1
|
Hu W, Zhai ZY, Huang ZY, Chen ZM, Zhou P, Li XX, Yang GH, Bao CJ, You LJ, Cui XB, Xia GL, Ou Yang MP, Zhang L, Wu WKK, Li LF, Zhang YX, Xiao ZG, Gong W. Dual RNA sequencing of Helicobacter pylori and host cell transcriptomes reveals ontologically distinct host-pathogen interaction. mSystems 2024; 9:e0020624. [PMID: 38514462 PMCID: PMC11019886 DOI: 10.1128/msystems.00206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Lin Zhang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Long Fei Li
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Yu Xuan Zhang
- Department of Pharmacology and Therapeutics, King’s College London, London, United Kingdom
| | - Zhan Gang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Laboratory of Personalized Cell Therapy & Cell Medicines, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Ochoa S, Collado L. Enterohepatic Helicobacter species - clinical importance, host range, and zoonotic potential. Crit Rev Microbiol 2021; 47:728-761. [PMID: 34153195 DOI: 10.1080/1040841x.2021.1924117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The genus Helicobacter defined just over 30 years ago, is a highly diverse and fast-growing group of bacteria that are able to persistently colonize a wide range of animals. The members of this genus are subdivided into two groups with different ecological niches, associated pathologies, and phylogenetic relationships: the gastric Helicobacter (GH) and the enterohepatic Helicobacter (EHH) species. Although GH have been mostly studied, EHH species have become increasingly important as emerging human pathogens and potential zoonotic agents in the last years. This group of bacteria has been associated with the development of several diseases in humans from acute pathologies like gastroenteritis to chronic pathologies that include inflammatory bowel disease, and liver and gallbladder diseases. However, their reservoirs, as well as their routes of transmission, have not been well established yet. Therefore, this review summarizes the current knowledge of taxonomy, epidemiology, and clinical role of the EHH group.
Collapse
Affiliation(s)
- Sofia Ochoa
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Luis Collado
- Faculty of Sciences, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Valdivia, Chile.,ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
3
|
Bonavita R, Laukkanen MO. Common Signal Transduction Molecules Activated by Bacterial Entry into a Host Cell and by Reactive Oxygen Species. Antioxid Redox Signal 2021; 34:486-503. [PMID: 32600071 DOI: 10.1089/ars.2019.7968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: An increasing number of pathogens are acquiring resistance to antibiotics. Efficient antimicrobial drug regimens are important even for the most advanced therapies, which range from cutting-edge invasive clinical protocols, such as robotic surgeries, to the treatment of harmless bacterial diseases and to minor scratches to the skin. Therefore, there is an urgent need to survey alternative antimicrobial drugs that can reinforce or replace existing antibiotics. Recent Advances: Bacterial proteins that are critical for energy metabolism, promising novel anticancer thiourea derivatives, and the use of synthetic molecules that increase the sensitivity of currently used antibiotics are among the recently discovered antimicrobial drugs. Critical Issues: In the development of new drugs, serious consideration should be given to the previous bacterial evolutionary selection caused by antibiotics, by the high proliferation rate of bacteria, and by the simple prokaryotic structure of bacteria. Future Directions: The survey of drug targets has mainly focused on bacterial proteins, although host signaling molecules involved in the treatment of various pathologies may have unknown antimicrobial characteristics. Recent data have suggested that small molecule inhibitors might enhance the effect of antibiotics, for example, by limiting bacterial entry into host cells. Phagocytosis, the mechanism by which host cells internalize pathogens through β-actin cytoskeletal rearrangement, induces calcium signaling, small GTPase activation, and phosphorylation of the phosphatidylinositol 3-kinase-serine/threonine-specific protein kinase B pathway. Antioxid. Redox Signal. 34, 486-503.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Experimental Institute of Endocrinology and Oncology G. Salvatore, IEOS CNR, Naples, Italy
| | | |
Collapse
|
4
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
5
|
