1
|
Ziklo N, Bibi M, Sinai L, Salama P. Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest. Microorganisms 2024; 12:1581. [PMID: 39203423 PMCID: PMC11356291 DOI: 10.3390/microorganisms12081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Niacinamide is a versatile compound widely used in the personal care industry for its ample skin benefits. As a precursor to nicotinamide adenine dinucleotide (NAD+), essential for ATP production and a substrate for poly-ADP-ribose polymerase-1 (PARP-1), studies have highlighted its roles in DNA repair, cellular stress mechanisms, and anti-aging benefits. Niacinamide was also studied for its antimicrobial activity, particularly in the context of host-infection via host immune response, yet its direct antimicrobial activity and the mechanisms of action remain unclear. Its multifunctionality makes it an appealing bioactive molecule for skincare products as well as a potential preservative solution. This study explores niacinamide's antimicrobial mode of action against four common cosmetic pathogens. Our findings indicate that niacinamide is causing microbial cell cycle arrest; while cells were found to increase their volume and length under treatment to prepare for cell division, complete separation into two daughter cells was prevented. Fluorescence microscopy revealed expanded chromatin, alongside a decreased RNA expression of the DNA-binding protein gene, dps. Finally, niacinamide was found to directly interact with DNA, hindering successful amplification. These unprecedented findings allowed us to add a newly rationalized preservative facete to the wide range of niacinamide multi-functionality.
Collapse
Affiliation(s)
| | | | | | - Paul Salama
- Innovation Department, Sharon Personal Care Ltd., Eli Horovitz St. 4, Rehovot 7608810, Israel; (N.Z.); (M.B.); (L.S.)
| |
Collapse
|
2
|
Basu Choudhury G, Datta S. Implication of Molecular Constraints Facilitating the Functional Evolution of Pseudomonas aeruginosa KPR2 into a Versatile α-Keto-Acid Reductase. Biochemistry 2024; 63:1808-1823. [PMID: 38962820 DOI: 10.1021/acs.biochem.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Theoretical concepts linking the structure, function, and evolution of a protein, while often intuitive, necessitate validation through investigations in real-world systems. Our study empirically explores the evolutionary implications of multiple gene copies in an organism by shedding light on the structure-function modulations observed in Pseudomonas aeruginosa's second copy of ketopantoate reductase (PaKPR2). We demonstrated with two apo structures that the typical active site cleft of the protein transforms into a two-sided pocket where a molecular gate made up of two residues controls the substrate entry site, resulting in its inactivity toward the natural substrate ketopantoate. Strikingly, this structural modification made the protein active against several important α-keto-acid substrates with varied efficiency. Structural constraints at the binding site for this altered functional trait were analyzed with two binary complexes that show the conserved residue microenvironment faces restricted movements due to domain closure. Finally, its mechanistic highlights gathered from a ternary complex structure help in delineating the molecular perspectives behind its kinetic cooperativity toward these broad range of substrates. Detailed structural characteristics of the protein presented here also identified four key amino acid residues responsible for its versatile α-keto-acid reductase activity, which can be further modified to improve its functional properties through protein engineering.
