1
|
Lopez NV, Ruiz C. Resistance to carbapenems in the urban soil isolate Cupriavidus taiwanensis S2-1-W is associated with OXA-1206, a newly discovered carbapenemase. J Appl Microbiol 2024; 135:lxae265. [PMID: 39419775 DOI: 10.1093/jambio/lxae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
AIMS Cupriavidus isolates are found in environmental and clinical samples and are often resistant to carbapenems, which are last-resort antibiotics. However, their carbapenem-resistance molecular mechanisms remain unknown. This study aimed to (i) characterize and sequence the carbapenem-resistant soil isolate Cupriavidus taiwanensis S2-1-W to uncover its antibiotic resistance determinants; and (ii) clone and characterize a putative novel carbapenemase gene identified in this isolate. METHODS AND RESULTS Antibiotic susceptibility testing of C. taiwanensis S2-1-W revealed that it was resistant to most carbapenems, other β-lactams, and aminoglycosides tested. Genome sequencing of this isolate revealed a complex chromosomal resistome that included multidrug efflux pump genes, one aminoglycoside transferase gene, and three β-lactamase genes. Among them, we identified a novel putative class D β-lactamase gene (blaOXA-1206) that is highly conserved among other sequenced C. taiwanensis isolates. Cloning and characterization of blaOXA-1206 confirmed that it encodes for a newly discovered carbapenemase (OXA-1206) that confers resistance to carbapenems and other β-lactams. CONCLUSION Carbapenem-resistance in C. taiwanensis S2-1-W is associated with a newly discovered carbapenemase, OXA-1206.
Collapse
Affiliation(s)
- Nicolas V Lopez
- Department of Biology, California State University Northridge, Northridge, CA 91330, United States
| | - Cristian Ruiz
- Department of Biology, California State University Northridge, Northridge, CA 91330, United States
| |
Collapse
|
2
|
Stubberfield E, AbuOun M, Card RM, Welchman D, Anjum MF. Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Vet Microbiol 2024; 290:109992. [PMID: 38306769 DOI: 10.1016/j.vetmic.2024.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of blaOXA in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.
Collapse
Affiliation(s)
- Emma Stubberfield
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Manal AbuOun
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK.
| | - Roderick M Card
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - David Welchman
- Animal and Plant Health Agency Winchester, Itchen Abbas, Winchester SO21 1BX, UK
| | - Muna F Anjum
- Animal and Plant Health Agency Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
3
|
Kulathunga DGRS, Harding JCS, Rubin JE. Antimicrobial susceptibility of western Canadian Brachyspira isolates: Development and standardization of an agar dilution susceptibility test method. PLoS One 2023; 18:e0286594. [PMID: 37390052 PMCID: PMC10313021 DOI: 10.1371/journal.pone.0286594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/19/2023] [Indexed: 07/02/2023] Open
Abstract
The re-emergence of Brachyspira-associated disease in pigs since the late 2000s has illuminated some of the diagnostic challenges associated with this genus; notably, the lack of standardized antimicrobial susceptibility testing (AST) methods and interpretive criteria. Consequently, laboratories have relied heavily on highly variable in-house developed methods. There are currently no published investigations describing the antimicrobial susceptibility of Brachyspira isolates collected from pigs in Canada. The first objective of this study was therefore to develop a standardized protocol for conducting agar dilution susceptibility testing of Brachyspira spp., including determining the optimal standardized inoculum density, a key test variable that impacts test performance. The second objective was to determine the susceptibility of a collection of western Canadian Brachyspira isolates using the standardized methodology. After assessing multiple media, an agar dilution test was standardized in terms of starting inoculum (1-2 × 108 CFU/ml), incubation temperature and time, and assessed for repeatability. The antimicrobial susceptibility of a collection of clinical porcine Brachyspira isolates (n = 87) collected between 2009-2016 was then determined. This method was highly reproducible; repeat susceptibility testing yielded identical results 92% of the time. Although most of the isolates had very low MICs to the commonly used antimicrobials to treat Brachyspira-associated infections, several isolates with elevated MICs (>32 μg/ml) for tiamulin, valnemulin, tylosin, tylvalosin, and lincomycin were identified. Overall, this study underscores the importance of establishing CLSI approved clinical breakpoints for Brachyspira to facilitate the interpretation of test results and support the evidence-based selection of antimicrobials in swine industry.
