1
|
Cassona CP, Ramalhete S, Amara K, Candela T, Kansau I, Denève-Larrazet C, Janoir-Jouveshomme C, Mota LJ, Dupuy B, Serrano M, Henriques AO. Spores of Clostridioides difficile are toxin delivery vehicles. Commun Biol 2024; 7:839. [PMID: 38987278 PMCID: PMC11237016 DOI: 10.1038/s42003-024-06521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Clostridioides difficile causes a wide range of intestinal diseases through the action of two main cytotoxins, TcdA and TcdB. Ingested spores germinate in the intestine establishing a population of cells that produce toxins and spores. The pathogenicity locus, PaLoc, comprises several genes, including those coding for TcdA/B, for the holin-like TcdE protein, and for TcdR, an auto-regulatory RNA polymerase sigma factor essential for tcdA/B and tcdE expression. Here we show that tcdR, tcdA, tcdB and tcdE are expressed in a fraction of the sporulating cells, in either the whole sporangium or in the forespore. The whole sporangium pattern is due to protracted expression initiated in vegetative cells by σD, which primes the TcdR auto-regulatory loop. In contrast, the forespore-specific regulatory proteins σG and SpoVT control TcdR production and tcdA/tcdB and tcdE expression in this cell. We detected TcdA at the spore surface, and we show that wild type and ΔtcdA or ΔtcdB spores but not ΔtcdR or ΔtcdA/ΔtcdB spores are cytopathic against HT29 and Vero cells, indicating that spores may serve as toxin-delivery vehicles. Since the addition of TcdA and TcdB enhance binding of spores to epithelial cells, this effect may occur independently of toxin production by vegetative cells.
Collapse
Affiliation(s)
- Carolina P Cassona
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Khira Amara
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Imad Kansau
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | | | | | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, NOVA University Lisbon, Oeiras, Portugal.
| |
Collapse
|
2
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
3
|
BELITSKY BORISR. Histidine kinase-mediated cross-regulation of the vancomycin-resistance operon in Clostridioides difficile. Mol Microbiol 2024; 121:1182-1199. [PMID: 38690761 PMCID: PMC11176017 DOI: 10.1111/mmi.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
4
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, Scharer CD, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. Infect Immun 2024; 92:e0046123. [PMID: 38345371 PMCID: PMC10929453 DOI: 10.1128/iai.00461-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
Affiliation(s)
- Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Hunault L, Auria E, England P, Deschamps J, Briandet R, Kremer V, Iannascoli B, Vidal-Maison L, Guo C, Macdonald L, Péchiné S, Denève-Larrazet C, Dupuy B, Gorochov G, Bruhns P, Sterlin D. Anti-S-layer monoclonal antibodies impact Clostridioides difficile physiology. Gut Microbes 2024; 16:2301147. [PMID: 38289292 PMCID: PMC10829821 DOI: 10.1080/19490976.2023.2301147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Clostridioides difficile (C. difficile), a gram-positive anaerobic and spore-forming bacterium, is the leading cause of nosocomial antibiotic-associated diarrhea in adults which is characterized by high levels of recurrence and mortality. Surface (S)-layer Protein A (SlpA), the most abundantly expressed protein on the bacterial surface, plays a crucial role in the early stages of infection although the nature of its involvement in C. difficile physiology is yet to be fully understood. Anti-S-layer antibodies have been identified in the sera of convalescent patients and have been correlated with improved outcomes of C. difficile infection (CDI). However, the precise mechanisms by which anti-S-layer antibodies confer protection to the host remain unknown. In this study, we report the first monoclonal antibodies (mAbs) targeting the S-layer of reference strain 630. Characterization of these mAbs unraveled important roles for the S-layer protein in growth, toxin secretion, and biofilm formation by C. difficile, with differential and even opposite effects of various anti-SlpA mAbs on these functions. Moreover, one anti-SlpA mAb impaired C. difficile growth and conferred sensitivity to lysozyme-induced lysis. The results of this study show that anti-S-layer antibody responses can be beneficial or harmful for the course of CDI and provide important insights for the development of adequate S-layer-targeting therapeutics.
Collapse
Affiliation(s)
- Lise Hunault
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Collège doctoral, Sorbonne Université, Paris, France
| | - Emile Auria
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Patrick England
- Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Plateforme de Biophysique Moléculaire, Paris, France
| | - Julien Deschamps
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Romain Briandet
- Institut Micalis, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Vanessa Kremer
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Inserm, Châtenay-Malabry, France
| | - Bruno Iannascoli
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Léo Vidal-Maison
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | | | | | - Séverine Péchiné
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Cécile Denève-Larrazet
- Equipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Orsay, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Paris, France
| | - Guy Gorochov
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| | - Pierre Bruhns
- Antibodies in Therapy and Pathology, Institut Pasteur, Université Paris-Cité, Inserm UMR1222, Paris, France
| | - Delphine Sterlin
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, Inserm, CNRS, Paris, France
| |
Collapse
|
6
|
Wells KM, Ciftci Y, Peddinti BST, Ghiladi RA, Vediyappan G, Spontak RJ, Govind R. Preventing the spread of life-threatening gastrointestinal microbes on the surface of a continuously self-disinfecting block polymer. J Colloid Interface Sci 2023; 652:718-726. [PMID: 37611471 DOI: 10.1016/j.jcis.2023.08.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Highly persistent, drug-resistant and transmissible healthcare pathogens such as Clostridioides difficile (C. difficile) and Candida auris (C. auris) are responsible for causing antibiotic-associated fatal diarrhea and invasive candidiasis, respectively. In this study, we demonstrate that these potentially lethal gastrointestinal microbes can be rapidly inactivated on the solid surface of a self-disinfecting anionic block polymer that inherently generates a water surface layer that is highly acidic (pH < 1) upon hydration. Due to thermodynamic incompatibility between its chemical sequences, the polymer spontaneously self-organizes into a nanostructure that enables proton migration from the interior of a film to the surface via contiguous nanoscale hydrophilic channels, as discerned here by scanning electron and atomic force microscopies, as well as X-ray photoelectron spectroscopy. Here, we report that two strains of C. difficile in the vegetative state and two species of Candida, Candida albicans (C. albicans) and C. auris, are, in most cases, inactivated to the limit of minimum detection. Corresponding electron and optical microscopy images reveal that, upon exposure to the hydrated polymer, the outer microbial membranes display evidence of damage and intracellular material is expelled. Combined with our previous studies of rapid bacterial and viral inactivation, these antimicrobial results are highly encouraging and, if translatable to clinical conditions in the form of self-standing polymer films or coatings, are expected to benefit the welfare of patients in healthcare facilities by continuously preventing the spread of such potentially dangerous microbes.
Collapse
Affiliation(s)
- Kacie M Wells
- Fiber & Polymer Science Program, North Carolina State University, Raleigh, NC 27695, United States
| | - Yusuf Ciftci
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Bharadwaja S T Peddinti
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | | | - Richard J Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
7
|
Wetzel D, Carter ZA, Monteiro MP, Edwards AN, McBride SM. The pH-responsive SmrR-SmrT system modulates C. difficile antimicrobial resistance, spore formation, and toxin production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565354. [PMID: 37961610 PMCID: PMC10635087 DOI: 10.1101/2023.11.02.565354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT ) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance. IMPORTANCE C. difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Collapse
|
8
|
Marini E, Olivença C, Ramalhete S, Aguirre AM, Ingle P, Melo MN, Antunes W, Minton NP, Hernandez G, Cordeiro TN, Sorg JA, Serrano M, Henriques AO. A sporulation signature protease is required for assembly of the spore surface layers, germination and host colonization in Clostridioides difficile. PLoS Pathog 2023; 19:e1011741. [PMID: 37956166 PMCID: PMC10681294 DOI: 10.1371/journal.ppat.1011741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/27/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.
Collapse
Affiliation(s)
- Eleonora Marini
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Carmen Olivença
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Sara Ramalhete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Andrea Martinez Aguirre
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Patrick Ingle
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Wilson Antunes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Joseph A Sorg
- Texas A&M University, Department of Biology, College Station, Texas, United States of America
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República EAN, Oeiras, Portugal
| |
Collapse
|
9
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Rizvi A, Vargas-Cuebas G, Edwards AN, DiCandia MA, Carter ZA, Lee CD, Monteiro MP, McBride SM. Glycine fermentation by C. difficile promotes virulence and spore formation, and is induced by host cathelicidin. Infect Immun 2023; 91:e0031923. [PMID: 37754683 PMCID: PMC10580938 DOI: 10.1128/iai.00319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023] Open
Abstract
Clostridioides difficile is a leading cause of antibiotic-associated diarrheal disease. C. difficile colonization, growth, and toxin production in the intestine is strongly associated with its ability to use amino acids to generate energy, but little is known about the impact of specific amino acids on C. difficile pathogenesis. The amino acid glycine is enriched in the dysbiotic gut and is suspected to contribute to C. difficile infection. We hypothesized that the use of glycine as an energy source contributes to colonization of the intestine and pathogenesis of C. difficile. To test this hypothesis, we deleted the glycine reductase (GR) genes grdAB, rendering C. difficile unable to ferment glycine, and investigated the impact on growth and pathogenesis. Our data show that the grd pathway promotes growth, toxin production, and sporulation. Glycine fermentation also had a significant impact on toxin production and pathogenesis of C. difficile in the hamster model of disease. Furthermore, we determined that the grd locus is regulated by host cathelicidin (LL-37) and the cathelicidin-responsive regulator, ClnR, indicating that the host peptide signals to control glycine catabolism. The induction of glycine fermentation by LL-37 demonstrates a direct link between the host immune response and the bacterial reactions of toxin production and spore formation.
