1
|
Pedace CS, Arbeit RD, Dos Santos Simeão FC, Gallo JF, de Souza AR, Chimara E. Drug susceptibility profiles of Mycobacterium abscessus isolated in the state of São Paulo, 2008-2024. J Med Microbiol 2025; 74. [PMID: 40232814 DOI: 10.1099/jmm.0.002005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Introduction. Infections caused by Mycobacterium abscessus, an environmentally prevalent, rapidly growing mycobacteria, are increasingly frequent in developed countries.Objective. To analyse the drug susceptibility profiles of M. abscessus isolated in the state of São Paulo from 2008 to 2024.Methods. Of the 2,402 M. abscessus isolates identified during those 17 years, 558 (23.2%) met the American Thoracic Society's microbiologic and clinical criteria for drug susceptibility testing (DST), which was performed for five agents - clarithromycin, amikacin, cefoxitin, ciprofloxacin, and doxycycline.Results. Clarithromycin showed a dramatic increase in resistance phenotype from ≤10% in the early period to 73-90% over the last 8 years. Over half those isolates demonstrated inducible resistance. Resistance to amikacin was found in fewer than 5% of isolates from 2016 to 2021. In 2022, that result increased to 13%, but for 2023 and 2024, it had fallen back to 2%. Over the past decade, cefoxitin DST has reported the majority of isolates as intermediate, a problematic result in M. abscessus group (MAG) infections, which typically require long-term treatment for successful outcomes. Since 2018, the annual susceptibility rate has been ≤18%, and in five of the 7 years, ≤7%. Ciprofloxacin was typically assessed as susceptible from 2009 to 2011, then decreased sharply to ≤20% over the next several years, and since 2018, the rate has been less than 5%. Through the entire study, doxycycline resistance has remained consistently high; in the years since 2018, ≤6% of isolates have been susceptible.Conclusion. This study demonstrates wide variation among MAG clinical isolates in the frequency of susceptibility, both across different agents and within individual agents over time. These results emphasize the importance of performing high-quality DST on MAG clinical isolates and suggest the need to consider revising the standard panel of drugs tested.
Collapse
Affiliation(s)
| | - Robert D Arbeit
- Division of Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | | | | | | | - Erica Chimara
- Bacteriology Center, Adolfo Lutz Institute, São Paulo/SP, Brazil
| |
Collapse
|
2
|
Diricks M, Maurer FP, Dreyer V, Barilar I, Utpatel C, Merker M, Wetzstein N, Niemann S. Genomic insights into the plasmidome of non-tuberculous mycobacteria. Genome Med 2025; 17:19. [PMID: 40038805 PMCID: PMC11877719 DOI: 10.1186/s13073-025-01443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are a diverse group of environmental bacteria that are increasingly associated with human infections and difficult to treat. Plasmids, which might carry resistance and virulence factors, remain largely unexplored in NTM. METHODS We used publicly available complete genome sequence data of 328 NTM isolates belonging to 125 species to study gene content, genomic diversity, and clusters of 196 annotated NTM plasmids. Furthermore, we analyzed 3755 draft genome assemblies from over 200 NTM species and 5415 short-read sequence datasets from six clinically relevant NTM species or complexes including M. abscessus, M. avium complex, M. ulcerans complex and M. kansasii complex, for the presence of these plasmids. RESULTS Between one and five plasmids were present in approximately one-third of the complete NTM genomes. The annotated plasmids varied widely in length (most between 10 and 400 kbp) and gene content, with many genes having an unknown function. Predicted gene functions primarily involved plasmid replication, segregation, maintenance, and mobility. Only a few plasmids contained predicted genes that are known to confer resistance to antibiotics commonly used to treat NTM infections. Out of 196 annotated plasmid sequences, 116 could be grouped into 31 clusters of closely related sequences, and about one-third were found across multiple NTM species. Among clinically relevant NTM, the presence of NTM plasmids showed significant variation between species, within (sub)species, and even among strains within (sub)lineages, such as dominant circulating clones of Mycobacterium abscessus. CONCLUSIONS Our analysis demonstrates that plasmids are a diverse and heterogeneously distributed feature in NTM bacteria. The frequent occurrence of closely related putative plasmid sequences across different NTM species suggests they may play a significant role in NTM evolution through horizontal gene transfer at least in some groups of NTM. However, further in vitro investigations and access to more complete genomes are necessary to validate our findings, elucidate gene functions, identify novel plasmids, and comprehensively assess the role of plasmids in NTM.
Collapse
Affiliation(s)
- Margo Diricks
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany.
