1
|
An Emerging Lineage of Uropathogenic Extended Spectrum β-Lactamase Escherichia coli ST127. Microbiol Spectr 2022; 10:e0251122. [PMID: 36416548 PMCID: PMC9769692 DOI: 10.1128/spectrum.02511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the most common causes of urinary tract infections. Here, we report for the first time the whole-genome sequencing (WGS) and analysis of four extended-spectrum β-lactamase (ESBL), UPEC sequence type (ST) 127 isolates that were recovered from patients in five hospitals in Armenia from January to August of 2019. A phylogenetic comparison revealed that our isolates were closely related to each other by their core and accessory genomes, despite having been isolated from different regions and hospitals in Armenia. We identified unique genes in our isolates and in a closely related isolate recovered in France. The unique genes (hemolysin E virulence gene, lactate utilization operon lutABC, and endonuclease restriction modification operon hsdMSR) were identified in three separate genomic regions that were adjacent to prophage genes, including one region containing the TonB-dependent iron siderophore receptor gene ireA, which was only found in 5 other ST127 isolates from the European Nucleotide Archive (ENA). We further identified that these isolates possessed unique virulence and metabolic genes and harbored antibiotic resistance genes, including the ESBL genes blaCTX-M-3 (n = 3), blaCTX-M-236 (n = 1), and blaTEM-1 (n = 1), in addition to a quinolone resistance protein gene qnrD1 (n = 1), which was absent in the ST127 isolates obtained from the ENA. Moreover, a plasmid replicon gene IncI2 (n = 1) was unique to ARM88 of the Armenian isolates. Our findings demonstrate that at the time of this study, E. coli ST127 was a cause of urinary tract infections in patients in different regions of Armenia, with a possibility of cross-country transmission between Armenia and France. IMPORTANCE Whole-genome sequencing studies of pathogens causing infectious diseases are seriously lacking in Armenia, hampering global efforts to track, trace and contain infectious disease outbreaks. In this study, we report for the first-time the whole-genome sequencing and analysis of ESBL UPEC ST127 isolates recovered from hospitalized patients in Armenia and compare them with other E. coli ST127 retrieved from the ENA. We found close genetic similarities of the Armenian isolates, indicating that E. coli ST127 was potentially a dominant lineage causing urinary tract infections in Armenia. Furthermore, we identified unique genes that were horizontally acquired in the clusters of Armenian and French isolates that were absent in other ST127 isolates obtained from the ENA. Our findings highlight a possible cross-country transmission between Armenia and France and the idea that the implementation of WGS surveillance could contribute to global efforts in tackling antibiotic resistance, as bacteria carrying antimicrobial resistance (AMR) genes do not recognize borders.
Collapse
|
2
|
Guitor AK, Yousuf EI, Raphenya AR, Hutton EK, Morrison KM, McArthur AG, Wright GD, Stearns JC. Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. MICROBIOME 2022; 10:136. [PMID: 36008821 PMCID: PMC9414150 DOI: 10.1186/s40168-022-01327-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Probiotic use in preterm infants can mitigate the impact of antibiotic exposure and reduce rates of certain illnesses; however, the benefit on the gut resistome, the collection of antibiotic resistance genes, requires further investigation. We hypothesized that probiotic supplementation of early preterm infants (born < 32-week gestation) while in hospital reduces the prevalence of antibiotic resistance genes associated with pathogenic bacteria in the gut. We used a targeted capture approach to compare the resistome from stool samples collected at the term corrected age of 40 weeks for two groups of preterm infants (those that routinely received a multi-strain probiotic during hospitalization and those that did not) with samples from full-term infants at 10 days of age to identify if preterm birth or probiotic supplementation impacted the resistome. We also compared the two groups of preterm infants up to 5 months of age to identify persistent antibiotic resistance genes. RESULTS At the term corrected age, or 10 days of age for the full-term infants, we found over 80 antibiotic resistance genes in the preterm infants that did not receive probiotics that were not identified in either the full-term or probiotic-supplemented preterm infants. More genes associated with antibiotic inactivation mechanisms were identified in preterm infants unexposed to probiotics at this collection time-point compared to the other infants. We further linked these genes to mobile genetic elements and Enterobacteriaceae, which were also abundant in their gut microbiomes. Various genes associated with aminoglycoside and beta-lactam resistance, commonly found in pathogenic bacteria, were retained for up to 5 months in the preterm infants that did not receive probiotics. CONCLUSIONS This pilot survey of preterm infants shows that probiotics administered after preterm birth during hospitalization reduced the diversity and prevented persistence of antibiotic resistance genes in the gut microbiome. The benefits of probiotic use on the microbiome and the resistome should be further explored in larger groups of infants. Due to its high sensitivity and lower sequencing cost, our targeted capture approach can facilitate these surveys to further address the implications of resistance genes persisting into infancy without the need for large-scale metagenomic sequencing. Video Abstract.