Collapse
Affiliation(s)
- Arshad Rizvi
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Germán Vargas-Cuebas
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Michael A. DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Zavier A. Carter
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Cheyenne D. Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Marcos P. Monteiro
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Wetzel D, Rizvi A, Edwards AN, McBride SM. The predicted acetoin dehydrogenase pathway represses sporulation of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551048. [PMID: 37546766 PMCID: PMC10402147 DOI: 10.1101/2023.07.28.551048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a major gastrointestinal pathogen that is transmitted as a dormant spore. As an intestinal pathogen, C. difficile must contend with variable environmental conditions, including fluctuations in pH and nutrient availability. Nutrition and pH both influence growth and spore formation, but how pH and nutrition jointly influence sporulation are not known. In this study, we investigated the dual impact of pH and pH-dependent metabolism on C. difficile sporulation. Specifically, we examined the impacts of pH and the metabolite acetoin on C. difficile growth and sporulation. We found that expression of the predicted acetoin dehydrogenase operon, acoRABCL , was pH-dependent and regulated by acetoin. Regulation of the C. difficile aco locus is distinct from other characterized systems and appears to involve a co-transcribed DeoR-family regulator rather than the sigma 54 -dependent activator. In addition, an acoA null mutant produced significantly more spores and initiated sporulation earlier than the parent strain. However, unlike other Firmicutes, growth and culture density of C. difficile was not increased by acetoin availability or disruption of the aco pathway. Together, these results indicate that acetoin, pH, and the aco pathway play important roles in nutritional repression of sporulation in C. difficile , but acetoin metabolism does not support cell growth as a stationary phase energy source. IMPORTANCE Clostridioides difficile, or C. diff , is an anaerobic bacterium that lives within the gut of many mammals and causes infectious diarrhea. C. difficile is able to survive outside of the gut and transmit to new hosts by forming dormant spores. It is known that the pH of the intestine and the nutrients available both affect the growth and sporulation of C. diffiicile, but the specific conditions that result in sporulation in the host are not clear. In this study, we investigated how pH and the metabolite acetoin affect the ability of C. difficile to grow, proliferate, and form spores. We found that a mutant lacking the predicted acetoin metabolism pathway form more spores, but their growth is not impacted. These results show that C. difficile uses acetoin differently than many other species and that acetoin has an important role as an environmental metabolite that influences spore formation.
Collapse
|
12
|
Edwards AN, McBride SM. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546640. [PMID: 37425791 PMCID: PMC10327067 DOI: 10.1101/2023.06.26.546640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to form a dormant spore is essential for the survival of the anaerobic, gastrointestinal pathogen Clostridioides difficile outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SrsR, impacts later stages of sporulation through an unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
13
|
Harrison MA, Farthing RJ, Allen N, Ahern LM, Birchall K, Bond M, Kaur H, Wren BW, Bergeron JRC, Dawson LF. Identification of novel p-cresol inhibitors that reduce Clostridioides difficile's ability to compete with species of the gut microbiome. Sci Rep 2023; 13:9492. [PMID: 37303029 PMCID: PMC10258198 DOI: 10.1038/s41598-023-32656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/30/2023] [Indexed: 06/13/2023] Open
Abstract
Treatment of Clostridioides difficile infection (CDI) is expensive and complex, with a high proportion of patients suffering infection relapse (20-35%), and some having multiple relapses. A healthy, unperturbed gut microbiome provides colonisation resistance against CDI through competition for nutrients and space. However, antibiotic consumption can disturb the gut microbiota (dysbiosis) resulting in the loss of colonisation resistance allowing C. difficile to colonise and establish infection. A unique feature of C. difficile is the production of high concentrations of the antimicrobial compound para-cresol, which provides the bacterium with a competitive advantage over other bacteria found in the gut. p-cresol is produced by the conversion of para-Hydroxyphenylacetic acid (p-HPA) by the HpdBCA enzyme complex. In this study, we have identified several promising inhibitors of HpdBCA decarboxylase, which reduce p-cresol production and render C. difficile less able to compete with a gut dwelling Escherichia coli strain. We demonstrate that the lead compound, 4-Hydroxyphenylacetonitrile, reduced p-cresol production by 99.0 ± 0.4%, whereas 4-Hydroxyphenylacetamide, a previously identified inhibitor of HpdBCA decarboxylase, only reduced p-cresol production by 54.9 ± 13.5%. To interpret efficacy of these first-generation inhibitors, we undertook molecular docking studies that predict the binding mode for these compounds. Notably, the predicted binding energy correlated well with the experimentally determined level of inhibition, providing a molecular basis for the differences in efficacy between the compounds. This study has identified promising p-cresol production inhibitors whose development could lead to beneficial therapeutics that help to restore colonisation resistance and therefore reduce the likelihood of CDI relapse.
Collapse
Affiliation(s)
- Mark A Harrison
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Rebecca J Farthing
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, WC2R 2LS, UK
| | - Nyasha Allen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Lucy M Ahern
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | | | - Michael Bond
- LifeArc, Lynton House, 7-12 Tavistock Square, London, WC1H 9LT, UK
| | - Harparkash Kaur
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, WC2R 2LS, UK
| | - Lisa F Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| |
Collapse
|
14
|
Yang Z, Qin J, Zhao L, Chen T, Huang Q, Jian Y, Zhao Q, Yang S, Li Q, Liu Q, Otto M, Li M. Host Sorbitol and Bacterial Sorbitol Utilization Promote Clostridioides difficile Infection in Inflammatory Bowel Disease. Gastroenterology 2023; 164:1189-1201.e13. [PMID: 36898551 PMCID: PMC10200761 DOI: 10.1053/j.gastro.2023.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is a widespread gastrointestinal inflammatory disorder with globally increasing incidence. Clostridioides difficile infection (CDI) often occurs in patients with intestinal dysbiosis, such as after antibiotic therapy. Patients with IBD have increased incidence of CDI and the clinical outcome of IBD is reportedly worsened by CDI. However, the underlying reasons remain poorly understood. METHODS We performed a retrospective single-center and a prospective multicenter analysis of CDI in patients with IBD, including genetic typing of C difficile isolates. Furthermore, we performed a CDI mouse model to analyze the role of the sorbitol metabolization locus that we found distinguished the main IBD- and non-IBD-associated sequence types (STs). Moreover, we analyzed sorbitol concentration in the feces of patients with IBD and healthy individuals. RESULTS We detected a significant association of specific lineages with IBD, particularly increased abundance of ST54. We found that in contrast to the otherwise clinically predominant ST81, ST54 harbors a sorbitol metabolization locus and was able to metabolize sorbitol in vitro and in vivo. Notably, in the mouse model, ST54 pathogenesis was dependent on intestinal inflammation-induced conditions and the presence of sorbitol. Furthermore, we detected significantly increased sorbitol concentrations in the feces of patients with active IBD vs patients in remission or healthy controls. CONCLUSIONS Sorbitol and sorbitol utilization in the infecting C difficile strain play major roles for the pathogenesis and epidemiology of CDI in patients with IBD. CDI in patients with IBD may thus be avoided or improved by elimination of dietary sorbitol or suppression of host-derived sorbitol production.
Collapse
Affiliation(s)
- Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Huang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhao
- Department of Laboratory Medicine, Qingdao University Medicine College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Sheng Yang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, Maryland.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
DiCandia MA, Edwards AN, Lee CD, Monteiro MP, Cuebas GNV, Bagchi P, McBride SM. A Conserved Switch Controls Virulence, Sporulation, and Motility in C. difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534590. [PMID: 37034656 PMCID: PMC10081167 DOI: 10.1101/2023.03.28.534590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spore formation is required for environmental survival and transmission of the human enteropathogenic Clostridioides difficile . In all bacterial spore formers, sporulation is regulated through activation of the master response regulator, Spo0A. However, the factors and mechanisms that directly regulate C. difficile Spo0A activity are not defined. In the well-studied Bacillus species, Spo0A is directly inactivated by Spo0E, a small phosphatase. To understand Spo0E function in C. difficile , we created a null mutation of the spo0E ortholog and assessed sporulation and physiology. The spo0E mutant produced significantly more spores, demonstrating Spo0E represses C. difficile sporulation. Unexpectedly, the spo0E mutant also exhibited increased motility and toxin production, and enhanced virulence in animal infections. We uncovered that Spo0E interacts with both Spo0A and the toxin and motility regulator, RstA. Direct interactions between Spo0A, Spo0E, and RstA constitute a previously unknown molecular switch that coordinates sporulation with motility and toxin production. Reinvestigation of Spo0E function in B. subtilis revealed that Spo0E induced motility, demonstrating Spo0E regulation of motility and sporulation among divergent species. Further, we found that Spo0E orthologs are widespread among prokaryotes, suggesting that Spo0E performs conserved regulatory functions in diverse bacteria.