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| | - Florian P Maurer
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Christian Utpatel
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Matthias Merker
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Evolution of the Resistome, Research Center Borstel, Borstel, Germany
| | - Nils Wetzstein
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, University Hospital, Frankfurt Am Main, Germany
- Mycobacterial Infection Research Unit (MIRU), Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- National and WHO Supranational Reference Laboratory for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
3
|
Schrank SD, Gozum DZ, Martin EM, Snyder GM. Identifying healthcare transmission routes of nontuberculous mycobacteria with whole genome sequencing: a systematic review. Infect Control Hosp Epidemiol 2025; 46:1-6. [PMID: 39895079 PMCID: PMC12015626 DOI: 10.1017/ice.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE To enumerate and describe the effect of whole genome sequencing (WGS) on epidemiological investigations of healthcare-associated transmission of nontuberculous mycobacteria (NTM). DESIGN Systematic review. METHODS We performed a literature search using targeted search terms to identify articles meeting inclusion criteria. Data extraction of study characteristics and outcomes was performed by two independent researchers. The primary outcome was the author interpretation of WGS utility in the investigation of suspected healthcare-associated transmission of NTM. The secondary outcome was whether a transmission route was identified through WGS. RESULTS Thirty-one studies were included in the final analysis with 28 (90%) concluding that WGS was helpful in transmission investigations and in 19 of these 28 (68%) WGS aided in identifying a transmission route. The most common identified transmission routes were water-borne point sources (10), heater-cooler units (6), patient-to-patient (4), and a healthcare worker (1). CONCLUSION WGS is an informative tool in investigating healthcare transmission of NTM.
Collapse
Affiliation(s)
- Spencer D. Schrank
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Infection Prevention and Control, UPMC Presbyterian/Shadyside, Pittsburgh, PA, USA
| | - Dale Z. Gozum
- Department of Medicine, UPMC Lititz, Lititz, PA, USA
| | - Elise M. Martin
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Veterans’ Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Graham M. Snyder
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Infection Prevention and Control, UPMC Presbyterian/Shadyside, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Cristancho-Rojas C, Varley CD, Lara SC, Kherabi Y, Henkle E, Winthrop KL. Epidemiology of Mycobacterium abscessus. Clin Microbiol Infect 2024; 30:712-717. [PMID: 37778416 DOI: 10.1016/j.cmi.2023.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Nontuberculous mycobacteria (NTM) are highly abundant in soil, dust, and water sources, making human-pathogen contact frequent and recurrent. NTM represents over 200 species/subspecies; some are considered strict or opportunistic pathogens. Mycobacterium abscessus, often regarded as one of the most antibiotic-resistant mycobacteria, is the second most frequent NTM pulmonary disease pathogen. OBJECTIVES To describe the epidemiology of M. abscessus through a literature review focusing on clinical aspects. SOURCES We conducted searches on PubMed and Web of Knowledge for articles published from 2010 to the present using the keywords 'Mycobacterium abscessus', 'Nontuberculous mycobacteria', and 'epidemiology'. Our search prioritized original reports on the occurrence of NTM and M. abscessus infection/disease. CONTENT Advanced molecular and genetic diagnostic techniques have refined the M. abscessus complex (MABC) microbiological classification over the last few decades. MABC can adhere to surfaces and form a biofilm. This characteristic and its resistance to common disinfectants allow these microorganisms to persist in the water distribution systems, becoming a constant reservoir. The frequency and manifestation of NTM species vary geographically because of environmental conditions and population susceptibility differences. MABC lung disease, the most frequent site of NTM infection in humans, is often seen in patients with underlying lung diseases such as bronchiectasis, whereas MABC disseminated disease is related to immunosuppression. Skin and soft tissue infections are associated with surgical or injection procedures. Epidemiological evidence suggests an overall increase in MABC infection and disease in the last decade. IMPLICATIONS Establishing the burden of this disease is challenging because of varying measures of incidence and prevalence, referral bias, and differences in medical practices and reporting. Furthermore, environmental and structural determinants, infection routes, and MABC pulmonary disease mechanisms require additional investigation. This review contributes to a better understanding of the epidemiology of MABC, which could inform clinical practice and future research.