Collapse
Affiliation(s)
- Allison K Guitor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Amogelang R Raphenya
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Eileen K Hutton
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, Canada
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada
| | - Andrew G McArthur
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Jennifer C Stearns
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- The Baby & Mi and the Baby & Pre-Mi Cohort Studies, Hamilton, Canada.
- Department of Medicine, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
| |
Collapse
|
3
|
Vittecoq M, Brazier L, Elguero E, Bravo IG, Renaud N, Manzano‐Marín A, Prugnolle F, Godreuil S, Blanchon T, Roux F, Durand P, Renaud F, Thomas F. Multiresistant Enterobacteriaceae in yellow-legged gull chicks in their first weeks of life. Ecol Evol 2022; 12:e8974. [PMID: 35784041 PMCID: PMC9188031 DOI: 10.1002/ece3.8974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Wild animal species living in anthropogenic areas are commonly carriers of antimicrobial-resistant bacteria (AMRB), but their role in the epidemiology of these bacteria is unclear. Several studies on AMRB in wildlife have been cross-sectional in design and sampled individual animals at only one point in time. To further understand the role of wildlife in maintaining and potentially transmitting these bacteria to humans and livestock, longitudinal studies are needed in which samples are collected from individual animals over multiple time periods. In Europe, free-ranging yellow-legged gulls (Larus michahellis) commonly live in industrialized areas, forage in landfills, and have been found to carry AMRB in their feces. Using bacterial metagenomics and antimicrobial resistance characterization, we investigated the spatial and temporal patterns of AMRB in a nesting colony of yellow-legged gulls from an industrialized area in southern France. We collected 54 cloacal swabs from 31 yellow-legged gull chicks in 20 nests on three dates in 2016. We found that AMRB in chicks increased over time and was not spatially structured within the gull colony. This study highlights the complex occurrence of AMRB in a free-ranging wildlife species and contributes to our understanding of the public health risks and implications associated with ARMB-carrying gulls living in anthropogenic areas.
Collapse
Affiliation(s)
- Marion Vittecoq
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - Lionel Brazier
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Eric Elguero
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Ignacio G. Bravo
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | | | | | - Franck Prugnolle
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Sylvain Godreuil
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Thomas Blanchon
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - François Roux
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Patrick Durand
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - François Renaud
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| | - Frédéric Thomas
- Lab. MivegecUniversity MontpellierCNRSIRD UMR5290CREESMontpellierFrance
| |
Collapse
|
4
|
A 16 th century Escherichia coli draft genome associated with an opportunistic bile infection. Commun Biol 2022; 5:599. [PMID: 35710940 PMCID: PMC9203756 DOI: 10.1038/s42003-022-03527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli – one of the most characterized bacteria and a major public health concern – remains invisible across the temporal landscape. Here, we present the meticulous reconstruction of the first ancient E. coli genome from a 16th century gallstone from an Italian mummy with chronic cholecystitis. We isolated ancient DNA and reconstructed the ancient E. coli genome. It consisted of one chromosome of 4446 genes and two putative plasmids with 52 genes. The E. coli strain belonged to the phylogroup A and an exceptionally rare sequence type 4995. The type VI secretion system component genes appears to be horizontally acquired from Klebsiella aerogenes, however we could not identify any pathovar specific genes nor any acquired antibiotic resistances. A sepsis mouse assay showed that a closely related contemporary E. coli strain was avirulent. Our reconstruction of this ancient E. coli helps paint a more complete picture of the burden of opportunistic infections of the past. Ancient DNA from an Italian mummy’s gallstone provides insight into opportunistic E. coli infection.