Collapse
|
16
|
Malet-Villemagne J, Yucheng L, Evanno L, Denis-Quanquin S, Hugonnet JE, Arthur M, Janoir C, Candela T. Polysaccharide II Surface Anchoring, the Achilles' Heel of Clostridioides difficile. Microbiol Spectr 2023; 11:e0422722. [PMID: 36815772 PMCID: PMC10100865 DOI: 10.1128/spectrum.04227-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Cell wall glycopolymers (CWPGs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. These polymers, pillars for proteins and S-layer, are essential for the bacterial surface setup, could be essential for growth, and, in pathogens, participate most often in virulence. CWGPs are covalently anchored to peptidoglycan by proteins that belong to the LytR-CpsA-PSr (LCP) family. This anchoring, important for growth, was reported as essential for some bacteria such as Bacillus subtilis, but the reason why CWGP anchoring is essential remains unknown. We studied LcpA and LcpB of Clostridioides difficile and showed that they have a redundant activity. To delete both lcp genes, we set up the first conditional-lethal mutant method in C. difficile and showed that polysaccharide II (PSII) anchoring at the bacterial surface is essential for C. difficile survival. In the conditional-lethal mutant, C. difficile morphology was impaired, suggesting that peptidoglycan synthesis was affected. Because Lcp proteins are transferring CWPGs from the C55-undecaprenyl phosphate (also needed in the peptidoglycan synthesis process), we assumed that there was competition between PSII and peptidoglycan synthesis pathways. We confirmed that UDP-MurNAc-pentapeptide precursor was accumulated, showing that peptidoglycan synthesis was blocked. Our results provide an explanation for the essentiality of PSII anchoring in C. difficile and suggest that the essentiality of the anchoring of CWPGs in other bacteria can also be explained by the blocking of peptidoglycan synthesis. To conclude, our results suggest that Lcps are potential new targets to combat C. difficile infection. IMPORTANCE Cell wall glycopolymers (CWGPs) in Gram-positive bacteria have been reported to be involved in several bacterial processes. CWGP anchoring to peptidoglycan is important for growth and virulence. We set up the first conditional-lethal mutant method in Clostridioides difficile to study LcpA and LcpB involved in the anchoring of CWPGs to peptidoglycan. This study offers new tools to reveal the role of essential genes in C. difficile. LcpA and LcpB activity was shown to be essential, suggesting that they are potential new targets to combat C. difficile infection. In this study, we also showed that there is competition between the polysaccharide II synthesis pathway and peptidoglycan synthesis that probably exists in other Gram-positive bacteria. A better understanding of these mechanisms allows us to define the Lcp proteins as a therapeutic target for potential design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Liang Yucheng
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Laurent Evanno
- Biomolécules: Conception, Isolement et Synthèse (BioCIS), Université Paris-Saclay, CNRS, Orsay, France
| | | | - Jean-Emmanuel Hugonnet
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Michel Arthur
- INSERM UMR-S 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Claire Janoir
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| |
Collapse
|
17
|
HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile. mBio 2023; 14:e0339722. [PMID: 36786594 PMCID: PMC10128005 DOI: 10.1128/mbio.03397-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
Collapse
|
18
|
Roseboom AM, Ducarmon QR, Hornung BVH, Harmanus C, Crobach MJT, Kuijper EJ, Vossen RHAM, Kloet SL, Smits WK. Carriage of three plasmids in a single human clinical isolate of Clostridioides difficile. Plasmid 2023; 125:102669. [PMID: 36572199 DOI: 10.1016/j.plasmid.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.
Collapse
Affiliation(s)
- Anna M Roseboom
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Quinten R Ducarmon
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Bastian V H Hornung
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Harmanus
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Monique J T Crobach
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Ed J Kuijper
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Susan L Kloet
- Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Wiep Klaas Smits
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
19
|
BELITSKY BORISR. VanG- and D-Ala-D-Ser-dependent peptidoglycan synthesis and vancomycin resistance in Clostridioides difficile. Mol Microbiol 2022; 118:526-540. [PMID: 36065735 PMCID: PMC9671823 DOI: 10.1111/mmi.14980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
Abstract
A Clostridioides difficile strain deficient in the ddl gene is unable to synthesize the dipeptide D-Ala-D-Ala, an essential component of peptidoglycan and the target of vancomycin. We isolated spontaneous suppressors of a ∆ddl mutation that allowed cell growth in the absence of D-Ala-D-Ala. The mutations caused constitutive or partly constitutive expression of the vancomycin-inducible vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The mutations mapped to the vanS or vanR genes, which regulate expression of the vanG operon. The constitutive level of vanG expression was about 10-fold above that obtained by vancomycin induction. The incorporation of D-Ala-D-Ser into peptidoglycan due to high expression of the vanG operon conferred only low-level resistance to vancomycin, but VanG was found to synthesize D-Ala-D-Ala in addition to D-Ala-D-Ser. However, the same, low resistance to vancomycin was also observed in cells completely unable to synthesize D-Ala-D-Ala and grown in the presence of D-Ala-D-Ser. D-Ala-D-Ala presence was required for efficient vancomycin induction of the vanG operon showing that vancomycin is not by itself able to activate VanS. D-Ala-D-Ser, similar to D-Ala-D-Ala, served as an anti-activator of DdlR, the positive regulator of the ddl gene, thereby coupling vanG and ddl expression.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
20
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Biwer P, Neumann-Schaal M, Henke P, Jahn D, Schulz S. Thiol Metabolism and Volatile Metabolome of Clostridioides difficile. Front Microbiol 2022; 13:864587. [PMID: 35783419 PMCID: PMC9243749 DOI: 10.3389/fmicb.2022.864587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Clostridioides difficile (previously Clostridium difficile) causes life-threatening gut infections. The central metabolism of the bacterium is strongly influencing toxin production and consequently the infection progress. In this context, the composition and potential origin of the volatile metabolome was investigated, showing a large number of sulfur-containing volatile metabolites. Gas chromatography/mass spectrometry (GC/MS)-based headspace analyses of growing C. difficile 630Δerm cultures identified 105 mainly sulfur-containing compounds responsible of the typical C. difficile odor. Major components were identified to be 2-methyl-1-propanol, 2-methyl-1-propanethiol, 2-methyl-1-butanethiol, 4-methyl-1-pentanethiol, and as well as their disulfides. Structurally identified were 64 sulfur containing volatiles. In order to determine their biosynthetic origin, the concentrations of the sulfur-containing amino acids methionine and cysteine were varied in the growth medium. The changes observed in the volatile metabolome profile indicated that cysteine plays an essential role in the formation of the sulfur-containing volatiles. We propose that disulfides are derived from cysteine via formation of cystathionine analogs, which lead to corresponding thiols. These thiols may then be oxidized to disulfides. Moreover, methionine may contribute to the formation of short-chain disulfides through integration of methanethiol into the disulfide biosynthesis. In summary, the causative agents of the typical C. difficile odor were identified and first hypotheses for their biosynthesis were proposed.
Collapse
Affiliation(s)
- Peter Biwer
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
| | - Petra Henke
- Department of Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, BRICS, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Stefan Schulz,
| |
Collapse
|
22
|
DiCandia MA, Edwards AN, Jones JB, Swaim GL, Mills BD, McBride SM. Identification of functional Spo0A residues critical for sporulation in Clostridioides difficile. J Mol Biol 2022; 434:167641. [PMID: 35597553 DOI: 10.1016/j.jmb.2022.167641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Clostridioides difficile is an anaerobic, Gram-positive pathogen that is responsible for C. difficile infection (CDI). To survive in the environment and spread to new hosts, C. difficile must form metabolically dormant spores. The formation of spores requires activation of the transcription factor Spo0A, which is the master regulator of sporulation in all endospore-forming bacteria. Though the sporulation initiation pathway has been delineated in the Bacilli, including the model spore-former Bacillus subtilis, the direct regulators of Spo0A in C. difficile remain undefined. C. difficile Spo0A shares highly conserved protein interaction regions with the B. subtilis sporulation proteins Spo0F and Spo0A, although many of the interacting factors present in B. subtilis are not encoded in C. difficile. To determine if comparable Spo0A residues are important for C. difficile sporulation initiation, site-directed mutagenesis was performed at conserved receiver domain residues and the effects on sporulation were examined. Mutation of residues important for homodimerization and interaction with positive and negative regulators of B. subtilis Spo0A and Spo0F impacted C. difficile Spo0A function. The data also demonstrated that mutation of many additional conserved residues altered C. difficile Spo0A activity, even when the corresponding Bacillus interacting proteins are not apparent in the C. difficile genome. Finally, the conserved aspartate residue at position 56 of C. difficile Spo0A was determined to be the phosphorylation site that is necessary for Spo0A activation. The finding that Spo0A interacting motifs maintain functionality suggests that C. difficile Spo0A interacts with yet unidentified proteins that regulate its activity and control spore formation.