Collapse
Affiliation(s)
- Cesar Cristancho-Rojas
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Cara D Varley
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA
| | - Sofia Chapela Lara
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Yousra Kherabi
- Department of Infectious Diseases, Bichat-Claude Bernard Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emily Henkle
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Kevin L Winthrop
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA; Department of Medicine, Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Oliveira RSD, Chimara E, Brandão AP, Simeão FCDS, Souza ARD, Gallo JF, Pinhata JMW. Non-tuberculous mycobacteria hybridisation profiles in the GenoType MTBDR plus assay: experience from a diagnostic routine of a high-throughput laboratory. J Med Microbiol 2024; 73. [PMID: 38305283 DOI: 10.1099/jmm.0.001794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Introduction. Disease caused by non-tuberculous mycobacteria (NTM) is an emergent problem. Because NTM pulmonary disease and tuberculosis (TB) have similar clinical presentations, many cases of NTM may be misdiagnosed as TB before laboratory identification of the NTM species.Hypothesis/Gap Statement. Clinical laboratories should always perform differentiation between Mycobacterium tuberculosis complex (MTBC) and NTM to guide patients' correct treatment.Aim. To describe the characteristics and to identify mycobacterial isolates presumptively classified as MTBC by macroscopic characteristics in culture media that tested negative in GenoType MTBDRplus.Methodology. All cultures from February 2019 to December 2021 showing MTBC macroscopic characteristics were processed by GenoType MTBDRplus. MTBC-negative cultures underwent species identification by immunochromatography, line probe assays and PRA-hsp65. Patients' data were obtained from Brazilian surveillance systems.Results. Only 479 (3.1%) of 15 696 isolates presumptively identified as MTBC were not confirmed by GenoType MTBDRplus and were then subjected to identification. A total of 344 isolates were shown to be NTM, of which 309 (64.5%) and 35 (7.3%) were identified to the species and genus levels, respectively. Of the 204 NTM isolates with MTBC characteristics, the most frequent species were M. fortuitum (n=52, 25.5%), M. abscessus complex (MABC; n=27, 13.2%) and M. avium complex (MAC; n=26, 12.7%). Regarding the GenoType MTBDRplus results from NTM isolates, there were diverse hybridisation profiles with rpoB gene's different wild-type (WT) probes. Seventy-six (16.1%) of the 473 patients were classified as having NTM disease, the most frequent being MAC (n=15, 19.7%), MABC (n=13, 17.1%), M. kansasii (n=10, 13.2%) and M. fortuitum (n=6, 7.9%).Conclusion. Because the signs and symptoms of pulmonary TB are similar to those of pulmonary mycobacteriosis and treatment regimens for TB and NTM are different, identifying the disease-causing species is paramount to indicate the correct management. Thus, in the laboratory routine, when an isolate presumptively classified as MTBC is MTBC-negative, it is still essential to perform subsequent identification.
Collapse
Affiliation(s)
- Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| | - Erica Chimara
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| | - Angela Pires Brandão
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| | - Fernanda Cristina Dos Santos Simeão
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| | - Andreia Rodrigues de Souza
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| | - Juliana Failde Gallo
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| | - Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º andar, 01246-000, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Vonasek BJ, Gusland D, Hash KP, Wiese AL, Tans-Kersten J, Astor BC, Gibbons-Burgener SN, Misch EA. Nontuberculous Mycobacterial Infection in Wisconsin Adults and Its Relationship to Race and Social Disadvantage. Ann Am Thorac Soc 2023; 20:1107-1115. [PMID: 36812384 PMCID: PMC10405610 DOI: 10.1513/annalsats.202205-425oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Rationale: Population-based data on the epidemiology of nontuberculosis mycobacterial (NTM) infections are limited, particularly with respect to variation in NTM infection among racial groups and socioeconomic strata. Wisconsin is one of a handful of states where mycobacterial disease is notifiable, allowing large, population-based analyses of the epidemiology of NTM infection in this state. Objectives: To estimate the incidence of NTM infection in Wisconsin adults, describe the geographic distribution of NTM infection across the state, identify the frequency and type of infection caused by different NTM species, and investigate associations between NTM infection and demographics and socioeconomic status. Methods: We conducted a retrospective cohort study using laboratory reports of all NTM isolates from Wisconsin residents submitted to the Wisconsin Electronic Disease Surveillance System from 2011 to 2018. For the analyses of NTM frequency, multiple reports from the same individual were enumerated as separate isolates when nonidentical, collected from different sites or collected more than one year apart. Results: A total of 8,135 NTM isolates from 6,811 adults were analyzed. Mycobacterium avium complex accounted for 76.4% of respiratory isolates. The M. chelonae-abscessus group was the most common species isolated from skin and soft tissue. The annual incidence of NTM infection was stable over the study period (from 22.1 per 100,000 to 22.4 per 100,000). The cumulative incidence of NTM infection among Black (224 per 100,000) and Asian (244 per 100,000) individuals was significantly higher compared with that among their White counterparts (97 per 100,000). Total NTM infections were significantly more frequent (P < 0.001) in individuals from disadvantaged neighborhoods, and racial disparities in the incidence of NTM infection generally remained consistent when stratified by measures of neighborhood disadvantage. Conclusions: More than 90% of NTM infections were from respiratory sites, with the vast majority caused by M. avium complex. Rapidly growing mycobacteria predominated as skin and soft tissue pathogens and were important minor respiratory pathogens. We found a stable annual incidence of NTM infection in Wisconsin between 2011 and 2018. NTM infection occurred more frequently in non-White racial groups and in individuals experiencing social disadvantage, suggesting that NTM disease may be more frequent in these groups as well.