Collapse
Affiliation(s)
- Gourab Basu Choudhury
- CSIR-Indian Institute of Chemical Biology, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saumen Datta
- CSIR-Indian Institute of Chemical Biology, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ambreetha S, Zincke D, Balachandar D, Mathee K. Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J Med Microbiol 2024; 73. [PMID: 38362900 DOI: 10.1099/jmm.0.001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most versatile bacteria with renowned pathogenicity and extensive drug resistance. The diverse habitats of this bacterium include fresh, saline and drainage waters, soil, moist surfaces, taps, showerheads, pipelines, medical implants, nematodes, insects, plants, animals, birds and humans. The arsenal of virulence factors produced by P. aeruginosa includes pyocyanin, rhamnolipids, siderophores, lytic enzymes, toxins and polysaccharides. All these virulent elements coupled with intrinsic, adaptive and acquired antibiotic resistance facilitate persistent colonization and lethal infections in different hosts. To date, treating pulmonary diseases remains complicated due to the chronic secondary infections triggered by hospital-acquired P. aeruginosa. On the contrary, this bacterium can improve plant growth by suppressing phytopathogens and insects. Notably, P. aeruginosa is one of the very few bacteria capable of trans-kingdom transmission and infection. Transfer of P. aeruginosa strains from plant materials to hospital wards, animals to humans, and humans to their pets occurs relatively often. Recently, we have identified that plant-associated P. aeruginosa strains could be pathologically similar to clinical isolates. In this review, we have highlighted the genomic and metabolic factors that facilitate the dominance of P. aeruginosa across different biological kingdoms and the varying roles of this bacterium in plant and human health.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Diansy Zincke
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Fu T, Gifford DR, Knight CG, Brockhurst MA. Eco-evolutionary dynamics of experimental Pseudomonas aeruginosa populations under oxidative stress. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001396. [PMID: 37943284 PMCID: PMC10710836 DOI: 10.1099/mic.0.001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023]
Abstract
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria. In this study, we show that strains of the opportunistic pathogenic bacterium Pseudomonas aeruginosa vary in their eco-evolutionary responses to hydrogen peroxide stress. By quantifying their 24 h growth kinetics across hydrogen peroxide gradients we show that a transmissible epidemic strain isolated from a chronic airway infection of a cystic fibrosis patient, LESB58, is much more susceptible to hydrogen peroxide than either of the reference strains, PA14 or PAO1, with PAO1 showing the lowest susceptibility. Using a 12 day serial passaging experiment combined with a mathematical model, we then show that short-term susceptibility controls the longer-term survival of populations exposed to subinhibitory levels of hydrogen peroxide, but that phenotypic evolutionary responses can delay population extinction. Our model further suggests that hydrogen peroxide driven extinctions are more likely with higher rates of population turnover. Together, these findings suggest that hydrogen peroxide is likely to be an effective defence in host niches where there is high population turnover, which may explain the counter-intuitively high susceptibility of a strain isolated from chronic lung infection, where such ecological dynamics may be slower.
Collapse
Affiliation(s)
- Taoran Fu
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Danna R. Gifford
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PT, UK
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Lucassen R, van Leuven N, Bockmühl D. A loophole in soap dispensers mediates contamination with Gram-negative bacteria. Microbiologyopen 2023; 12:e1384. [PMID: 37877653 PMCID: PMC10541457 DOI: 10.1002/mbo3.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Liquid soap dispensers are widely used in domestic and clinical settings. In previous studies, the risk of bacterial contamination of refillable systems was pointed out and a bacterial contamination rate of 25%, with values of up to 108 colony-forming units/mL (CFU/mL), was reported. However, the route of contamination remains elusive. To address this point, we determined the microbial contamination of refillable standard pump dispensers and nonrefillable press-dispenser systems. Following the collection of 104 liquid soap dispensers from hotel rooms across Germany, bacterial counts were determined. Isolates of samples containing nonfastidious Gram-negative(lac-) bacteria were further analyzed by the Vitek 2 system for the determination of species. 70.2% of the refillable pump dispensers (mean total bacterial count = 2.2 × 105 CFU/mL) but only 10.6% of the nonrefillable press dispensers, were contaminated (mean total bacterial count = 1.5 × 101 CFU/mL). Of samples containing nonfastidious Gram-negative(lac-) bacteria, Pluralibacter gergoviae was present in 41.7%, Pseudomonads (Pseudomonas aeruginosa and Pseudomonas putida) in 25%, Serratia marcescens in 16.7%, and Klebsiella oxytoca and Pasteurella testudinis in 8.3%. After the initial assessment, we contaminated different dispensing systems with P. aeruginosa/P. gergoviae, to reveal the route of contamination and identied the pressure release of standard pump dispensers as the loophole for microbial contamination.