Collapse
Affiliation(s)
- D. G. R. S. Kulathunga
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C. S. Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
The Spirochete Brachyspira pilosicoli, Enteric Pathogen of Animals and Humans. Clin Microbiol Rev 2017; 31:31/1/e00087-17. [PMID: 29187397 DOI: 10.1128/cmr.00087-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Brachyspira pilosicoli is a slow-growing anaerobic spirochete that colonizes the large intestine. Colonization occurs commonly in pigs and adult chickens, causing colitis/typhlitis, diarrhea, poor growth rates, and reduced production. Colonization of humans also is common in some populations (individuals living in village and peri-urban settings in developing countries, recent immigrants from developing countries, homosexual males, and HIV-positive patients), but the spirochete rarely is investigated as a potential human enteric pathogen. In part this is due to its slow growth and specialized growth requirements, meaning that it is not detectable in human fecal samples using routine diagnostic methods. Nevertheless, it has been identified histologically attached to the colon and rectum in patients with conditions such as chronic diarrhea, rectal bleeding, and/or nonspecific abdominal discomfort, and one survey of Australian Aboriginal children showed that colonization was significantly associated with failure to thrive. B. pilosicoli has been detected in the bloodstream of elderly patients or individuals with chronic conditions such as alcoholism and malignancies. This review describes the spirochete and associated diseases. It aims to encourage clinicians and clinical microbiologists to consider B. pilosicoli in their differential diagnoses and to develop and use appropriate diagnostic protocols to identify the spirochete in clinical specimens.
Collapse
|
5
|
Kulathunga D, Rubin J. A review of the current state of antimicrobial susceptibility test methods for Brachyspira. Can J Microbiol 2017; 63:465-474. [DOI: 10.1139/cjm-2016-0756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The re-emergence of swine dysentery (Brachyspira-associated muco-haemorrhagic colitis) since the late 2000s has illuminated diagnostic challenges associated with this genus. The methods used to detect, identify, and characterize Brachyspira from clinical samples have not been standardized, and laboratories frequently rely heavily on in-house techniques. Particularly concerning is the lack of standardized methods for determining and interpreting the antimicrobial susceptibility of Brachyspira spp. The integration of laboratory data into a treatment plan is a critical component of prudent antimicrobial usage. Therefore, the lack of standardized methods is an important limitation to the evidence-based use of antimicrobials. This review will focus on describing the methodological limitations and inconsistencies between current susceptibility testing schemes employed for Brachyspira, provide an overview of what we do know about the susceptibility of these organisms, and suggest future directions to improve and standardize diagnostic strategies.
Collapse
Affiliation(s)
- D.G.R.S. Kulathunga
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - J.E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
6
|
Le Roy CI, Mappley LJ, La Ragione RM, Woodward MJ, Claus SP. Brachyspira pilosicoli-induced avian intestinal spirochaetosis. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:28853. [PMID: 26679774 PMCID: PMC4683989 DOI: 10.3402/mehd.v26.28853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 11/22/2022]
Abstract
Avian intestinal spirochaetosis (AIS) is a common disease occurring in poultry that can be caused by Brachyspira pilosicoli, a Gram-negative bacterium of the order Spirochaetes. During AIS, this opportunistic pathogen colonises the lower gastrointestinal (GI) tract of poultry (principally, the ileum, caeca, and colon), which can cause symptoms such as diarrhoea, reduced growth rate, and reduced egg production and quality. Due to the large increase of bacterial resistance to antibiotic treatment, the European Union banned in 2006 the prophylactic use of antibiotics as growth promoters in livestock. Consequently, the number of outbreaks of AIS has dramatically increased in the UK resulting in significant economic losses. This review summarises the current knowledge about AIS infection caused by B. pilosicoli and discusses various treatments and prevention strategies to control AIS.
Collapse
Affiliation(s)
- Caroline I Le Roy
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Luke J Mappley
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, UK.,Department of Bacteriology, APHA, Weybridge, UK
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK;
| |
Collapse
|
7
|
La T, Neo E, Phillips ND, Hampson DJ. Genes encoding ten newly designated OXA-63 group class D β-lactamases identified in strains of the pathogenic intestinal spirochaete Brachyspira pilosicoli. J Med Microbiol 2015; 64:1425-1435. [PMID: 26315325 DOI: 10.1099/jmm.0.000162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic spirochaete Brachyspira pilosicoli colonizes the large intestine of birds and mammals, including human beings, and may induce colitis and diarrhoea. B. pilosicoli has a recombinant population structure, and strains show extensive genomic rearrangements and different genome sizes. The resident chromosomal gene blaOXA-63 in B. pilosicoli encodes OXA-63, a narrow-spectrum group IV class D β-lactamase. Genes encoding four OXA-63 variants have been described in B. pilosicoli, and the current study was designed to investigate the distribution and diversity of such genes and proteins in strains of B. pilosicoli. PCRs were used to amplify blaOXA-63 group genes from 118 B. pilosicoli strains from different host species and geographical origins. One primer set was targeted externally to the gene and two sets were designed to amplify internal components. A total of 16 strains (13.6%) showed no evidence of possessing blaOXA-63 group genes, 44 (37.3%) had a full gene, 27 (22.9%) apparently had a gene but it failed to amplify with external primers, and 29 (24.6%) had only one or other of the two internal components amplified. Based on translation of the nucleotide sequences, ten new variants of the β-lactamase, designated OXA-470 through OXA-479, were identified amongst the 44 strains that had the full gene amplified. The 16 strains lacking blaOXA-63 group genes had a region of 1674 bp missing around where the gene was expected to reside. Despite apparent genomic rearrangements occurring in B. pilosicoli, positive selection pressures for conservation of blaOXA-63 group genes and OXA proteins appear to have been exerted.