Collapse
|
5
|
Hernández-González IL, Mateo-Estrada V, Castillo-Ramirez S. The promiscuous and highly mobile resistome of Acinetobacter baumannii. Microb Genom 2022; 8:000762. [PMID: 35075990 PMCID: PMC8914355 DOI: 10.1099/mgen.0.000762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance (AR) is a major global threat to public health. Understanding the population dynamics of AR is critical to restrain and control this issue. However, no study has provided a global picture of the whole resistome of Acinetobacter baumannii, a very important nosocomial pathogen. Here we analyse 1450+ genomes (covering >40 countries and >4 decades) to infer the global population dynamics of the resistome of this species. We show that gene flow and horizontal transfer have driven the dissemination of AR genes in A. baumannii. We found considerable variation in AR gene content across lineages. Although the individual AR gene histories have been affected by recombination, the AR gene content has been shaped by the phylogeny. Furthermore, many AR genes have been transferred to other well-known pathogens, such as Pseudomonas aeruginosa or Klebsiella pneumoniae. Despite using this massive data set, we were not able to sample the whole diversity of AR genes, which suggests that this species has an open resistome. Our results highlight the high mobilization risk of AR genes between important pathogens. On a broader perspective, this study gives a framework for an emerging perspective (resistome-centric) on the genomic epidemiology (and surveillance) of bacterial pathogens.
Collapse
Affiliation(s)
- Ismael L Hernández-González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
6
|
Decano AG, Tran N, Al-Foori H, Al-Awadi B, Campbell L, Ellison K, Mirabueno LP, Nelson M, Power S, Smith G, Smyth C, Vance Z, Woods C, Rahm A, Downing T. Plasmids shape the diverse accessory resistomes of Escherichia coli ST131. Access Microbiol 2020; 3:acmi000179. [PMID: 33997610 PMCID: PMC8115979 DOI: 10.1099/acmi.0.000179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.
Collapse
Affiliation(s)
- Arun Gonzales Decano
- School of Biotechnology, Dublin City University, Ireland.,Present address: School of Medicine, University of St., Andrews, UK
| | - Nghia Tran
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland
| | | | | | | | - Kevin Ellison
- School of Biotechnology, Dublin City University, Ireland
| | - Louisse Paolo Mirabueno
- School of Biotechnology, Dublin City University, Ireland.,Present address: National Institute of Agricultural Botany - East Malling Research, Kent, UK
| | - Maddy Nelson
- School of Biotechnology, Dublin City University, Ireland
| | - Shane Power
- School of Biotechnology, Dublin City University, Ireland
| | | | - Cian Smyth
- School of Biotechnology, Dublin City University, Ireland.,Present address: Dept of Biology, Maynooth University, Dublin, Ireland
| | - Zoe Vance
- School of Genetics & Microbiology, Trinity College Dublin, Ireland
| | | | - Alexander Rahm
- School of Maths, Applied Maths and Statistics, National University of Ireland Galway, Ireland.,Present address: GAATI Lab, Université de la Polynésie Française, Puna'auia, French Polynesia
| | - Tim Downing
- School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
7
|
Touchon M, Perrin A, de Sousa JAM, Vangchhia B, Burn S, O’Brien CL, Denamur E, Gordon D, Rocha EPC. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet 2020; 16:e1008866. [PMID: 32530914 PMCID: PMC7314097 DOI: 10.1371/journal.pgen.1008866] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/24/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli is mostly a commensal of birds and mammals, including humans, where it can act as an opportunistic pathogen. It is also found in water and sediments. We investigated the phylogeny, genetic diversification, and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more than 5,000 isolates from the Australian continent. Since many previous studies focused on clinical isolates, we investigated mostly other isolates originating from humans, poultry, wild animals and water. These strains represent the species genetic diversity and reveal widespread associations between phylogroups and isolation sources. The analysis of strains from the same sequence types revealed very rapid change of gene repertoires in the very early stages of divergence, driven by the acquisition of many different types of mobile genetic elements. These elements also lead to rapid variations in genome size, even if few of their genes rise to high frequency in the species. Variations in genome size are associated with phylogroup and isolation sources, but the latter determine the number of MGEs, a marker of recent transfer, suggesting that gene flow