Collapse
Affiliation(s)
- Ralf Lucassen
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| | - Nicole van Leuven
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| | - Dirk Bockmühl
- Faculty of Life SciencesRhine Waal University of Applied SciencesKleveGermany
| |
Collapse
|
6
|
Parfitt KM, Green AE, Connor TR, Neill DR, Mahenthiralingam E. Identification of two distinct phylogenomic lineages and model strains for the understudied cystic fibrosis lung pathogen Burkholderia multivorans. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001366. [PMID: 37526960 PMCID: PMC10482378 DOI: 10.1099/mic.0.001366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Burkholderia multivorans is the dominant Burkholderia pathogen recovered from lung infection in people with cystic fibrosis. However, as an understudied pathogen there are knowledge gaps in relation to its population biology, phenotypic traits and useful model strains. A phylogenomic study of B. multivorans was undertaken using a total of 283 genomes, of which 73 were sequenced and 49 phenotypically characterized as part of this study. Average nucleotide identity analysis (ANI) and phylogenetic alignment of core genes demonstrated that the B. multivorans population separated into two distinct evolutionary clades, defined as lineage 1 (n=58 genomes) and lineage 2 (n=221 genomes). To examine the population biology of B. multivorans, a representative subgroup of 77 B. multivorans genomes (28 from the reference databases and the 49 novel short-read genome sequences) were selected based on multilocus sequence typing (MLST), isolation source and phylogenetic placement criteria. Comparative genomics was used to identify B. multivorans lineage-specific genes - ghrB_1 in lineage 1 and glnM_2 in lineage 2 - and diagnostic PCRs targeting them were successfully developed. Phenotypic analysis of 49 representative B. multivorans strains showed considerable inter-strain variance, but the majority of the isolates tested were motile and capable of biofilm formation. A striking absence of B. multivorans protease activity in vitro was observed, but no lineage-specific phenotypic differences were demonstrated. Using phylogenomic and phenotypic criteria, three model B. multivorans CF strains were identified, BCC0084 (lineage 1), BCC1272 (lineage 2a) and BCC0033 lineage 2b, and their complete genome sequences determined. B. multivorans CF strains BCC0033 and BCC0084, and the environmental reference strain, ATCC 17616, were all capable of short-term survival within a murine lung infection model. By mapping the population biology, identifying lineage-specific PCRs and model strains, we provide much needed baseline resources for future studies of B. multivorans.
Collapse
Affiliation(s)
- Kasia M. Parfitt
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
- Present address: Department of Biology, Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, University of Oxford, Oxford OX3 7LF, UK
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Thomas R. Connor
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Present address: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK, UK
| | - Eshwar Mahenthiralingam
- Cardiff University, Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, CF10 3AX, UK
| |
Collapse
|
7
|
Böhning J, Dobbelstein AW, Sulkowski N, Eilers K, von Kügelgen A, Tarafder AK, Peak-Chew SY, Skehel M, Alva V, Filloux A, Bharat TAM. Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011177. [PMID: 37058467 PMCID: PMC10104325 DOI: 10.1371/journal.ppat.1011177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/03/2023] [Indexed: 04/15/2023] Open
Abstract
Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor β-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
- Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Adrian W. Dobbelstein
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Nina Sulkowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kira Eilers
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Abul K. Tarafder
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sew-Yeu Peak-Chew
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Tanmay A. M. Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| |
Collapse
|
8
|
Selection of Relevant Bacterial Strains for Novel Therapeutic Testing: a Guidance Document for Priority Cystic Fibrosis Lung Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
People with cystic fibrosis (CF) suffer chronic lung infections with a range of antimicrobial-resistant bacterial pathogens. There is an urgent need for researchers to develop novel anti-infectives to treat these problematic infections, but how can we select bacterial strains which are relevant for robust testing and comparative research?