Collapse
Affiliation(s)
- Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Joshua B Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Grace L Swaim
- Department of Neuroscience and Cell Biology, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Brooke D Mills
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA.
| |
Collapse
|
23
|
The WalRK Two-Component System Is Essential for Proper Cell Envelope Biogenesis in Clostridioides difficile. J Bacteriol 2022; 204:e0012122. [PMID: 35575581 PMCID: PMC9210968 DOI: 10.1128/jb.00121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WalR-WalK two-component regulatory system (TCS) is found in all Firmicutes, in which it regulates the expression of multiple genes required for remodeling the cell envelope during growth and division. Unlike most TCSs, WalRK is essential for viability, so it has attracted interest as a potential antibiotic target. In this study, we used overexpression of WalR and CRISPR interference to investigate the Wal system of Clostridioides difficile, a major cause of hospital-associated diarrhea in high-income countries. We confirmed that the wal operon is essential and identified morphological defects and cell lysis as the major terminal phenotypes of altered wal expression. We also used transcriptome sequencing (RNA-seq) to identify over 150 genes whose expression changes in response to WalR levels. This gene set is enriched in cell envelope genes and includes genes encoding several predicted PG hydrolases and proteins that could regulate PG hydrolase activity. A distinct feature of the C. difficile cell envelope is the presence of an S-layer, and we found that WalR affects expression of several genes which encode S-layer proteins. An unexpected finding was that some Wal-associated phenotypic defects were inverted in comparison to what has been reported for other Firmicutes. For example, downregulation of Wal signaling caused C. difficile cells to become longer rather than shorter, as in Bacillus subtilis. Likewise, downregulation of Wal rendered C. difficile more sensitive to vancomycin, whereas reduced Wal activity is linked to increased vancomycin resistance in Staphylococcus aureus. IMPORTANCE The WalRK two-component system (TCS) is essential for coordinating synthesis and turnover of peptidoglycan in Firmicutes. We investigated the WalRK TCS in Clostridioides difficile, an important bacterial pathogen with an atypical cell envelope. We confirmed that WalRK is essential and regulates cell envelope biogenesis, although several of the phenotypic changes we observed were opposite to what has been reported for other Firmicutes. We also identified over 150 genes whose expression is controlled either directly or indirectly by WalR. Overall, our findings provide a foundation for future investigations of an important regulatory system and potential antibiotic target in C. difficile.
Collapse
|
24
|
Abstract
The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a predicted histidine kinase, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional predicted orphan histidine kinases CD2492, CD1579, and CD1949, which are hypothesized to regulate Spo0A phosphorylation. Disruption of CD2492 also increased sporulation frequency, similarly to the CD1492 mutant and in contrast to a previous study. A CD1492 CD2492 mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of CD1579 variably increased sporulation frequency; however, knockdown of CD1949 expression did not influence sporulation. We provide evidence that CD1492, CD2492, and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the CD1492 or CD2492 histidine site-directed mutants or the wild-type CD1579 allele in a parent strain resulted in a dominant-negative hypersporulation phenotype. Altogether, at least three predicted histidine kinases, CD1492, CD2492, and CD1579 (herein, PtpA, PtpB and PtpC), repress C. difficile sporulation initiation by regulating activity of Spo0A. IMPORTANCE The formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two predicted histidine kinase proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another predicted histidine kinase protein, CD1579 (PtpC), also represses sporulation and present evidence that a fourth predicted histidine kinase protein, CD1949, does not impact sporulation. These results support the idea that C. difficile inhibits sporulation initiation through multiple phosphatases.
Collapse
|
25
|
Abstract
Bacterial small RNAs (sRNAs) contribute to a variety of regulatory mechanisms that modulate a wide range of pathways, including metabolism, virulence, and antibiotic resistance. We investigated the involvement of sRNAs in rifampicin resistance in the opportunistic pathogen Staphylococcus aureus. Using a competition assay with an sRNA mutant library, we identified 6S RNA as being required for protection against low concentrations of rifampicin, an RNA polymerase (RNAP) inhibitor. This effect applied to rifabutin and fidaxomicin, two other RNAP-targeting antibiotics. 6S RNA is highly conserved in bacteria, and its absence in two other major pathogens, Salmonella enterica and Clostridioides difficile, also impaired susceptibility to RNAP inhibitors. In S. aureus, 6S RNA is produced from an autonomous gene and accumulates in stationary phase. In contrast to what was reported for Escherichia coli, S. aureus 6S RNA does not appear to play a critical role in the transition from exponential to stationary phase but affects σB-regulated expression in prolonged stationary phase. Nevertheless, its protective effect against rifampicin is independent of alternative sigma factor σB activity. Our results suggest that 6S RNA helps maintain RNAP-σA integrity in S. aureus, which could in turn help bacteria withstand low concentrations of RNAP inhibitors.
Collapse
|
26
|
Michel AM, Borrero-de Acuña JM, Molinari G, Ünal CM, Will S, Derksen E, Barthels S, Bartram W, Schrader M, Rohde M, Zhang H, Hoffmann T, Neumann-Schaal M, Bremer E, Jahn D. Cellular adaptation of Clostridioides difficile to high salinity encompasses a compatible solute-responsive change in cell morphology. Environ Microbiol 2022; 24:1499-1517. [PMID: 35106888 DOI: 10.1111/1462-2920.15925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrheas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt- stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate (DMSP) restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically-identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of L-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Annika-Marisa Michel
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - José Manuel Borrero-de Acuña
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Universidad de Sevilla, Facultad de Biología, Departamento de Microbiología, Av. de la Reina Mercedes, n° 6, CP, 41012, Sevilla, Spain
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Can Murat Ünal
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine Will
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elisabeth Derksen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Barthels
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Wiebke Bartram
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michel Schrader
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Hao Zhang
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,School of Life Science and Technology, Changchun University of Science and Technology, No. 7186 Weixing Road, 130022, Changchun, China
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
27
|
Clostridioides difficile Phosphoproteomics Shows an Expansion of Phosphorylated Proteins in Stationary Growth Phase. mSphere 2022; 7:e0091121. [PMID: 34986318 PMCID: PMC8730811 DOI: 10.1128/msphere.00911-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation is a posttranslational modification that can affect both housekeeping functions and virulence characteristics in bacterial pathogens. In the Gram-positive enteropathogen Clostridioides difficile, the extent and nature of phosphorylation events are poorly characterized, though a protein kinase mutant strain demonstrates pleiotropic phenotypes. Here, we used an immobilized metal affinity chromatography strategy to characterize serine, threonine, and tyrosine phosphorylation in C. difficile. We find limited protein phosphorylation in the exponential growth phase but a sharp increase in the number of phosphopeptides after the onset of the stationary growth phase. Our approach identifies expected targets and phosphorylation sites among the more than 1,500 phosphosites, including the protein kinase PrkC, the anti-sigma-F factor antagonist (SpoIIAA), the anti-sigma-B factor antagonist (RsbV), and HPr kinase/phosphorylase (HprK). Analysis of high-confidence phosphosites shows that phosphorylation on serine residues is most common, followed by threonine and tyrosine phosphorylation. This work forms the basis for a further investigation into the contributions of individual kinases to the overall phosphoproteome of C. difficile and the role of phosphorylation in C. difficile physiology and pathogenesis. IMPORTANCE In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile. To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile.