reinforces the association of certain genetic backgrounds with specific habitats. After a while, the divergence of gene repertoires becomes linear with phylogenetic distance, presumably reflecting the continuous turnover of mobile element and the occasional acquisition of adaptive genes. Surprisingly, the phylogroups with smallest genomes have the highest rates of gene repertoire diversification and fewer but more diverse mobile genetic elements. This suggests that smaller genomes are associated with higher, not lower, turnover of genetic information. Many of these genomes are from freshwater isolates and have peculiar traits, including a specific capsule, suggesting adaptation to this environment. Altogether, these data contribute to explain why epidemiological clones tend to emerge from specific phylogenetic groups in the presence of pervasive horizontal gene transfer across the species. Previous large scale studies on the evolution of E. coli focused on clinical isolates emphasizing virulence and antibiotic resistance in medically important lineages. Yet, most E. coli strains are either human commensals or not associated with humans at all. Here, we analyzed a large collection of non-clinical isolates of the species to assess the mechanisms of gene repertoire diversification in the light of isolation sources and phylogeny. We show that gene repertoires evolve so rapidly by the high turnover of mobile genetic elements that epidemiologically indistinguishable strains can be phenotypically extremely heterogeneous, illustrating the velocity of bacterial adaptation and the importance of accounting for the information on the whole genome at the epidemiological scale. Phylogeny and habitat shape the genetic diversification of E. coli to similar extents. Surprisingly, freshwater strains seem specifically adapted to this environment, breaking the paradigm that E. coli environmental isolates are systematically fecal contaminations. As a consequence, the evolution of this species is also shaped by environmental habitats, and it may diversify by acquiring genes and mobile elements from environmental bacteria (and not just from gut bacteria). This may facilitate the acquisition of virulence factors and antibiotic resistance in the strains that become pathogenic.
Collapse
Affiliation(s)
- Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- * E-mail:
| | - Amandine Perrin
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
- Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Jorge André Moura de Sousa
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| | - Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - Samantha Burn
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Claire L. O’Brien
- School of Medicine, University of Wollongong, Northfields Ave Wollongong, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, 75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018, Paris, France
| | - David Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Eduardo PC Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 75015, France
| |
Collapse
|
8
|
Loayza F, Graham JP, Trueba G. Factors Obscuring the Role of E. coli from Domestic Animals in the Global Antimicrobial Resistance Crisis: An Evidence-Based Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3061. [PMID: 32354184 PMCID: PMC7246672 DOI: 10.3390/ijerph17093061] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Recent studies have found limited associations between antimicrobial resistance (AMR) in domestic animals (and animal products), and AMR in human clinical settings. These studies have primarily used Escherichia coli, a critically important bacterial species associated with significant human morbidity and mortality. E. coli is found in domestic animals and the environment, and it can be easily transmitted between these compartments. Additionally, the World Health Organization has highlighted E. coli as a "highly relevant and representative indicator of the magnitude and the leading edge of the global antimicrobial resistance (AMR) problem". In this paper, we discuss the weaknesses of current research that aims to link E. coli from domestic animals to the current AMR crisis in humans. Fundamental gaps remain in our understanding the complexities of E. coli population genetics and the magnitude of phenomena such as horizontal gene transfer (HGT) or DNA rearrangements (transposition and recombination). The dynamic and intricate interplay between bacterial clones, plasmids, transposons, and genes likely blur the evidence of AMR transmission from E. coli in domestic animals to human microbiota and vice versa. We describe key factors that are frequently neglected when carrying out studies of AMR sources and transmission dynamics.
