; Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
4
|
First Isolation and Clinical Case of Brevundimonas diminuta in a Newborn with Low Birth Weight, in Democratic Republic of Congo: A Case Report. Medicina (B Aires) 2021; 57:medicina57111227. [PMID: 34833445 PMCID: PMC8617665 DOI: 10.3390/medicina57111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022] Open
Abstract
Brevundimonas diminuta is rarely described in clinical specimens, never at the umbilical stump. Most of the reported cases are in patients with underlying pathologies. We must integrate this microorganism in the etiological agents of nosocomial infections, but much remains to be understood about its virulence. We present a case of umbilical stump infection (omphalitis) caused by B. diminuta, in a preterm and hypotrophic new-born and discuss the diagnosis of this bacterium and its role as responsible of nosocomial neonatal infections.
Collapse
|
5
|
Liu L, Feng Y, Wei L, Zong Z. Genome-Based Taxonomy of Brevundimonas with Reporting Brevundimonas huaxiensis sp. nov. Microbiol Spectr 2021; 9:e0011121. [PMID: 34232096 PMCID: PMC8552745 DOI: 10.1128/spectrum.00111-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Brevundimonas is a genus of Gram-negative bacteria widely distributed in nature and is also an opportunistic pathogen causing health care-associated infections. Brevundimonas strain 090558T was recovered from a blood culture of a cancer patient and was subjected to genome sequencing and analysis. The average nucleotide identity and in silico DNA-DNA hybridization values between 090558T and type strains of Brevundimonas species were 78.76% to 93.94% and 19.8% to 53.9%, respectively, below the cutoff to define bacterial species. Detailed phenotypic tests were performed, suggesting that 090558T can be differentiated from other Brevundimonas species by its ability to assimilate sodium acetate but not to utilize glucose, trypsin, or β-glucosidase. Strain 090558T (GDMCC 1.1871T or KCTC 82165T) therefore represents a novel Brevundimonas species, for which the name Brevundimonas huaxiensis sp. nov. is proposed. All Brevundimonas genomes available in GenBank (accessed on 25 January 2021) were retrieved, discarding those labeled "excluded from RefSeq" by GenBank, and included 82 genomes for precise species curation. In addition to the 21 Brevundimonas species with genomes of type strains available, we identified 29 Brevundimonas taxa that either belong to the 12 Brevundimonas species without available genomes of type strains or represent novel species. We found that more than half (57.3%) of the 82 Brevundimonas genomes need to be corrected for species assignation, including species mislabeling of a type strain. Our analysis highlights the complexity of Brevundimonas taxonomy. We also found that only some Brevundimonas species are associated with human infections, and more studies are warranted to understand their pathogenicity and epidemiology. IMPORTANCEBrevundimonas is a genus of the family Caulobacteraceae and comprises 33 species. Brevundimonas can cause various infections but remains poorly studied. In this study, we reported a novel Brevundimonas species, Brevundimonas huaxiensis, based on genome and phenotype studies of strain 090558T recovered from human blood. We then examined the species assignations of all Brevundimonas genomes (n = 82) in GenBank and found that in addition to the known Brevundimonas species with genome sequences of type strains available, there are 29 Brevundimonas taxa based on genome analysis, which need to be further studied using phenotype-based methods to establish their species status. Our study significantly updates the taxonomy of Brevundimonas and enhances our understanding of this genus of clinical relevance. The findings also encourage future studies on the characterization of novel Brevundimonas species.
Collapse
Affiliation(s)
- Lina Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Abstract
Non-fermenting Gram-negative bacteria are problematic in clinical locations, being one of the most prevalent causes of nosocomial infections. Many of these non-fermenting Gram-negative bacteria are opportunistic pathogens that affect patients that are suffering with underlying medical conditions and diseases. Brevundimonas spp., in particular Brevundimonas diminuta and Brevundimonas vesicularis, are a genus of non-fermenting Gram-negative bacteria considered of minor clinical importance. Forty-nine separate instances of infection relating to Brevundimonas spp were found in the scientific literature along with two pseudo-infections. The majority of these instances were infection with Brevundimonas vesicularis (thirty-five cases – 71%). The major condition associated with Brevundimonas spp infection was bacteraemia with seventeen individual cases/outbreaks (35%). This review identified forty-nine examples of Brevundimonas spp. infections have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Brevundimonas spp outbreaks if these bacteria are clinically isolated in more than one patient.