Collapse
Affiliation(s)
| | - Danièle Gusland
- Department of Pediatrics, University of California, San Francisco, San Francisco, California; and
| | - Kevin P. Hash
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Andrew L. Wiese
- Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin
| | - Julie Tans-Kersten
- Division of Public Health, Wisconsin Department of Health Services, Madison, Wisconsin
| | - Brad C. Astor
- Department of Medicine, and
- Department of Population Health Sciences
| | | | | |
Collapse
|
7
|
Commins N, Sullivan MR, McGowen K, Koch EM, Rubin EJ, Farhat M. Mutation rates and adaptive variation among the clinically dominant clusters of Mycobacterium abscessus. Proc Natl Acad Sci U S A 2023; 120:e2302033120. [PMID: 37216535 PMCID: PMC10235944 DOI: 10.1073/pnas.2302033120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) is a multidrug-resistant pathogen increasingly responsible for severe pulmonary infections. Analysis of whole-genome sequences (WGS) of Mab demonstrates dense genetic clustering of clinical isolates collected from disparate geographic locations. This has been interpreted as supporting patient-to-patient transmission, but epidemiological studies have contradicted this interpretation. Here, we present evidence for a slowing of the Mab molecular clock rate coincident with the emergence of phylogenetic clusters. We performed phylogenetic inference using publicly available WGS from 483 Mab patient isolates. We implement a subsampling approach in combination with coalescent analysis to estimate the molecular clock rate along the long internal branches of the tree, indicating a faster long-term molecular clock rate compared to branches within phylogenetic clusters. We used ancestry simulation to predict the effects of clock rate variation on phylogenetic clustering and found that the degree of clustering in the observed phylogeny is more easily explained by a clock rate slowdown than by transmission. We also find that phylogenetic clusters are enriched in mutations affecting DNA repair machinery and report that clustered isolates have lower spontaneous mutation rates in vitro. We propose that Mab adaptation to the host environment through variation in DNA repair genes affects the organism's mutation rate and that this manifests as phylogenetic clustering. These results challenge the model that phylogenetic clustering in Mab is explained by person-to-person transmission and inform our understanding of transmission inference in emerging, facultative pathogens.
Collapse
Affiliation(s)
- Nicoletta Commins
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Mark R. Sullivan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Kerry McGowen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
| | - Evan M. Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
| | - Eric J. Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA02115
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA02114
| |
Collapse
|
8
|
van Tonder AJ, Ellis HC, Churchward CP, Kumar K, Ramadan N, Benson S, Parkhill J, Moffatt MF, Loebinger MR, Cookson WOC. M ycobacterium avium complex genomics and transmission in a London hospital. Eur Respir J 2023; 61:2201237. [PMID: 36517182 PMCID: PMC10116071 DOI: 10.1183/13993003.01237-2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are environmental microorganisms and opportunistic pathogens in individuals with pre-existing lung conditions such as cystic fibrosis (CF) and non-CF bronchiectasis. While recent studies of Mycobacterium abscessus have identified transmission within single CF centres as well as nationally and globally, transmission of other NTM species is less well studied. METHODS To investigate the potential for transmission of the Mycobacterium avium complex (MAC) we sequenced 996 isolates from 354 CF and non-CF patients at the Royal Brompton Hospital (London, UK; collected 2013-2016) and analysed them in a global context. Epidemiological links were identified from patient records. Previously published genomes were used to characterise global population structures. RESULTS We identified putative transmission clusters in three MAC species, although few epidemiological links could be identified. For M. avium, lineages were largely limited to single countries, while for Mycobacterium chimaera, global transmission clusters previously associated with heater-cooler units (HCUs) were found. However, the immediate ancestor of the lineage causing the major HCU-associated outbreak was a lineage already circulating in patients. CONCLUSIONS CF and non-CF patients shared transmission chains, although the lack of epidemiological links suggested that most transmission is indirect and may involve environmental intermediates or asymptomatic carriage in the wider population.
Collapse
Affiliation(s)
| | - Huw C Ellis
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Kartik Kumar
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Newara Ramadan
- Department of Microbiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Susan Benson
- Department of Microbiology, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| | - Michael R Loebinger
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| | - William O C Cookson
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- These three authors contributed equally
| |
Collapse
|
9
|
Pedace CS, Gonçalves MG, Souza AR, Dos Santos Simeão FC, de Carvalho NFG, Gallo JF, Chimara E. Development of multiplex real-time PCR for detection of clarithromycin resistance genes for the Mycobacterium abscessus group. J Med Microbiol 2023; 72. [PMID: 36920844 DOI: 10.1099/jmm.0.001670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Introduction. The M. abscessus molecular identification and its drug-resistance profile are important to choose the correct therapy.Aim. This work developed a multiplex real-time PCR (mqPCR) for detection of clarithromycin resistance genes for the Mycobacterium abscessus group.Methodology. Isolates received by Adolfo Lutz Institute from 2010 to 2012, identified by PCR restriction enzyme analysis of a fragment of the hsp65 gene (PRA-hsp65) as M. abscessus type 1 (n=135) and 2 (n=71) were used. Drug susceptibility test (DST) for CLA were performed with reading on days 3 and 14. Subespecies identification by hsp65 and rpoB genes sequencing and erm(41) and rrl genes for mutation detection and primer design were performed. erm(41) gene deletion was detected by conventional PCR. Primers and probes were designed for five detections: erm(41) gene full size and with deletion; erm(41) gene T28 and C28; rrl gene A2058.Results. In total, 191/206 (92.7 %) isolates were concordant by all methods and 13/206 (6.3 %) were concordant only between molecular methods. Two isolates (1.0 %) were discordant by mqPCR compared to rrl gene sequencing. The mqPCR obtained 204/206 (99.0 %) isolates in agreement with the gold standard, with sensitivity and specificity of 98 and 100 %, respectively, considering the gold standard method and 92 and 93 % regarding DST.Conclusion. The mqPCR developed by us proved to be an easy-to-apply tool, minimizing time, errors and contamination.