Recent Findings
Pseudomonas aeruginosa, Burkholderia cepacia complex and Burkholderia gladioli, Mycobacterium abscessus complex, Staphylococcus aureus, Haemophilus influenza, and several multidrug-resistant Gram-negative species were selected as key CF infections that urgently require new therapeutics. Reference isolates and strain panels were identified, and a summary of the known genotypic diversity of each pathogen was provided.
Summary
Here, we summarise the current strain resources available for priority CF bacterial pathogens and highlight systematic selection criteria that researchers can use to select strains for use in therapeutic testing.
Collapse
|
9
|
Grandy S, Raudonis R, Cheng Z. The identification of Pseudomonas aeruginosa persisters using flow cytometry. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36287586 DOI: 10.1099/mic.0.001252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa persisters are a rare and poorly characterized subpopulation of cells that are responsible for many recurrent infections. The lack of knowledge on the mechanisms that lead to persister cell development is mainly a result of the difficulty in isolating and characterizing this rare population. Flow cytometry is an ideal method for identifying such subpopulations because it allows for high-content single-cell analysis. However, there are fewer established protocols for bacterial flow cytometry compared to mammalian cell work. Herein, we describe and propose a flow cytometry protocol to identify and isolate P. aeruginosa persister cells. Additionally, we show that the percentage of potential persister cells increases with increasing antibiotic concentrations above the MIC.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
10
|
Kusumawardhani H, Hosseini R, Verschoor JA, de Winde JH. Comparative analysis reveals the modular functional structure of conjugative megaplasmid pTTS12 of Pseudomonas putida S12: A paradigm for transferable traits, plasmid stability, and inheritance? Front Microbiol 2022; 13:1001472. [PMID: 36212887 PMCID: PMC9537497 DOI: 10.3389/fmicb.2022.1001472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Originating from various environmental niches, large numbers of bacterial plasmids have been found carrying heavy metal and antibiotic resistance genes, degradation pathways and specific transporter genes for organic solvents or aromatic compounds. Such genes may constitute promising candidates for novel synthetic biology applications. Our systematic analysis of gene clusters encoded on megaplasmid pTTS12 from Pseudomonas putida S12 underscores that a large portion of its genes is involved in stress response to increase survival under harsh conditions like the presence of heavy metal and organic solvent. We investigated putative roles of genes encoded on pTTS12 and further elaborated on their roles in the establishment and maintenance under several stress conditions, specifically focusing on solvent tolerance in P. putida strains. The backbone of pTTS12 was found to be closely related to that of the carbapenem-resistance plasmid pOZ176, member of the IncP-2 incompatibility group, although the carbapenem resistance cassette is absent from pTTS12. Megaplasmid pTTS12 contains multiple transposon-flanked cassettes mediating resistance to various heavy metals such as tellurite, chromate (Tn7), and mercury (Tn5053 and Tn5563). Additionally, pTTS12 also contains a P-type, Type IV secretion system (T4SS) supporting self-transfer to other P. putida strains. This study increases our understanding in the modular structure of pTTS12 as a member of IncP-2 plasmid family and several promising exchangeable gene clusters to construct robust microbial hosts for biotechnology applications.