Segura-López FK, Güitrón-Cantú A, Torres J. Association between Helicobacter spp. infections and hepatobiliary malignancies: a review. World J Gastroenterol 2015; 21:1414-23. [PMID: 25663761 PMCID: PMC4316084 DOI: 10.3748/wjg.v21.i5.1414] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary cancers are highly lethal cancers that comprise a spectrum of invasive carcinomas originating in the liver hepatocellular carcinoma, the bile ducts intrahepatic cholangiocarcinoma and extrahepatic cholangiocarcinoma, the gallbladder and the ampulla of Vater (collectively known as biliary tract cancers). These tumors account for approximately 13% of all annual cancer-related deaths worldwide and for 10%-20% of deaths from hepatobiliary malignancies. Cholangiocarcinoma (CCA) is a devastating disease that displays a poor survival rate for which few therapeutic options are available. Population genetics, geographical and environmental factors, cholelithiasis, obesity, parity, and endemic infection with liver flukes have been identified as risk factors that influence the development of biliary tract tumors. Other important factors affecting the carcinogenesis of these tumors include chronic inflammation, obstruction of the bile ducts, and impaired bile flow. It has been suggested that CCA is caused by infection with Helicobacter species, such as Helicobacter bilis and Helicobacter hepaticus, in a manner that is similar to the reported role of Helicobacter pylori in distal gastric cancer. Due to the difficulty in culturing these Helicobacter species, molecular methods, such as polymerase chain reaction and sequencing, or immunologic assays have become the methods of choice for diagnosis. However, clinical studies of benign or malignant biliary tract diseases revealed remarkable variability in the methods and the findings, and the use of uniform and validated techniques is needed.
Collapse
|
6
|
Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, Angelova M. Differential Effect of Paraquat and Hydrogen Peroxide on the Oxidative Stress Response inVibrio CholeraeNon O1 26/06. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
XRCC7 rs#7003908 Polymorphism and Helicobacter pylori Infection-Related Gastric Antrum Adenocarcinoma. Int J Genomics 2013; 2013:124612. [PMID: 24319674 PMCID: PMC3844259 DOI: 10.1155/2013/124612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
The X-ray repair cross-complementing group 7 (XRCC7) plays a key role in DNA repair that protects against genetic instability and carcinogenesis. To determine whether XRCC7 rs#7003908 polymorphism (XRCC7P) is associated with Helicobacter pylori (H. pylori) infection-related gastric antrum adenocarcinoma (GAA) risk, we conducted a hospital-based case-control study, including 642 patients with pathologically confirmed GAA and 927 individually matched controls without any evidence of tumours or precancerous lesions, among Guangxi population. Increased risks of GAA were observed for individuals with cagA positive (odds ratio (OR) 6.38; 95% confidence interval (CI) 5.03–8.09). We also found that these individuals with the genotypes of XRCC7 rs#7003908 G alleles (XRCC7-TG or -GG) featured increasing risk of GAA (ORs 2.80 and 5.13, resp.), compared with the homozygote of XRCC7 rs#7003908 T alleles (XRCC7-TT). GAA risk, moreover, did appear to differ more significantly among individuals featuring cagA-positive status, whose adjusted ORs (95% CIs) were 15.74 (10.89–22.77) for XRCC7-TG and 38.49 (22.82–64.93) for XRCC7-GG, respectively. Additionally, this polymorphism multiplicatively interacted with XRCC3 codon 241 polymorphism with respect to HCC risk (ORinteraction = 1.49). These results suggest that XRCC7P may be associated with the risk of Guangxiese GAA related to cagA.
Collapse
|
8
|
Alkyl hydroperoxide reductase is required for Helicobacter cinaedi intestinal colonization and survival under oxidative stress in BALB/c and BALB/c interleukin-10-/- mice. Infect Immun 2011; 80:921-8. [PMID: 22184416 DOI: 10.1128/iai.05477-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Helicobacter cinaedi, a common human intestinal bacterium, has been implicated in various enteric and systemic diseases in normal and immunocompromised patients. Protection against oxidative stress is a crucial component of bacterium-host interactions. Alkyl hydroperoxide reductase C (AhpC) is an enzyme responsible for detoxification of peroxides and is important in protection from peroxide-induced stress. H. cinaedi possesses a single ahpC, which was investigated with respect to its role in bacterial survival during oxidative stress. The H. cinaedi ahpC mutant had diminished resistance to organic hydroperoxide toxicity but increased hydrogen peroxide resistance compared with the wild-type (WT) strain. The mutant also exhibited an oxygen-sensitive phenotype and was more susceptible to killing by macrophages than the WT strain. In vivo experiments in BALB/c and BALB/c interleukin-10 (IL-10)(-/-) mice revealed that the cecal colonizing ability of the ahpC mutant was significantly reduced. The mutant also had diminished ability to induce bacterium-specific immune responses in vivo, as shown by immunoglobulin (IgG2a and IgG1) serum levels. Collectively, these data suggest that H. cinaedi ahpC not only contributes to protecting the organism against oxidative stress but also alters its pathogenic properties in vivo.