Collapse
|
28
|
Edwards AN, Willams CL, Pareek N, McBride SM, Tamayo R. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile. mSphere 2021; 6:e0091921. [PMID: 34878288 PMCID: PMC8653836 DOI: 10.1128/msphere.00919-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/02/2022] Open
Abstract
The formation of dormant spores is essential for the anaerobic pathogen Clostridioides difficile to survive outside the host gastrointestinal tract. The regulatory pathways and environmental signals that initiate C. difficile spore formation within the host are not well understood. One second-messenger signaling molecule, cyclic diguanylate (c-di-GMP), modulates several physiological processes important for C. difficile pathogenesis and colonization, but the impact of c-di-GMP on sporulation is unknown. In this study, we investigated the contribution of c-di-GMP to C. difficile sporulation. The overexpression of a gene encoding a diguanylate cyclase, dccA, decreased the sporulation frequency and early sporulation gene transcription in both the epidemic R20291 and historical 630Δerm strains. The expression of a dccA allele encoding a catalytically inactive DccA that is unable to synthesize c-di-GMP no longer inhibited sporulation, indicating that the accumulation of intracellular c-di-GMP reduces C. difficile sporulation. A null mutation in dccA slightly increased sporulation in R20291 and slightly decreased sporulation in 630Δerm, suggesting that DccA contributes to the intracellular pool of c-di-GMP in a strain-dependent manner. However, these data were highly variable, underscoring the complex regulation involved in modulating intracellular c-di-GMP concentrations. Finally, the overexpression of dccA in known sporulation mutants revealed that c-di-GMP is likely signaling through an unidentified regulatory pathway to control early sporulation events in C. difficile. c-di-GMP-dependent regulation of C. difficile sporulation may represent an unexplored avenue of potential environmental and intracellular signaling that contributes to the complex regulation of sporulation initiation. IMPORTANCE Many bacterial organisms utilize the small signaling molecule cyclic diguanylate (c-di-GMP) to regulate important physiological processes, including motility, toxin production, biofilm formation, and colonization. c-di-GMP inhibits motility and toxin production and promotes biofilm formation and colonization in the anaerobic, gastrointestinal pathogen Clostridioides difficile. However, the impact of c-di-GMP on C. difficile spore formation, a critical step in this pathogen's life cycle, is unknown. Here, we demonstrate that c-di-GMP negatively impacts sporulation in two clinically relevant C. difficile strains, the epidemic strain R20291 and the historical strain 630Δerm. The pathway through which c-di-GMP controls sporulation was investigated, and our results suggest that c-di-GMP is likely signaling through an unidentified regulatory pathway to control C. difficile sporulation. This work implicates c-di-GMP metabolism as a mechanism to integrate environmental and intracellular cues through c-di-GMP levels to influence C. difficile sporulation.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Caitlin L. Willams
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nivedita Pareek
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina—Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Harrison MA, Kaur H, Wren BW, Dawson LF. Production of p-cresol by Decarboxylation of p-HPA by All Five Lineages of Clostridioides difficile Provides a Growth Advantage. Front Cell Infect Microbiol 2021; 11:757599. [PMID: 34778108 PMCID: PMC8588808 DOI: 10.3389/fcimb.2021.757599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea and is capable of causing severe symptoms, such as pseudomembranous colitis and toxic megacolon. An unusual feature of C. difficile is the distinctive production of high levels of the antimicrobial compound para-cresol. p-Cresol production provides C. difficile with a competitive colonization advantage over gut commensal species, in particular, Gram-negative species. p-Cresol is produced by the conversion of para-hydroxyphenylacetic acid (p-HPA) via the actions of HpdBCA decarboxylase coded by the hpdBCA operon. Host cells and certain bacterial species produce p-HPA; however, the effects of p-HPA on the viability of C. difficile and other gut microbiota are unknown. Here we show that representative strains from all five C. difficile clades are able to produce p-cresol by two distinct mechanisms: (i) via fermentation of p-tyrosine and (ii) via uptake and turnover of exogenous p-HPA. We observed strain-specific differences in p-cresol production, resulting from differential efficiency of p-tyrosine fermentation; representatives of clade 3 (CD305) and clade 5 (M120) produced the highest levels of p-cresol via tyrosine metabolism, whereas the toxin A-/B+ isolate from clade 4 (M68) produced the lowest level of p-cresol. All five lineages share at least 97.3% homology across the hpdBCA operon, responsible for decarboxylation of p-HPA to p-cresol, suggesting that the limiting step in p-cresol production may result from tyrosine to p-HPA conversion. We identified that elevated intracellular p-HPA, modulated indirectly via CodY, controls p-cresol production via inducing the expression of HpdBCA decarboxylase ubiquitously in C. difficile populations. Efficient turnover of p-HPA is advantageous to C. difficile as p-HPA has a deleterious effect on the growth of C. difficile and other representative Gram-negative gut bacteria, transduced potentially by the disruption of membrane permeability and release of intracellular phosphate. This study provides insights into the importance of HpdBCA decarboxylase in C. difficile pathogenesis, both in terms of p-cresol production and detoxification of p-HPA, highlighting its importance to cell survival and as a highly specific therapeutic target for the inhibition of p-cresol production across C. difficile species.
Collapse
Affiliation(s)
- Mark A. Harrison
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harparkash Kaur
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lisa F. Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021; 6:e0091921. [PMID: 34609164 PMCID: PMC8547418 DOI: 10.1128/msystems.00919-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Deborah A. Powers
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M. Garrett
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Kimberly A. Walker
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mary E. Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rita Tamayo
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
31
|
Antimicrobial resistance progression in the United Kingdom: A temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 2021; 70:102385. [PMID: 34048922 DOI: 10.1016/j.anaerobe.2021.102385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Clostridioides difficile (CD) is widely reported as one of the most prevalent multi-drug resistant (MDR) organisms. Assessment of temporally disparate isolate collections can give valuable epidemiological data to further the understanding of antimicrobial resistance progression. METHODS A collection of 75 CD isolates (1980-86) was characterised by PCR ribotyping, cell cytotoxicity assay and susceptibility testing with a panel of 16 antimicrobials and compared to a modern surveillance collection consisting of 416 UK isolates (2012-2016). Agar-incorporation was performed to ascertain susceptibility data for vancomycin, metronidazole, rifampicin, fidaxomicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, tigecycline, linezolid, ciprofloxacin, piperacillin/tazobactam, ceftriaxone, amoxicillin, tetracycline and erythromycin. Genomes were obtained using Illumina HiSeq3000 sequencing and assembled using CLC Genomics Workbench. Resistance genes were identified using the Comprehensive Antibiotic Research Database's Resistance Gene Identifier and ResFinder3.0. RESULTS Twenty-six known and one previously unobserved ribotype (RT) were detected. RT015 and RT020 dominated; 21.3% and 17.3%, respectively. Three moxifloxacin resistant (16-32 mg/L) RT027 isolates were recovered, pre-dating the earliest reports of this phenotype/genotype. Phenotypic resistance was observed to moxifloxacin (9.3% of isolates), ciprofloxacin (100%), erythromycin (17.3%), tetracycline (9.3%), linezolid and chloramphenicol (4.0%). Phenotypic comparisons with modern strains revealed increasing minimum inhibitory concentrations (MIC), with MIC50 elevations of one doubling-dilution for the majority of compounds, excluding clindamycin and imipenem. Moxifloxacin MIC90 comparisons revealed a two doubling-dilution increase between temporal isolate collections. Historical genomes revealed twenty different resistance determinants, including ermB (8.0% of isolates), tetM (9.3%), cfr (5.3%) and gyrA substitution Thr-82→Ile (9.3%). Seventeen isolates (22.7%) were resistant to ≥3 compounds (MDR), demonstrating ten different combinations. Intra-RT diversity was observed. CONCLUSIONS Antibiotic resistance in CD has increased since the early 1980s, across the majority of classes. Moxifloxacin resistance determinants may pre-date its introduction.
Collapse
|
32
|
Joseph RC, Kelley SQ, Kim NM, Sandoval NR. Metabolic Engineering and the Synthetic Biology Toolbox for
Clostridium. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
34
|
Brauer M, Lassek C, Hinze C, Hoyer J, Becher D, Jahn D, Sievers S, Riedel K. What's a Biofilm?-How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front Microbiol 2021; 12:682111. [PMID: 34177868 PMCID: PMC8225356 DOI: 10.3389/fmicb.2021.682111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
The anaerobic pathogen Clostridioides difficile is perfectly equipped to survive and persist inside the mammalian intestine. When facing unfavorable conditions C. difficile is able to form highly resistant endospores. Likewise, biofilms are currently discussed as form of persistence. Here a comprehensive proteomics approach was applied to investigate the molecular processes of C. difficile strain 630Δerm underlying biofilm formation. The comparison of the proteome from two different forms of biofilm-like growth, namely aggregate biofilms and colonies on agar plates, revealed major differences in the formation of cell surface proteins, as well as enzymes of its energy and stress metabolism. For instance, while the obtained data suggest that aggregate biofilm cells express both flagella, type IV pili and enzymes required for biosynthesis of cell-surface polysaccharides, the S-layer protein SlpA and most cell wall proteins (CWPs) encoded adjacent to SlpA were detected in significantly lower amounts in aggregate biofilm cells than in colony biofilms. Moreover, the obtained data suggested that aggregate biofilm cells are rather actively growing cells while colony biofilm cells most likely severely suffer from a lack of reductive equivalents what requires induction of the Wood-Ljungdahl pathway and C. difficile’s V-type ATPase to maintain cell homeostasis. In agreement with this, aggregate biofilm cells, in contrast to colony biofilm cells, neither induced toxin nor spore production. Finally, the data revealed that the sigma factor SigL/RpoN and its dependent regulators are noticeably induced in aggregate biofilms suggesting an important role of SigL/RpoN in aggregate biofilm formation.
Collapse
Affiliation(s)
- Madita Brauer
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Lassek
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juliane Hoyer
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department for Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susanne Sievers
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
36
|
Martins D, DiCandia MA, Mendes AL, Wetzel D, McBride SM, Henriques AO, Serrano M. CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile. Sci Rep 2021; 11:7887. [PMID: 33846410 PMCID: PMC8041843 DOI: 10.1038/s41598-021-86878-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50-60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.