Collapse
Affiliation(s)
- Tom La
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Eugene Neo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Nyree D Phillips
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J Hampson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
8
|
Jansson DS, Pringle M. Antimicrobial susceptibility ofBrachyspiraspp. isolated from commercial laying hens and free-living wild mallards (Anas platyrhynchos). Avian Pathol 2011; 40:387-93. [DOI: 10.1080/03079457.2011.588197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Knapp CW, Zhang W, Sturm BSM, Graham DW. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1506-12. [PMID: 20053492 DOI: 10.1016/j.envpol.2009.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/15/2009] [Accepted: 12/14/2009] [Indexed: 05/06/2023]
Abstract
The attenuation and fate of erythromycin-resistance-methylase (erm) and extended-spectrum beta-lactamse (bla) genes were quantified over time in aquatic systems by adding 20-L swine waste to 11,300-L outdoor mesocosms that simulated receiving water conditions below intensive agricultural operations. The units were prepared with two different light-exposure scenarios and included artificial substrates to assess gene movement into biofilms. Of eleven genes tested, only erm(B), erm(F), bla(SHV) and bla(TEM) were found in sufficient quantity for monitoring. The genes disappeared rapidly from the water column and first-order water-column disappearance coefficients were calculated. However, detected gene levels became elevated in the biofilms within 2 days, but then disappeared over time. Differences were observed between sunlight and dark treatments and among individual genes, suggesting that ecological and gene-specific factors play roles in the fate of these genes after release into the environment. Ultimately, this information will aid in generating better predictive models for gene fate.
Collapse
Affiliation(s)
- Charles W Knapp
- David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, 50 Richmond Street, Glasgow, G1 1XN, UK.
| | | | | | | |
Collapse
|
10
|
Movahedi A, Hampson DJ. Evaluation of recombinant Brachyspira pilosicoli oligopeptide-binding proteins as vaccine candidates in a mouse model of intestinal spirochaetosis. J Med Microbiol 2009; 59:353-359. [PMID: 19959628 DOI: 10.1099/jmm.0.015842-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The anaerobic intestinal spirochaete Brachyspira pilosicoli colonizes the large intestine of humans, and various species of animals and birds, in which it may induce a mild colitis and diarrhoea. The aim of the current study was to evaluate the use of putative oligopeptide-binding proteins of B. pilosicoli as vaccine components. A partial genome sequence of B. pilosicoli porcine strain 95/1000 was subjected to bioinformatics analysis, and six genes predicted to encode oligopeptide-binding proteins were selected. Following a PCR-based distribution study of the genes across different strains of the spirochaete, they were amplified from B. pilosicoli human strain WesB and cloned in Escherichia coli. The recombinant histidine-tagged proteins were purified and subjected to in vitro and in vivo immunogenicity analysis. Recombinant products (P-1 and P-3) from two genes that were immunogenic and recognized by sera from pigs that had recovered from B. pilosicoli infections were tested in a mouse model of intestinal spirochaetosis. For each recombinant protein, groups of 12 C3H/HeJ mice were vaccinated subcutaneously with 100 microg protein emulsified in Freund's incomplete adjuvant, twice with a 2 week interval. Two weeks later the vaccinated and non-vaccinated control animals were challenged orally with B. pilosicoli strain WesB. Both proteins induced systemic and local colonic IgG antibody responses, and, following experimental infection, the cumulative number of colonization days was significantly (P<0.001) less in both groups of vaccinated mice compared to the control mice. There were significantly (P=0.012) fewer mice colonized in the group vaccinated with P-1 than in the non-vaccinated control group. The results suggest that oligopeptide-binding proteins may have potential for use as components of vaccines for B. pilosicoli.
Collapse
Affiliation(s)
- Abdolreza Movahedi
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - David J Hampson
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
11
|
Abstract
Class D beta-lactamase-mediated resistance to beta-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D beta-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of beta-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D beta-lactamase genes are mostly associated to class 1 integron or to insertion sequences.
Collapse
|