Collapse
|
9
|
Belzer C, van Schendel BAM, Hoogenboezem T, Kusters JG, Hermans PWM, van Vliet AHM, Kuipers EJ. PerR controls peroxide- and iron-responsive expression of oxidative stress defense genes in Helicobacter hepaticus. Eur J Microbiol Immunol (Bp) 2011; 1:215-22. [PMID: 24516727 DOI: 10.1556/eujmi.1.2011.3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 12/15/2022] Open
Abstract
Chronic intestinal and hepatic colonization with the microaerophilic murine pathogen Helicobacter hepaticus can lead to a range of inflammatory diseases of the lower digestive tract. Colonization is associated with an active cellular immune response and production of oxygen radicals. During colonization, H. hepaticus needs to cope with and respond to oxidative stress, and here we report on the role of the H. hepaticus PerR-regulator (HH0942) in the expression of the peroxidase-encoding katA (HH0043) and ahpC (HH1564) genes. Transcription of katA and ahpC was induced by hydrogen peroxide, and by iron restriction of growth media. This iron- and hydrogen peroxide-responsive regulation of katA and ahpC was mediated at the transcriptional level, from promoters directly upstream of the genes. Inactivation of the perR gene resulted in constitutive, iron-independent high-level expression of the katA and ahpC transcripts and corresponding proteins. Finally, inactivation of the katA gene resulted in increased sensitivity of H. hepaticus to hydrogen peroxide and reduced aerotolerance. In H. hepaticus, iron metabolism and oxidative stress defense are intimately connected via the PerR regulatory protein. This regulatory pattern resembles that observed in the enteric pathogen Campylobacter jejuni, but contrasts with the pattern observed in the closely related human gastric pathogen Helicobacter pylori.
Collapse
|
10
|
Fox JG, Ge Z, Whary MT, Erdman SE, Horwitz BH. Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer. Mucosal Immunol 2011; 4:22-30. [PMID: 20944559 PMCID: PMC3939708 DOI: 10.1038/mi.2010.61] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering work in the 1990s first linked a novel microaerobic bacterium, Helicobacter hepaticus, with chronic active hepatitis and inflammatory bowel disease in several murine models. Targeted H. hepaticus infection experiments subsequently demonstrated its ability to induce colitis, colorectal cancer, and extraintestinal diseases in a number of mouse strains with defects in immune function and/or regulation. H. hepaticus is now widely utilized as a model system to dissect how intestinal microbiota interact with the host to produce both inflammatory and tolerogenic responses. This model has been used to make important advances in understanding factors that regulate both acquired and innate immune response within the intestine. Further, it has been an effective tool to help define the function of regulatory T cells, including their ability to directly inhibit the innate inflammatory response to gut microbiota. The complete genomic sequence of H. hepaticus has advanced the identification of several virulence factors and aided in the elucidation of H. hepaticus pathogenesis. Delineating targets of H. hepaticus virulence factors could facilitate novel approaches to treating microbially induced lower bowel inflammatory diseases.
Collapse
Affiliation(s)
- JG Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA,Corresponding author. Mailing address: Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 16-825, Cambridge, MA 02139. Phone (617) 253-1735. Fax: (617) 258-5708.