Collapse
Affiliation(s)
- Diogo Martins
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Michael A DiCandia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Aristides L Mendes
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adriano O Henriques
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química E Biológica António Xavier, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
37
|
A Point Mutation in the Transcriptional Repressor PerR Results in a Constitutive Oxidative Stress Response in Clostridioides difficile 630Δ erm. mSphere 2021; 6:6/2/e00091-21. [PMID: 33658275 PMCID: PMC8546684 DOI: 10.1128/msphere.00091-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human pathogen Clostridioides difficile has evolved into the leading cause of nosocomial diarrhea. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Although C. difficile features an anaerobic lifestyle, we determined a remarkably high oxygen tolerance of the laboratory reference strain 630Δerm. A mutation of a single nucleotide (single nucleotide polymorphism [SNP]) in the DNA sequence (A to G) of the gene encoding the regulatory protein PerR results in an amino acid substitution (Thr to Ala) in one of the helices of the helix-turn-helix DNA binding domain of this transcriptional repressor in C. difficile 630Δerm. PerR is a sensor protein for hydrogen peroxide and controls the expression of genes involved in the oxidative stress response. We show that PerR of C. difficile 630Δerm has lost its ability to bind the promoter region of PerR-controlled genes. This results in a constitutive derepression of genes encoding oxidative stress proteins such as a rubrerythrin (rbr1) whose mRNA abundance under anaerobic conditions was increased by a factor of about 7 compared to its parental strain C. difficile 630. Rubrerythrin repression in strain 630Δerm could be restored by the introduction of PerR from strain 630. The permanent oxidative stress response of C. difficile 630Δerm observed here should be considered in physiological and pathophysiological investigations based on this widely used model strain. IMPORTANCE The intestinal pathogen Clostridioides difficile is one of the major challenges in medical facilities nowadays. In order to better combat the bacterium, detailed knowledge of its physiology is mandatory. C. difficile strain 630Δerm was generated in a laboratory from the patient-isolated strain C. difficile 630 and represents a reference strain for many researchers in the field, serving as the basis for the construction of insertional gene knockout mutants. In our work, we demonstrate that this strain is characterized by an uncontrolled oxidative stress response as a result of a single-base-pair substitution in the sequence of a transcriptional regulator. C. difficile researchers working with model strain 630Δerm should be aware of this permanent stress response.
Collapse
|
38
|
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin. Cells 2021; 10:cells10020372. [PMID: 33670309 PMCID: PMC7918085 DOI: 10.3390/cells10020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.
Collapse
|
39
|
Dawson LF, Peltier J, Hall CL, Harrison MA, Derakhshan M, Shaw HA, Fairweather NF, Wren BW. Extracellular DNA, cell surface proteins and c-di-GMP promote biofilm formation in Clostridioides difficile. Sci Rep 2021; 11:3244. [PMID: 33547340 PMCID: PMC7865049 DOI: 10.1038/s41598-020-78437-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Clostridioides difficile is the leading cause of nosocomial antibiotic-associated diarrhoea worldwide, yet there is little insight into intestinal tract colonisation and relapse. In many bacterial species, the secondary messenger cyclic-di-GMP mediates switching between planktonic phase, sessile growth and biofilm formation. We demonstrate that c-di-GMP promotes early biofilm formation in C. difficile and that four cell surface proteins contribute to biofilm formation, including two c-di-GMP regulated; CD2831 and CD3246, and two c-di-GMP-independent; CD3392 and CD0183. We demonstrate that C. difficile biofilms are composed of extracellular DNA (eDNA), cell surface and intracellular proteins, which form a protective matrix around C. difficile vegetative cells and spores, as shown by a protective effect against the antibiotic vancomycin. We demonstrate a positive correlation between biofilm biomass, sporulation frequency and eDNA abundance in all five C. difficile lineages. Strains 630 (RT012), CD305 (RT023) and M120 (RT078) contain significantly more eDNA in their biofilm matrix than strains R20291 (RT027) and M68 (RT017). DNase has a profound effect on biofilm integrity, resulting in complete disassembly of the biofilm matrix, inhibition of biofilm formation and reduced spore germination. The addition of exogenous DNase could be exploited in treatment of C. difficile infection and relapse, to improve antibiotic efficacy.
Collapse
Affiliation(s)
- Lisa F Dawson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Johann Peltier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Catherine L Hall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark A Harrison
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Maria Derakhshan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helen A Shaw
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- National Institute for Biological Standards and Control, Potters Bar, UK
| | - Neil F Fairweather
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
40
|
Hofmann JD, Biedendieck R, Michel AM, Schomburg D, Jahn D, Neumann-Schaal M. Influence of L-lactate and low glucose concentrations on the metabolism and the toxin formation of Clostridioides difficile. PLoS One 2021; 16:e0244988. [PMID: 33411772 PMCID: PMC7790285 DOI: 10.1371/journal.pone.0244988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.
Collapse
Affiliation(s)
- Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
41
|
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative Clostridium difficile impacts the host response. J Biol Chem 2020; 295:16785-16796. [PMID: 32978253 PMCID: PMC7864072 DOI: 10.1074/jbc.ra119.012442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile is an anaerobic and spore-forming bacterium responsible for 15-25% of postantibiotic diarrhea and 95% of pseudomembranous colitis. Peptidoglycan is a crucial element of the bacterial cell wall that is exposed to the host, making it an important target for the innate immune system. The C. difficile peptidoglycan is largely N-deacetylated on its glucosamine (93% of muropeptides) through the activity of enzymes known as N-deacetylases, and this N-deacetylation modulates host-pathogen interactions, such as resistance to the bacteriolytic activity of lysozyme, virulence, and host innate immune responses. C. difficile genome analysis showed that 12 genes potentially encode N-deacetylases; however, which of these N-deacetylases are involved in peptidoglycan N-deacetylation remains unknown. Here, we report the enzymes responsible for peptidoglycan N-deacetylation and their respective regulation. Through peptidoglycan analysis of several mutants, we found that the N-deacetylases PdaV and PgdA act in synergy. Together they are responsible for the high level of peptidoglycan N-deacetylation in C. difficile and the consequent resistance to lysozyme. We also characterized a third enzyme, PgdB, as a glucosamine N-deacetylase. However, its impact on N-deacetylation and lysozyme resistance is limited, and its physiological role remains to be dissected. Finally, given the influence of peptidoglycan N-deacetylation on host defense against pathogens, we investigated the virulence and colonization ability of the mutants. Unlike what has been shown in other pathogenic bacteria, a lack of N-deacetylation in C. difficile is not linked to a decrease in virulence.
Collapse
Affiliation(s)
- Héloise Coullon
- Université Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; INSERM, Équipe Avenir, Paris; CNRS, UMR 2001 "Microbiologie Intégrative et Moléculaire," Paris, France
| | - Richard Wheeler
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; INSERM, Équipe Avenir, Paris; CNRS, UMR 2001 "Microbiologie Intégrative et Moléculaire," Paris, France
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ivo G Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, Paris, France; INSERM, Équipe Avenir, Paris; CNRS, UMR 2001 "Microbiologie Intégrative et Moléculaire," Paris, France
| | - Thomas Candela
- Université Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
42
|
Oliveira Paiva AM, de Jong L, Friggen AH, Smits WK, Corver J. The C-Terminal Domain of Clostridioides difficile TcdC Is Exposed on the Bacterial Cell Surface. J Bacteriol 2020; 202:JB.00771-19. [PMID: 32868401 PMCID: PMC7585056 DOI: 10.1128/jb.00771-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/25/2020] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is an anaerobic Gram-positive bacterium that can produce the large clostridial toxins toxin A and toxin B, encoded within the pathogenicity locus (PaLoc). The PaLoc also encodes the sigma factor TcdR, which positively regulates toxin gene expression, and TcdC, which is a putative negative regulator of toxin expression. TcdC is proposed to be an anti-sigma factor; however, several studies failed to show an association between the tcdC genotype and toxin production. Consequently, the TcdC function is not yet fully understood. Previous studies have characterized TcdC as a membrane-associated protein with the ability to bind G-quadruplex structures. The binding to the DNA secondary structures is mediated through the oligonucleotide/oligosaccharide binding fold (OB-fold) domain present at the C terminus of the protein. This domain was previously also proposed to be responsible for the inhibitory effect on toxin gene expression, implicating a cytoplasmic localization of the OB-fold. In this study, we aimed to obtain topological information on the C terminus of TcdC and demonstrate that the C terminus of TcdC is located extracellularly. In addition, we show that the membrane association of TcdC is dependent on a membrane-proximal cysteine residue and that mutating this residue results in the release of TcdC from the bacterial cell. The extracellular location of TcdC is not compatible with the direct binding of the OB-fold domain to intracellular nucleic acid or protein targets and suggests a mechanism of action that is different from that of the characterized anti-sigma factors.IMPORTANCE The transcription of C. difficile toxins TcdA and TcdB is directed by the sigma factor TcdR. TcdC has been proposed to be an anti-sigma factor. The activity of TcdC has been mapped to its C terminus, and the N terminus serves as the membrane anchor. Acting as an anti-sigma factor requires a cytoplasmic localization of the C terminus of TcdC. Using cysteine accessibility analysis and a HiBiT-based system, we show that the TcdC C terminus is located extracellularly, which is incompatible with its role as anti-sigma factor. Furthermore, mutating a cysteine residue at position 51 resulted in the release of TcdC from the bacteria. The codon-optimized version of the HiBiT (HiBiTopt) extracellular detection system is a valuable tool for topology determination of membrane proteins, increasing the range of systems available to tackle important aspects of C. difficile development.