Collapse
Affiliation(s)
- Fernanda Loayza
- Microbiology Institute, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Pampite, Cumbayá-Quito P.O. BOX 170901, Ecuador
| | - Jay P. Graham
- Berkeley School of Public Health, University of California, 2121 Berkeley Way, Room 5302, Berkeley, CA 94720-7360, USA
| | - Gabriel Trueba
- Microbiology Institute, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Pampite, Cumbayá-Quito P.O. BOX 170901, Ecuador
| |
Collapse
|
9
|
Gasparrini AJ, Wang B, Sun X, Kennedy EA, Hernandez-Leyva A, Ndao IM, Tarr PI, Warner BB, Dantas G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat Microbiol 2019; 4:2285-2297. [PMID: 31501537 PMCID: PMC6879825 DOI: 10.1038/s41564-019-0550-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Hospitalized preterm infants receive frequent and often prolonged exposures to antibiotics because they are vulnerable to infection. It is not known whether the short-term effects of antibiotics on the preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care units. Here, we use complementary metagenomic, culture-based and machine learning techniques to study the gut microbiota and resistome of antibiotic-exposed preterm infants during and after hospitalization, and we compare these readouts to antibiotic-naive healthy infants sampled synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged carriage of multidrug-resistant Enterobacteriaceae and distinct antibiotic-driven patterns of microbiota and resistome assembly in extremely preterm infants that received early-life antibiotics. The collateral damage of early-life antibiotic treatment and hospitalization in preterm infants is long lasting. We urge the development of strategies to reduce these consequences in highly vulnerable neonatal populations.
Collapse
Affiliation(s)
- Andrew J Gasparrini
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Bin Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Elizabeth A Kennedy
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Ariel Hernandez-Leyva
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
10
|
Guron GKP, Arango-Argoty G, Zhang L, Pruden A, Ponder MA. Effects of Dairy Manure-Based Amendments and Soil Texture on Lettuce- and Radish-Associated Microbiota and Resistomes. mSphere 2019; 4:e00239-19. [PMID: 31068435 PMCID: PMC6506619 DOI: 10.1128/msphere.00239-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dairy cattle are routinely treated with antibiotics, and the resulting manure or composted manure is commonly used as a soil amendment for crop production, raising questions regarding the potential for antibiotic resistance to propagate from "farm to fork." The objective of this study was to compare the microbiota and "resistomes" (i.e., carriage of antibiotic resistance genes [ARGs]) associated with lettuce leaf and radish taproot surfaces grown in different soils amended with dairy manure, compost, or chemical fertilizer only (control). Manure was collected from antibiotic-free dairy cattle (DC) or antibiotic-treated dairy cattle (DA), with a portion composted for parallel comparison. Amendments were applied to loamy sand or silty clay loam, and lettuce and radishes were cultivated to maturity in a greenhouse. Metagenomes were profiled via shotgun Illumina sequencing. Radishes carried a distinct ARG composition compared to that of lettuce, with greater relative abundance of total ARGs. Taxonomic species richness was also greater for radishes by 1.5-fold. The resistomes of lettuce grown with DC compost were distinct from those grown with DA compost, DC manure, or fertilizer only. Further, compost applied to loamy sand resulted in twofold-greater relative abundance of total ARGs on lettuce than when applied to silty clay loam. The resistomes of radishes grown with biological amendments were distinct from the corresponding fertilizer controls, but effects of composting or antibiotic use were not measureable. Cultivation in loamy sand resulted in higher species richness for both lettuce and radishes than when grown in silty clay loam by 2.2-fold and 1.2-fold, respectively, when amended with compost.IMPORTANCE A controlled, integrated, and replicated greenhouse study, along with comprehensive metagenomic analysis, revealed that multiple preharvest factors, including antibiotic use during manure collection, composting, biological soil amendment, and soil type, influence vegetable-borne resistomes. Here, radishes, a root vegetable, carried a greater load of ARGs and species richness than lettuce, a leafy vegetable. However, the lettuce resistome was more noticeably influenced by upstream antibiotic use and composting. Network analysis indicated that cooccurring ARGs and mobile genetic elements were almost exclusively associated with conditions receiving raw manure amendments, suggesting that composting could alleviate the mobility of manure-derived resistance traits. Effects of preharvest factors on associated microbiota and resistomes of vegetables eaten raw are worthy of further examination in terms of potential influence on human microbiomes and spread of antibiotic resistance. This research takes a step toward identifying on-farm management practices that can help mitigate the spread of agricultural sources of antibiotic resistance.