Collapse
Affiliation(s)
- Carolina Salgado Pedace
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Maria Gisele Gonçalves
- Immunology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 10th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Andréia Rodrigues Souza
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Fernanda Cristina Dos Santos Simeão
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Natalia Fernandes Garcia de Carvalho
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Juliana Failde Gallo
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| | - Erica Chimara
- Tuberculosis and Mycobacteriosis Branch, Bacteriology Center, Adolfo Lutz Institute, Avenida Doutor Arnaldo, 351 - 9th floor - Pacaembu, 01246000, São Paulo, Brazil
| |
Collapse
|
10
|
Delineating Mycobacterium abscessus population structure and transmission employing high-resolution core genome multilocus sequence typing. Nat Commun 2022; 13:4936. [PMID: 35999208 PMCID: PMC9399081 DOI: 10.1038/s41467-022-32122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium abscessus is an emerging multidrug-resistant non-tuberculous mycobacterium that causes a wide spectrum of infections and has caused several local outbreaks worldwide. To facilitate standardized prospective molecular surveillance, we established a novel core genome multilocus sequence typing (cgMLST) scheme. Whole genome sequencing data of 1991 isolates were employed to validate the scheme, re-analyze global population structure and set genetic distance thresholds for cluster detection and taxonomic identification. We confirmed and amended the nomenclature of the main dominant circulating clones and found that these also correlate well with traditional 7-loci MLST. Dominant circulating clones could be linked to a corresponding reference genome with less than 250 alleles while 99% of pairwise comparisons between epidemiologically linked isolates were below 25 alleles and 90% below 10 alleles. These thresholds can be used to guide further epidemiological investigations. Overall, the scheme will help to unravel the apparent global spread of certain clonal complexes and as yet undiscovered transmission routes.
Collapse
|
11
|
Kaewprasert O, Tongsima S, Ong RTH, Faksri K. Optimized analysis parameters of variant calling for whole genome-based phylogeny of Mycobacteroides abscessus. Arch Microbiol 2022; 204:190. [PMID: 35194683 DOI: 10.1007/s00203-022-02792-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Whole-genome sequence (WGS) analysis provides the best resolution for reconstructing bacterial phylogeny. However, the resulting tree could vary according to parameters used in the WGS pipeline, making it difficult to compare results across multiple studies. This study compares effects on phylogenies when applying different parameter stringencies. We used as the study model to optimize parameters strains of Mycobacteroides abscessus serially isolated at various intervals, isolates known to represent persistent infection (PI) cases or re-infection (RI) cases and isolates from different subspecies. Un-optimized parameters with low stringency provided an excessive number of SNPs (823) compared to the optimized setting (3 SNPs) between paired strains isolated 1 day apart from PI cases, discordant tree topology and misclassification of subspecies and of instances of RI. We demonstrated that using high-quality variants provides more accuracy for recognizing serial isolates of the same clone versus different clones and for phylogenetic analysis of M. abscessus. Our approach might be used as a model for analyses requiring phylogenetic reconstruction of other bacteria.
Collapse
Affiliation(s)
- Orawee Kaewprasert
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- National Center for Genetics Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
12
|
Abrudan M, Matimba A, Nikolic D, Hughes D, Argimón S, Kekre M, Underwood A, Aanensen DM. Train-the-Trainer as an Effective Approach to Building Global Networks of Experts in Genomic Surveillance of Antimicrobial Resistance (AMR). Clin Infect Dis 2021; 73:S283-S289. [PMID: 34850831 PMCID: PMC8634536 DOI: 10.1093/cid/ciab770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Advanced genomics and sequencing technologies are increasingly becoming critical for global health applications such as pathogen and antimicrobial resistance (AMR) surveillance. Limited resources challenge capacity development in low- and middle-income countries (LMICs), with few countries having genomics facilities and adequately trained staff. Training research and public health experts who are directly involved in the establishment of such facilities offers an effective, but limited, solution to a growing need. Instead, training them to impart their knowledge and skills to others provides a sustainable model for scaling up the much needed capacity and capability for genomic sequencing and analysis locally with global impact. We designed and developed a Train-the-Trainer course integrating pedagogical aspects with genomic and bioinformatics activities. The course was delivered to 18 participants from 12 countries in Africa, Asia, and Latin America. A combination of teaching strategies culminating in a group project created a foundation for continued development at home institutions. Upon follow-up after 6 months, at least 40% of trainees had initiated training programs and collaborations to build capacity at local, national, and regional level. This work provides a framework for implementing a training and capacity building program for the application of genomics tools and resources in AMR surveillance.