Collapse
Affiliation(s)
- Ana M Oliveira Paiva
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Leen de Jong
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke H Friggen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Microbial Cell Biology, Leiden, The Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:5104. [PMID: 33037214 PMCID: PMC7547075 DOI: 10.1038/s41467-020-18928-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Many intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization. Here, we identify mouse gut commensals that utilize mucus-derived monosaccharides within complex communities using single-cell stable isotope probing, Raman-activated cell sorting and mini-metagenomics. Sequencing of cell-sorted fractions reveals members of the underexplored family Muribaculaceae as major mucin monosaccharide foragers, followed by members of Lachnospiraceae, Rikenellaceae, and Bacteroidaceae families. Using this information, we assembled a five-member consortium of sialic acid and N-acetylglucosamine utilizers that impedes C. difficile's access to these mucosal sugars and impairs pathogen colonization in antibiotic-treated mice. Our findings underscore the value of targeted approaches to identify organisms utilizing key nutrients and to rationally design effective probiotic mixtures.
Collapse
Affiliation(s)
- Fátima C Pereira
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kenneth Wasmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Iva Cobankovic
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kang Soo Lee
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Barbara Sziranyi
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Cornelia Vesely
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - David Berry
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
The (p)ppGpp Synthetase RSH Mediates Stationary-Phase Onset and Antibiotic Stress Survival in Clostridioides difficile. J Bacteriol 2020; 202:JB.00377-20. [PMID: 32661079 DOI: 10.1128/jb.00377-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
The human pathogen Clostridioides difficile is increasingly tolerant of multiple antibiotics and causes infections with a high rate of recurrence, creating an urgent need for new preventative and therapeutic strategies. The stringent response, a universal bacterial response to extracellular stress, governs antibiotic survival and pathogenesis in diverse organisms but has not previously been characterized in C. difficile Here, we report that the C. difficile (p)ppGpp synthetase RSH is incapable of utilizing GTP or GMP as a substrate but readily synthesizes ppGpp from GDP. The enzyme also utilizes many structurally diverse metal cofactors for reaction catalysis and remains functionally stable at a wide range of environmental pHs. Transcription of rsh is stimulated by stationary-phase onset and by exposure to the antibiotics clindamycin and metronidazole. Chemical inhibition of RSH by the ppGpp analog relacin increases antibiotic susceptibility in epidemic C. difficile R20291, indicating that RSH inhibitors may be a viable strategy for drug development against C. difficile infection. Finally, transcriptional suppression of rsh also increases bacterial antibiotic susceptibility, suggesting that RSH contributes to C. difficile antibiotic tolerance and survival.IMPORTANCE Clostridioides difficile infection (CDI) is an urgent public health threat with a high recurrence rate, in part because the causative bacterium has a high rate of antibiotic survival. The (p)ppGpp-mediated bacterial stringent response plays a role in antibiotic tolerance in diverse pathogens and is a potential target for development of new antimicrobials because the enzymes that metabolize (p)ppGpp have no mammalian homologs. We report that stationary-phase onset and antibiotics induce expression of the clostridial ppGpp synthetase RSH and that both chemical inhibition and translational suppression of RSH increase C. difficile antibiotic susceptibility. This demonstrates that development of RSH inhibitors to serve as adjuvants to antibiotic therapy is a potential approach for the development of new strategies to combat CDI.
Collapse
|
45
|
Bilverstone TW, Garland M, Cave RJ, Kelly ML, Tholen M, Bouley DM, Kaye P, Minton NP, Bogyo M, Kuehne SA, Melnyk RA. The glucosyltransferase activity of C. difficile Toxin B is required for disease pathogenesis. PLoS Pathog 2020; 16:e1008852. [PMID: 32960931 PMCID: PMC7531778 DOI: 10.1371/journal.ppat.1008852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/02/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Enzymatic inactivation of Rho-family GTPases by the glucosyltransferase domain of Clostridioides difficile Toxin B (TcdB) gives rise to various pathogenic effects in cells that are classically thought to be responsible for the disease symptoms associated with C. difficile infection (CDI). Recent in vitro studies have shown that TcdB can, under certain circumstances, induce cellular toxicities that are independent of glucosyltransferase (GT) activity, calling into question the precise role of GT activity. Here, to establish the importance of GT activity in CDI disease pathogenesis, we generated the first described mutant strain of C. difficile producing glucosyltransferase-defective (GT-defective) toxin. Using allelic exchange (AE) technology, we first deleted tcdA in C. difficile 630Δerm and subsequently introduced a deactivating D270N substitution in the GT domain of TcdB. To examine the role of GT activity in vivo, we tested each strain in two different animal models of CDI pathogenesis. In the non-lethal murine model of infection, the GT-defective mutant induced minimal pathology in host tissues as compared to the profound caecal inflammation seen in the wild-type and 630ΔermΔtcdA (ΔtcdA) strains. In the more sensitive hamster model of CDI, whereas hamsters in the wild-type or ΔtcdA groups succumbed to fulminant infection within 4 days, all hamsters infected with the GT-defective mutant survived the 10-day infection period without primary symptoms of CDI or evidence of caecal inflammation. These data demonstrate that GT activity is indispensable for disease pathogenesis and reaffirm its central role in disease and its importance as a therapeutic target for small-molecule inhibition.
Collapse
Affiliation(s)
- Terry W. Bilverstone
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, United kingdom
| | - Megan Garland
- Cancer Biology Program, Stanford School of Medicine, Stanford, CA, United States of America
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Rory J. Cave
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, United kingdom
| | - Michelle L. Kelly
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, United kingdom
| | - Martina Tholen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Donna M. Bouley
- Department of Comparative Medicine, Stanford School of Medicine, Stanford, CA, United States of America
| | - Philip Kaye
- Department of Histopathology, Nottingham University Hospitals and University of Nottingham NDDC NIHR BRC, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham, United kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, United Kingdom
| | - Matthew Bogyo
- Department of Pathology, Stanford School of Medicine, Stanford, CA, United States of America
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, United States of America
| | - Sarah A. Kuehne
- Oral Microbiology Group, School of Dentistry and Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Roman A. Melnyk
- Department of Biochemistry, University of Toronto, and Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
46
|
Clostridioides difficile para-Cresol Production Is Induced by the Precursor para-Hydroxyphenylacetate. J Bacteriol 2020; 202:JB.00282-20. [PMID: 32631945 PMCID: PMC7925072 DOI: 10.1128/jb.00282-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile is an etiological agent for antibiotic-associated diarrheal disease. C. difficile produces a phenolic compound, para-cresol, which selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. C. difficile decarboxylates para-hydroxyphenylacetate (p-HPA) to produce p-cresol by the action of the HpdBCA decarboxylase encoded by the hpdBCA operon. Here, we investigate regulation of the hpdBCA operon and directly compare three independent reporter systems; SNAP-tag, glucuronidase gusA, and alkaline phosphatase phoZ reporters to detect basal and inducible expression. We show that expression of hpdBCA is upregulated in response to elevated p-HPA. In silico analysis identified three putative promoters upstream of hpdBCA operon-P1, P2, and Pσ54; only the P1 promoter was responsible for both basal and p-HPA-inducible expression of hpdBCA We demonstrated that turnover of tyrosine, a precursor for p-HPA, is insufficient to induce expression of the hpdBCA operon above basal levels because it is inefficiently converted to p-HPA in minimal media. We show that induction of the hpdBCA operon in response to p-HPA occurs in a dose-dependent manner. We also identified an inverted palindromic repeat (AAAAAG-N13-CTTTTT) upstream of the hpdBCA start codon (ATG) that is essential for inducing transcription of the hpdBCA operon in response to p-HPA, which drives the production of p-cresol. This provides insights into the regulatory control of p-cresol production, which affords a competitive advantage for C. difficile over other intestinal bacteria, promoting dysbiosis.IMPORTANCE Clostridioides difficile infection results from antibiotic-associated dysbiosis. para-Cresol, a phenolic compound produced by C. difficile, selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. Here, we demonstrate that expression of the hpdBCA operon, encoding the HpdBCA decarboxylase which converts p-HPA to p-cresol, is upregulated in response to elevated exogenous p-HPA, with induction occurring between >0.1 and ≤0.25 mg/ml. We determined a single promoter and an inverted palindromic repeat responsible for basal and p-HPA-inducible hpdBCA expression. We identified turnover of tyrosine, a p-HPA precursor, does not induce hpdBCA expression above basal level, indicating that exogenous p-HPA was required for p-cresol production. Identifying regulatory controls of p-cresol production will provide novel therapeutic targets to prevent p-cresol production, reducing C. difficile's competitive advantage.