Collapse
Affiliation(s)
- Giselle K P Guron
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Harris S, Piotrowska MJ, Goldstone RJ, Qi R, Foster G, Dobrindt U, Madec JY, Valat C, Rao FV, Smith DGE. Variant O89 O-Antigen of E. coli Is Associated With Group 1 Capsule Loci and Multidrug Resistance. Front Microbiol 2018; 9:2026. [PMID: 30233517 PMCID: PMC6128206 DOI: 10.3389/fmicb.2018.02026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/09/2018] [Indexed: 11/13/2022] Open
Abstract
Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum β-lactamase (ESBL)-producing strain - E. coli 26561 - represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) - 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.
Collapse
Affiliation(s)
- Susan Harris
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Marta J Piotrowska
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | | | - Ruby Qi
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Geoffrey Foster
- Veterinary Services, SAC Consulting, Scotland's Rural College, Inverness, United Kingdom
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Jean-Yves Madec
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | - Charlotte Valat
- Unité Antibiorésistances et Virulences Bactériennes, Anses Laboratoire de Lyon, Université Lyon-1, Lyon, France
| | | | - David G E Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Postgenomics Characterization of an Essential Genetic Determinant of Mammary Pathogenic Escherichia coli. mBio 2018; 9:mBio.00423-18. [PMID: 29615502 PMCID: PMC5885034 DOI: 10.1128/mbio.00423-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental (“dairy-farm” E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec. Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity. Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system.
Collapse
|
13
|
Gingras H, Dridi B, Leprohon P, Ouellette M. Coupling next-generation sequencing to dominant positive screens for finding antibiotic cellular targets and resistance mechanisms in Escherichia coli. Microb Genom 2018; 4. [PMID: 29319470 PMCID: PMC5857375 DOI: 10.1099/mgen.0.000148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In order to expedite the discovery of genes coding for either drug targets or antibiotic resistance, we have developed a functional genomic strategy termed Plas-Seq. This technique involves coupling a multicopy suppressor library to next-generation sequencing. We generated an Escherichia coli plasmid genomic library that was transformed into E. coli. These transformants were selected step by step using 0.25× to 2× minimum inhibitory concentrations for ceftriaxone, gentamicin, levofloxacin, tetracycline or trimethoprim. Plasmids were isolated at each selection step and subjected to Illumina sequencing. By searching for genomic loci whose sequencing coverage increased with antibiotic pressure we were able to detect 48 different genomic loci that were enriched by at least one antibiotic. Fifteen of these loci were studied functionally, and we showed that 13 can decrease the susceptibility of E. coli to antibiotics when overexpressed. These genes coded for drug targets, transcription factors, membrane proteins and resistance factors. The technique of Plas-Seq is expediting the discovery of genes associated with the mode of action or resistance to antibiotics and led to the isolation of a novel gene influencing drug susceptibility. It has the potential for being applied to novel molecules and to other microbial species.
Collapse
Affiliation(s)
- Hélène Gingras
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Bédis Dridi
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie, Université Laval, Québec, Canada
| |
Collapse
|