Collapse
Affiliation(s)
- Monica Abrudan
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK, and Wellcome Genome Campus, Hinxton, UK
| | - Alice Matimba
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, UK
| | - Dusanka Nikolic
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, UK
| | - Darren Hughes
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, UK
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK, and Wellcome Genome Campus, Hinxton, UK
| | - Mihir Kekre
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK, and Wellcome Genome Campus, Hinxton, UK
| | - Anthony Underwood
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK, and Wellcome Genome Campus, Hinxton, UK
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK, and Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
13
|
Lipworth S, Hough N, Weston N, Muller-Pebody B, Phin N, Myers R, Chapman S, Flight W, Alexander E, Smith EG, Robinson E, Peto TEA, Crook DW, Walker AS, Hopkins S, Eyre DW, Walker TM. Epidemiology of Mycobacterium abscessus in England: an observational study. THE LANCET. MICROBE 2021; 2:e498-e507. [PMID: 34632432 PMCID: PMC8481905 DOI: 10.1016/s2666-5247(21)00128-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mycobacterium abscessus has emerged as a significant clinical concern following reports that it is readily transmissible in health-care settings between patients with cystic fibrosis. We linked routinely collected whole-genome sequencing and health-care usage data with the aim of investigating the extent to which such transmission explains acquisition in patients with and without cystic fibrosis in England. METHODS In this retrospective observational study, we analysed consecutive M abscessus whole-genome sequencing data from England (beginning of February, 2015, to Nov 14, 2019) to identify genomically similar isolates. Linkage to a national health-care usage database was used to investigate possible contacts between patients. Multivariable regression analysis was done to investigate factors associated with acquisition of a genomically clustered strain (genomic distance <25 single nucleotide polymorphisms [SNPs]). FINDINGS 2297 isolates from 906 patients underwent whole-genome sequencing as part of the routine Public Health England diagnostic service. Of 14 genomic clusters containing isolates from ten or more patients, all but one contained patients with cystic fibrosis and patients without cystic fibrosis. Patients with cystic fibrosis were equally likely to have clustered isolates (258 [60%] of 431 patients) as those without cystic fibrosis (322 [63%] of 513 patients; p=0·38). High-density phylogenetic clusters were randomly distributed over a wide geographical area. Most isolates with a closest genetic neighbour consistent with potential transmission had no identifiable relevant epidemiological contacts. Having a clustered isolate was independently associated with increasing age (adjusted odds ratio 1·14 per 10 years, 95% CI 1·04-1·26), but not time spent as an hospital inpatient or outpatient. We identified two sibling pairs with cystic fibrosis with genetically highly divergent isolates and one pair with closely related isolates, and 25 uninfected presumed household contacts with cystic fibrosis. INTERPRETATION Previously identified widely disseminated dominant clones of M abscessus are not restricted to patients with cystic fibrosis and occur in other chronic respiratory diseases. Although our analysis showed a small number of cases where person-to-person transmission could not be excluded, it did not support this being a major mechanism for M abscessus dissemination at a national level in England. Overall, these data should reassure patients and clinicians that the risk of acquisition from other patients in health-care settings is relatively low and motivate future research efforts to focus on identifying routes of acquisition outside of the cystic fibrosis health-care-associated niche. FUNDING The National Institute for Health Research, Health Data Research UK, The Wellcome Trust, The Medical Research Council, and Public Health England.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha Hough
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Natasha Weston
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Berit Muller-Pebody
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Nick Phin
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Richard Myers
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - Stephen Chapman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - William Flight
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eliza Alexander
- National Mycobacterial Reference Service-South, Public Health England, London, UK
| | - E Grace Smith
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Esther Robinson
- National Mycobacterial Reference Service-Central and North, Public Health England, Public Health Laboratory, Birmingham, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Susan Hopkins
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging and Zoonotic Infections and Travel Migrant Health Division, National Infection Service, Public Health England, London, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy M Walker
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| |
Collapse
|
14
|