Collapse
|
47
|
The Impact of pH on Clostridioides difficile Sporulation and Physiology. Appl Environ Microbiol 2020; 86:AEM.02706-19. [PMID: 31811041 DOI: 10.1128/aem.02706-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogenic bacterium that infects the human colon to cause diarrheal disease. Growth of the bacterium is known to be dependent on certain bile acids, oxygen levels, and nutrient availability in the intestine, but how the environmental pH can influence C. difficile is mostly unknown. Previous studies indicated that C. difficile modulates the intestinal pH, and prospective cohort studies have found a strong association between a more alkaline fecal pH and C. difficile infection. Based on these data, we hypothesized that C. difficile physiology can be affected by various pH conditions. In this study, we investigated the impact of a range of pH conditions on C. difficile to assess potential effects on growth, sporulation, motility, and toxin production in the strains 630Δerm and R20291. We observed pH-dependent differences in sporulation rate, spore morphology, and viability. Sporulation frequency was lowest under acidic conditions, and differences in cell morphology were apparent at low pH. In alkaline environments, C. difficile sporulation was greater for strain 630Δerm, whereas R20291 produced relatively high levels of spores in a broad range of pH conditions. Rapid changes in pH during exponential growth impacted sporulation similarly among the strains. Furthermore, we observed an increase in C. difficile motility with increases in pH, and strain-dependent differences in toxin production under acidic conditions. The data demonstrate that pH is an important parameter that affects C. difficile physiology and may reveal relevant insights into the growth and dissemination of this pathogen.IMPORTANCE Clostridioides difficile is an anaerobic bacterium that causes gastrointestinal disease. C. difficile forms dormant spores which can survive harsh environmental conditions, allowing their spread to new hosts. In this study, we determine how intestinally relevant pH conditions impact C. difficile physiology in the two divergent strains, 630Δerm and R20291. Our data demonstrate that low pH conditions reduce C. difficile growth, sporulation, and motility. However, toxin production and spore morphology were differentially impacted in the two strains at low pH. In addition, we observed that alkaline environments reduce C. difficile growth, but increase cell motility. When pH was adjusted rapidly during growth, we observed similar impacts on both strains. This study provides new insights into the phenotypic diversity of C. difficile grown under diverse pH conditions present in the intestinal tract, and demonstrates similarities and differences in the pH responses of different C. difficile isolates.
Collapse
|
48
|
Flexible Cobamide Metabolism in Clostridioides ( Clostridium) difficile 630 Δ erm. J Bacteriol 2020; 202:JB.00584-19. [PMID: 31685533 DOI: 10.1128/jb.00584-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/26/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides (Clostridium) difficile is an opportunistic pathogen known for its ability to colonize the human gut under conditions of dysbiosis. Several aspects of its carbon and amino acid metabolism have been investigated, but its cobamide (vitamin B12 and related cofactors) metabolism remains largely unexplored. C. difficile has seven predicted cobamide-dependent pathways encoded in its genome in addition to a nearly complete cobamide biosynthesis pathway and a cobamide uptake system. To address the importance of cobamides to C. difficile, we studied C. difficile 630 Δerm and mutant derivatives under cobamide-dependent conditions in vitro Our results show that C. difficile can use a surprisingly diverse array of cobamides for methionine and deoxyribonucleotide synthesis and can use alternative metabolites or enzymes, respectively, to bypass these cobamide-dependent processes. C. difficile 630 Δerm produces the cobamide pseudocobalamin when provided the early precursor 5-aminolevulinic acid or the late intermediate cobinamide (Cbi) and produces other cobamides if provided an alternative lower ligand. The ability of C. difficile 630 Δerm to take up cobamides and Cbi at micromolar or lower concentrations requires the transporter BtuFCD. Genomic analysis revealed genetic variations in the btuFCD loci of different C. difficile strains, which may result in differences in the ability to take up cobamides and Cbi. These results together demonstrate that, like other aspects of its physiology, cobamide metabolism in C. difficile is versatile.IMPORTANCE The ability of the opportunistic pathogen Clostridioides difficile to cause disease is closely linked to its propensity to adapt to conditions created by dysbiosis of the human gut microbiota. The cobamide (vitamin B12) metabolism of C. difficile has been underexplored, although it has seven metabolic pathways that are predicted to require cobamide-dependent enzymes. Here, we show that C. difficile cobamide metabolism is versatile, as it can use a surprisingly wide variety of cobamides and has alternative functions that can bypass some of its cobamide requirements. Furthermore, C. difficile does not synthesize cobamides de novo but produces them when given cobamide precursors. A better understanding of C. difficile cobamide metabolism may lead to new strategies to treat and prevent C. difficile-associated disease.
Collapse
|
49
|
Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. J Bacteriol 2020; 202:JB.00586-19. [PMID: 31659010 DOI: 10.1128/jb.00586-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023] Open
Abstract
The anaerobic spore former Clostridioides difficile causes significant diarrheal disease in humans and other mammals. Infection begins with the ingestion of dormant spores, which subsequently germinate within the host gastrointestinal tract. There, the vegetative cells proliferate and secrete two exotoxins, TcdA and TcdB, which cause disease symptoms. Although spore formation and toxin production are critical for C. difficile pathogenesis, the regulatory links between these two physiological processes are not well understood and are strain dependent. Previously, we identified a conserved C. difficile regulator, RstA, that promotes sporulation initiation through an unknown mechanism and directly and indirectly represses toxin and motility gene transcription in the historical isolate 630Δerm To test whether perceived strain-dependent differences in toxin production and sporulation are mediated by RstA, we created an rstA mutant in the epidemic ribotype 027 strain R20291. RstA affected sporulation and toxin gene expression similarly but more robustly in R20291 than in 630Δerm In contrast, no effect on motility gene expression was observed in R20291. Reporter assays measuring transcriptional regulation of tcdR, the sigma factor gene essential for toxin gene expression, identified sequence-dependent effects influencing repression by RstA and CodY, a global nutritional sensor, in four diverse C. difficile strains. Finally, sequence- and strain-dependent differences were evident in RstA negative autoregulation of rstA transcription. Altogether, our data suggest that strain-dependent differences in RstA regulation contribute to the sporulation and toxin phenotypes observed in R20291. Our data establish RstA as an important regulator of C. difficile virulence traits.IMPORTANCE Two critical traits of Clostridioides difficile pathogenesis are toxin production, which causes disease symptoms, and spore formation, which permits survival outside the gastrointestinal tract. The multifunctional regulator RstA promotes sporulation and prevents toxin production in the historical strain 630Δerm Here, we show that RstA exhibits stronger effects on these phenotypes in an epidemic isolate, R20291, and additional strain-specific effects on toxin and rstA expression are evident. Our data demonstrate that sequence-specific differences within the promoter for the toxin regulator TcdR contribute to the regulation of toxin production by RstA and CodY. These sequence differences account for some of the variability in toxin production among isolates and may allow strains to differentially control toxin production in response to a variety of signals.
Collapse
|
50
|
Regulation and Anaerobic Function of the Clostridioides difficile β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01496-19. [PMID: 31611350 DOI: 10.1128/aac.01496-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile causes severe antibiotic-associated diarrhea and colitis. C. difficile is an anaerobic, Gram-positive sporeformer that is highly resistant to β-lactams, the most commonly prescribed antibiotics. The resistance of C. difficile to β-lactam antibiotics allows the pathogen to replicate and cause disease in antibiotic-treated patients. However, the mechanisms of β-lactam resistance in C. difficile are not fully understood. Our data reinforce prior evidence that C. difficile produces a β-lactamase, which is a common β-lactam resistance mechanism found in other bacterial species. Here, we characterize the C. difficile bla operon that encodes a lipoprotein of unknown function and a β-lactamase that was greatly induced in response to several classes of β-lactam antibiotics. An in-frame deletion of the operon abolished β-lactamase activity in C. difficile strain 630Δerm and resulted in decreased resistance to the β-lactam ampicillin. We found that the activity of this β-lactamase, BlaCDD, is dependent upon the redox state of the enzyme. In addition, we observed that transport of BlaCDD out of the cytosol and to the cell surface is facilitated by an N-terminal signal sequence. Our data demonstrate that a cotranscribed lipoprotein, BlaX, aids in BlaCDD activity. Further, we identified a conserved BlaRI regulatory system and demonstrated via insertional disruption that BlaRI controls transcription of the blaXCDD genes in response to β-lactams. These results provide support for the function of a β-lactamase in C. difficile antibiotic resistance and reveal the unique roles of a coregulated lipoprotein and reducing environment in C. difficile β-lactamase activity.
Collapse
|