Collapse
Affiliation(s)
- Michael P Ryan
- a Industrial Biochemistry Programme, Department of Chemical Sciences , School of Natural Sciences, University of Limerick , Limerick , Ireland
| | - J Tony Pembroke
- b Molecular Biochemistry Laboratory, Department of Chemical Sciences , School of Natural Sciences, University of Limerick , Limerick , Ireland.,c Bernal Institute, University of Limerick , Limerick , Ireland
| |
Collapse
|
7
|
Lu B, Fang Y, Fan Y, Chen X, Wang J, Zeng J, Li Y, Zhang Z, Huang L, Li H, Li D, Zhu F, Cui Y, Wang D. High Prevalence of Macrolide-resistance and Molecular Characterization of Streptococcus pyogenes Isolates Circulating in China from 2009 to 2016. Front Microbiol 2017. [PMID: 28642756 PMCID: PMC5463034 DOI: 10.3389/fmicb.2017.01052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pyogenes, or group A Streptococcus, is a pathogen responsible for a wide range of clinical manifestations, from mild skin and soft tissue infections and pharyngitis to severe diseases. Its epidemiological characteristics should be comprehensively under surveillance for regulating the national prevention and treatment practice. Herein, a total of 140 S. pyogenes, including 38 invasive and 102 noninvasive isolates, were collected from infected patients in 10 tertiary general hospitals from 7 cities/provinces in China during the years 2009–2016. All strains were characterized by classical and molecular techniques for its emm types/subtypes, virulent factors and antibiotic resistance profiling. Of 140 isolates, 15 distinct emm types and 31 subtypes were detected, dominated by emm12 (60 isolates, 42.9%), emm1(43, 30.7%), and emm89 (10, 7.1%), and 8 new emm variant subtypes were identified. All strains, invasive or not, harbored the superantigenic genes, speB and slo. The other virulence genes, smeZ, speF, and speC accounted for 96.4, 91.4, and 87.1% of collected isolates, respectively. Further multilocus sequence typing (MLST) placed all strains into 22 individual sequence types (STs), including 4 newly-identified STs (11, 7.9%). All isolates were phenotypically susceptible to penicillin, ampicillin, cefotaxime, and vancomycin, whereas 131(93.5%), 132(94.2%), and 121(86.4%) were resistant to erythromycin, clindamycin, and tetracycline, respectively. Our study highlights high genotypic diversity and high prevalence of macrolide resistance of S. pyogenes among clinical isolates circulating in China.
Collapse
Affiliation(s)
- Binghuai Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Yujie Fang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Yanyan Fan
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship HospitalBeijing, China
| | - Xingchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Junrui Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, China
| | - Ji Zeng
- Department of Laboratory Medicine, Wuhan Pu Ai Hospital of Huazhong, University of Science and TechnologyWuhan, China
| | - Yi Li
- Department of Laboratory Medicine, Henan Provincial People's HospitalZhengzhou, China
| | - Zhijun Zhang
- Department of Laboratory Medicine, Tai'an City Central Hospital (Tai'an)Shandong, China
| | - Lei Huang
- Department of Laboratory Medicine, First Hospital, Peking UniversityBeijing, China
| | - Hongxia Li
- Department of Laboratory Medicine, Chengdu First People's Hospital (Chengdu)Sichuan, China
| | - Dong Li
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Fengxia Zhu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Yanchao Cui
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| |
Collapse
|
8
|
Amoruso I, Bertoncello C, Caravello G, Giaccone V, Baldovin T. Child toy safety: An interdisciplinary approach to unravel the microbiological hazard posed by soap bubbles. J Public Health Policy 2015; 36:390-407. [PMID: 26424202 DOI: 10.1057/jphp.2015.32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 2012 some children developed sepsis after playing together with a soap bubble toy. Microbiological testing revealed heavy contamination of the soap solution, which reasonably represented the vehicle of infection. We investigated the issue with a multidisciplinary approach: review of toy safety legislation; microbiological testing of additional samples; query of the RAPEX database for non-compliant soap bubbles; identification of major manufacturing districts. Microbiological contamination of industrial soap bubbles was widespread. Sixty-three notifications of batches contaminated by environmental microorganisms and opportunistic pathogens had been reported. The Chinese had a virtual monopoly of the soap bubble market. We identified two main manufacturing districts in Guangdong Province, both notable for degradation of their water resources. The use of untreated water for the industrial production of soap bubbles may explain the bacterial contamination. Existing legislation provides an unsatisfactory approach for managing microbiological hazards in sensitive toy categories and for identifying responsible parties in import and export of the products.
Collapse
Affiliation(s)
- Irene Amoruso
- Department of Molecular Medicine, University of Padua, Hygiene Section, Via Loredan 18, 35131 Padova, Italy
| | - Chiara Bertoncello
- Department of Molecular Medicine, University of Padua, Hygiene Section, Via Loredan 18, 35131 Padova, Italy
| | - Gianumberto Caravello
- Department of Molecular Medicine, University of Padua, Hygiene Section, Via Loredan 18, 35131 Padova, Italy
| | - Valerio Giaccone
- Department of Animal Medicine, Health and Productions, University of Padua, Padova, Italy
| | - Tatjana Baldovin
- Department of Molecular Medicine, University of Padua, Hygiene Section, Via Loredan 18, 35131 Padova, Italy
| |
Collapse
|
9
|
Use of MALDI-TOF mass spectrometry for rapid identification of group B Streptococcus on chromID Strepto B agar. Int J Infect Dis 2014; 27:44-8. [PMID: 25220051 DOI: 10.1016/j.ijid.2014.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/11/2014] [Accepted: 06/29/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a known leading causative pathogen of neonatal infection. Efficient screening and identification of women colonized with GBS is important for the prevention of invasive neonatal infections. METHODS A total of 628 vaginal/rectal specimens were collected from pregnant women in Beijing, China. The chromogenic medium chromID Strepto B agar (STRB) was evaluated for its reliability in screening GBS from the vaginal/rectal swabs; results were compared to those of blood agar plates (BAP). Furthermore, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used to confirm the colonies suspected of being GBS on STRB. RESULTS STRB showed excellent performance for GBS detection and outperformed BAP due to its higher sensitivity. Furthermore, MALDI-TOF MS could reliably differentiate the putative GBS isolates on STRB. CONCLUSIONS This study demonstrated that STRB combined with MALDI-TOF MS is a fast, sensitive, and accurate method for the identification of GBS-colonized pregnant women.
Collapse
|