Davidson RM, Benoit JB, Kammlade SM, Hasan NA, Epperson LE, Smith T, Vasireddy S, Brown-Elliott BA, Nick JA, Olivier KN, Zelazny AM, Daley CL, Strong M, Wallace RJ. Genomic characterization of sporadic isolates of the dominant clone of Mycobacterium abscessus subspecies massiliense. Sci Rep 2021; 11:15336. [PMID: 34321532 PMCID: PMC8319421 DOI: 10.1038/s41598-021-94789-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have characterized a dominant clone (Clone 1) of Mycobacterium abscessus subspecies massiliense (M. massiliense) associated with high prevalence in cystic fibrosis (CF) patients, pulmonary outbreaks in the United States (US) and United Kingdom (UK), and a Brazilian epidemic of skin infections. The prevalence of Clone 1 in non-CF patients in the US and the relationship of sporadic US isolates to outbreak clones are not known. We surveyed a reference US Mycobacteria Laboratory and a US biorepository of CF-associated Mycobacteria isolates for Clone 1. We then compared genomic variation and antimicrobial resistance (AMR) mutations between sporadic non-CF, CF, and outbreak Clone 1 isolates. Among reference lab samples, 57/147 (39%) of patients with M. massiliense had Clone 1, including pulmonary and extrapulmonary infections, compared to 11/64 (17%) in the CF isolate biorepository. Core and pan genome analyses revealed that outbreak isolates had similar numbers of single nucleotide polymorphisms (SNPs) and accessory genes as sporadic US Clone 1 isolates. However, pulmonary outbreak isolates were more likely to have AMR mutations compared to sporadic isolates. Clone 1 isolates are present among non-CF and CF patients across the US, but additional studies will be needed to resolve potential routes of transmission and spread.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA.
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Sara M Kammlade
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - L Elaine Epperson
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Terry Smith
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sruthi Vasireddy
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Barbara A Brown-Elliott
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Kenneth N Olivier
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian M Zelazny
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St., Denver, CO, 80206, USA
| | - Richard J Wallace
- Department of Microbiology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
15
|
Whole-Genome Sequences of Mycobacterium abscessus subsp. massiliense Isolates from Brazil. Microbiol Resour Announc 2021; 10:e0036121. [PMID: 34264116 PMCID: PMC8280865 DOI: 10.1128/mra.00361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Mycobacterium abscessus complex comprises multidrug-resistant, opportunistic, and rapidly growing pathogens responsible for severe infections. Here, we report the genome composition of four Mycobacterium abscessus subsp. massiliense isolates from three sources: two from the lung of a cystic fibrosis patient, one from a mammary cyst, and one from a gutter system.
Collapse
|
16
|
de Moura VCN, Verma D, Everall I, Brown KP, Belardinelli JM, Shanley C, Stapleton M, Parkhill J, Floto RA, Ordway DJ, Jackson M. Increased Virulence of Outer Membrane Porin Mutants of Mycobacterium abscessus. Front Microbiol 2021; 12:706207. [PMID: 34335541 PMCID: PMC8317493 DOI: 10.3389/fmicb.2021.706207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.
Collapse
Affiliation(s)
- Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Isobel Everall
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Karen P Brown
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal Shanley
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R Andres Floto
- Molecular Immunity Unit, Medical Research Council (MRC)-Laboratory of Molecular Biology, University of Cambridge Department of Medicine, Cambridge, United Kingdom.,Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, United Kingdom
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
17
|
Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to Glutaraldehyde in Escherichia coli Mediated by Overexpression of the Aldehyde Reductase YqhD by YqhC. Front Microbiol 2021; 12:680553. [PMID: 34248896 PMCID: PMC8262776 DOI: 10.3389/fmicb.2021.680553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaraldehyde is a widely used biocide on the market for about 50 years. Despite its broad application, several reports on the emergence of bacterial resistance, and occasional outbreaks caused by poorly disinfection, there is a gap of knowledge on the bacterial adaptation, tolerance, and resistance mechanisms to glutaraldehyde. Here, we analyze the effects of the independent selection of mutations in the transcriptional regulator yqhC for biological replicates of Escherichia coli cells subjected to adaptive laboratory evolution (ALE) in the presence of glutaraldehyde. The evolved strains showed improved survival in the biocide (11-26% increase in fitness) as a result of mutations in the activator yqhC, which led to the overexpression of the yqhD aldehyde reductase gene by 8 to over 30-fold (3.1-5.2 log2FC range). The protective effect was exclusive to yqhD as other aldehyde reductase genes of E. coli, such as yahK, ybbO, yghA, and ahr did not offer protection against the biocide. We describe a novel mechanism of tolerance to glutaraldehyde based on the activation of the aldehyde reductase YqhD by YqhC and bring attention to the potential for the selection of such tolerance mechanism outside the laboratory, given the existence of YqhD homologs in various pathogenic and opportunistic bacterial species.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
18
|
Bryant JM, Brown KP, Burbaud S, Everall I, Belardinelli JM, Rodriguez-Rincon D, Grogono DM, Peterson CM, Verma D, Evans IE, Ruis C, Weimann A, Arora D, Malhotra S, Bannerman B, Passemar C, Templeton K, MacGregor G, Jiwa K, Fisher AJ, Blundell TL, Ordway DJ, Jackson M, Parkhill J, Floto RA. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 2021; 372:372/6541/eabb8699. [PMID: 33926925 DOI: 10.1126/science.abb8699] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.