| | - Z Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - MT Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - SE Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - BH Horwitz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
11
|
Ma YJ, Duan GC, Zhang RG, Fan QT, Zhang WD. Mutation of iceA in Helicobacter pylori compromised IL-8 induction from human gastric epithelial cells. J Basic Microbiol 2010; 50 Suppl 1:S83-8. [DOI: 10.1002/jobm.200900410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/19/2010] [Indexed: 01/30/2023]
|
12
|
Tu QV, Okoli AS, Kovach Z, Mendz GL. Hepatocellular carcinoma: prevalence and molecular pathogenesis of Helicobacter spp. Future Microbiol 2009; 4:1283-301. [PMID: 19995189 DOI: 10.2217/fmb.09.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is one of the most common chronic bacterial infections in humans. The association of other Helicobacter spp. with extragastric diseases in animals is well established, and a role of these bacteria in human liver disease is becoming clearer. Several case-control studies have reported possible associations of Helicobacter spp. with various liver diseases, including hepatocellular carcinoma, which is the fifth most common type of carcinoma among men worldwide, and the eighth most common among women. Thus, it is important to understand molecular mechanisms that may lead to hepatotoxicity or hepatocellular dysfunction in which Helicobacter spp. may play a role in inducing malignant transformation of liver cells.
Collapse
Affiliation(s)
- Quoc V Tu
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
13
|
Ma YJ, Duan GC, Zhang RG, Fan QT, Zhang WD. Construction and identification of iceA gene mutant strain of Helicobacter pylori isolated from Chinese patients. Shijie Huaren Xiaohua Zazhi 2009; 17:1098-1102. [DOI: 10.11569/wcjd.v17.i11.1098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct an iceA gene mutant strain of Chinese H. pylori.
METHODS: The iceA gene and its partial upper and downstream flank DNA fragments were cloned into plasmid pBluescript SK II (-). And kanamycin resistance gene from pEGFP-N2 was inserted into iceA gene to construct objective plasmid pBS-iceA-kam. Then pBS-iceA-kam was transformed into H. pylori cells by electroporation and the strains expressing kanamycin resistance genes were selected by kanamycin agar, which were identified by PCR and sequencing analysis.
RESULTS: The result of PCR amplified and sequencing analysis from the genome DNA of the constructed mutant strain showed that kanamycin resistance genes were inserted into iceA gene successfully.
CONCLUSION: The iceA mutant strain of H. pylori isolated from China is constructed successfully.
Collapse
|
14
|
Moyaert H, Franceschi F, Roccarina D, Ducatelle R, Haesebrouck F, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection: other Helicobacters. Helicobacter 2008; 13 Suppl 1:47-57. [PMID: 18783522 DOI: 10.1111/j.1523-5378.2008.00634.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The finding that Helicobacter pylori is the main cause of gastritis and peptic ulcer disease has opened a new era in the gastrointestinal world. Today there is evidence that H. pylori may also play a role in different nongastric diseases, opening the new "extragastric manifestations of H. pylori infection" field. Concerning this, several studies have been published in the last year. The most convincing data arise from those investigating idiopathic thrombocytopenic purpura and sideropenic anemia, while there is also an increasing evidence for a possible association with atherosclerotic disease. Furthermore, the discovery of a number of other novel Helicobacter species has stimulated the research in different extragastric diseases, in which an infectious hypothesis is plausible. In particular, several species have been studied for a potential role in different liver and intestinal diseases with interesting findings.
Collapse
Affiliation(s)
- Hilde Moyaert
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Excessive hydrogen peroxide is harmful for almost all cell components, so its rapid and efficient removal is of essential importance for aerobically living organisms. Conversely, hydrogen peroxide acts as a second messenger in signal-transduction pathways. H(2)O(2) is degraded by peroxidases and catalases, the latter being able both to reduce H(2)O(2) to water and to oxidize it to molecular oxygen. Nature has evolved three protein families that are able to catalyze this dismutation at reasonable rates. Two of the protein families are heme enzymes: typical catalases and catalase-peroxidases. Typical catalases comprise the most abundant group found in Eubacteria, Archaeabacteria, Protista, Fungi, Plantae, and Animalia, whereas catalase-peroxidases are not found in plants and animals and exhibit both catalatic and peroxidatic activities. The third group is a minor bacterial protein family with a dimanganese active site called manganese catalases. Although catalyzing the same reaction (2 H(2)O(2)--> 2 H(2)O+ O(2)), the three groups differ significantly in their overall and active-site architecture and the mechanism of reaction. Here, we present an overview of the distribution, phylogeny, structure, and function of these enzymes. Additionally, we report about their physiologic role, response to oxidative stress, and about diseases related to catalase deficiency in humans.
Collapse
Affiliation(s)
- Marcel Zamocky
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | | | |
Collapse
|