Collapse
Affiliation(s)
- Josephine M Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Karen P Brown
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Sophie Burbaud
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isobel Everall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Sanger Institute, Hinxton, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Daniela Rodriguez-Rincon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dorothy M Grogono
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Chelsea M Peterson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Ieuan E Evans
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Divya Arora
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK
| | - Bridget Bannerman
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kerra Templeton
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Gordon MacGregor
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Kasim Jiwa
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK. .,University of Cambridge Centre for AI in Medicine, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
19
|
Davidson RM. A Closer Look at the Genomic Variation of Geographically Diverse Mycobacterium abscessus Clones That Cause Human Infection and Disease. Front Microbiol 2018; 9:2988. [PMID: 30568642 PMCID: PMC6290055 DOI: 10.3389/fmicb.2018.02988] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium abscessus is a multidrug resistant bacterium that causes pulmonary and extrapulmonary disease. The reported prevalence of pulmonary M. abscessus infections appears to be increasing in the United States (US) and around the world. In the last five years, multiple studies have utilized whole genome sequencing to investigate the genetic epidemiology of two clinically relevant subspecies, M. abscessus subsp. abscessus (MAB) and M. abscessus subsp. massiliense (MMAS). Phylogenomic comparisons of clinical isolates revealed that substantial proportions of patients have MAB and MMAS isolates that belong to genetically similar clusters also known as ‘dominant clones’. Unlike the genetic lineages of Mycobacterium tuberculosis that tend to be geographically clustered, the MAB and MMAS clones have been found in clinical populations from the US, Europe, Australia and South America. Moreover, the clones have been associated with worse clinical outcomes and show increased pathogenicity in macrophage and mouse models. While some have suggested that they may have spread locally and then globally through ‘indirect transmission’ within cystic fibrosis (CF) clinics, isolates of these clones have also been associated with sporadic pulmonary infections in non-CF patients and unrelated hospital-acquired soft tissue infections. M. abscessus has long been thought to be acquired from the environment, but the prevalence, exposure risk and environmental reservoirs of the dominant clones are currently not known. This review summarizes the genomic studies of M. abscessus and synthesizes the current knowledge surrounding the geographically diverse dominant clones identified from patient samples. Furthermore, it discusses the limitations of core genome comparisons for studying these genetically similar isolates and explores the breadth of accessory genome variation that has been observed to date. The combination of both core and accessory genome variation among these isolates may be the key to elucidating the origin, spread and evolution of these frequent genotypes.
Collapse
Affiliation(s)
- Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| |
Collapse
|
20
|
Ryan K, Byrd TF. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front Microbiol 2018; 9:2642. [PMID: 30443245 PMCID: PMC6221961 DOI: 10.3389/fmicb.2018.02642] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
In this review we will focus on unique aspects of Mycobacterium abscessus (MABS) which we feel earn it the designation of "shapeshifter of the mycobacterial world." We will review its emergence as a distinct species, the recognition and description of MABS subspecies which are only now being clearly defined in terms of pathogenicity, its ability to exist in different forms favoring a saprophytic lifestyle or one more suitable to invasion of mammalian hosts, as well as current challenges in terms of antimicrobial therapy and future directions for research. One can see in the various phases of MABS, a species transitioning from a free living saprophyte to a host-adapted pathogen.
Collapse
Affiliation(s)
- Keenan Ryan
- Department of Pharmacy, University of New Mexico Hospital, Albuquerque, NM, United States
| | - Thomas F. Byrd
- Department of Medicine, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
21
|
Martiniano SL, Davidson RM, Nick JA. Nontuberculous mycobacteria in cystic fibrosis: Updates and the path forward. Pediatr Pulmonol 2017; 52:S29-S36. [PMID: 28881094 DOI: 10.1002/ppul.23825] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023]
Abstract
Nontuberculous mycobacteria (NTM) are troublesome pathogens that can cause significant pulmonary disease in patients with cystic fibrosis (CF). Diagnosis can be difficult in the setting of underlying CF and treatment regimens are burdensome on both patients and providers. Recent consensus guidelines for treatment of NTM in CF have provided a guide for the CF community, however research is lagging regarding accuracy of our diagnostic abilities and treatment efficacy. In this review, we provide new insights into the complexity of NTM from emerging whole genome sequencing data, a summary of current NTM diagnosis and treatment guidelines, highlight new treatment options, and discuss future research projects which aim to better define which patients to treat and timing and duration of treatment.
Collapse
Affiliation(s)
- Stacey L Martiniano
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado
| |
Collapse
|