Collapse
Affiliation(s)
- Hadiastri Kusumawardhani
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | | - Johannes H. de Winde
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Johannes H. de Winde,
| |
Collapse
|
11
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
12
|
Fang Y, Baloch Z, Zhang W, Hu Y, Zheng R, Song Y, Tai W, Xia X. Emergence of Carbapenem-Resistant ST244, ST292, and ST2446 Pseudomonas aeruginosa Clones in Burn Patients in Yunnan Province. Infect Drug Resist 2022; 15:1103-1114. [PMID: 35321081 PMCID: PMC8935738 DOI: 10.2147/idr.s353130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing persistently, particularly in burn ward isolates. Here, we investigate the prevalence of carbapenem-resistant Pseudomonas aeruginosa in a burn ward of a provincial-level hospital at Kunming, Yunnan province, China. Methods A total of 118 P. aeruginosa strains were isolated from 57 hospitalized patients, and their MICs were measured. Carbapenem-resistant isolates were selected for multilocus sequence typing (MLST). Carbapenem-resistance mechanisms were identified by examining carbapenemase genes and OprD protein and Carba-NP testing. Representative isolates were further characterized by de novo sequencing for carbapenemase molecular background. Results Among 118 P. aeruginosa isolates, 54 (54/118,45.8%) were carbapenem-resistant Pseudomonas aeruginosa, and 3 genotypes were found (ST292, ST244, and ST2446). Non-carbapenemase-producing ST292 was the most prevalent ST, followed by ST2446 and ST244. A novel 13-bp oprD deletion was found in the ST292 clone, which formed the truncated outer membrane protein and may cause carbapenem resistance. ST244 and ST2446 harbored blaIMP-45 and blaIMP-87, respectively. blaIMP-45 is located in a megaplasmid, together with aac(6’)-Ib3, blaOXA-1, catB3, qnrVC6, armA, msr(E), mph(E), aph(3’)-Ia, tetC/tetR, aac(6’)-Ib3, floR, mexC-mexD-oprJ, fosA and lead to extensive drug resistance. ST2446 contains a carbapenem-resistant gene blaIMP-87 on the chromosome and is acquired by a novel gene cassette array (blaIMP-87-ant(2”)-Ia-blaOXA-10-aac(6’)-Ib3) of class 1 integron. Discussion For the first time, ST244, ST292 and ST2446 are reported emerging in burn patients, with distinctive carbapenem-resistance mechanisms, respectively. The obtained results highlight the need to surveillance carbapenem-resistant isolates in burn patients.
Collapse
Affiliation(s)
- Yue Fang
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| | - Zulqarnain Baloch
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| | - Wei Zhang
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Ying Hu
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Rui Zheng
- The First Hospital of Yunnan Province & The Affiliated Hospital, Kunming University of Science and Technology, Kunming, Yunnan, 650034, People’s Republic of China
| | - Yuzhu Song
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
- Correspondence: Yuzhu Song; Xueshan Xia, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China, Tel +86-871-65920756, Fax +86-871-65920570, Email ;
| | - Wenlin Tai
- The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, People’s Republic of China
| | - Xueshan Xia
- The Affiliated AnNing First Hospital & Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People’s Republic of China
| |
Collapse
|
13
|
Characterization of a Conjugative Multidrug Resistance IncP-2 Megaplasmid, pPAG5, from a Clinical Pseudomonas aeruginosa Isolate. Microbiol Spectr 2022; 10:e0199221. [PMID: 35171033 PMCID: PMC8849076 DOI: 10.1128/spectrum.01992-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of resistance genes via horizontal plasmid transfer plays a significant role in the formation of multidrug-resistant (MDR) Pseudomonas aeruginosa strains. Here, we identified a megaplasmid (ca. 513 kb), designated pPAG5, which was recovered from a clinical multidrug-resistant P. aeruginosa PAG5 strain. The pPAG5 plasmid belonged to the IncP-2 incompatibility group. Two large multidrug resistance regions (MDR-1 and MDR-2) and two heavy metal resistance operons (merEDACPTR and terZABCDE) were identified in the pPAG5 plasmid. Genetic analysis demonstrated that the formation of MDR regions was mediated by several homologous recombination events. Further conjugation assays identified that pPAG5 could be transferred to P. aeruginosa but not Escherichia coli. Antimicrobial susceptibility testing on transconjugants demonstrated that pPAG5 was capable of transferring resistance genes to transconjugants and producing a multidrug-resistant phenotype. Comparative analysis revealed that pPAG5 and related plasmids shared an overall similar backbone, including genes essential for replication (repA), partition (par), and conjugal transfer (tra). Further phylogenetic analysis showed that pPAG5 was closely related to plasmids pOZ176 and pJB37, both of which are members of the IncP-2-type plasmid group. IMPORTANCE The emergence and spread of plasmid-associated multidrug resistance in bacterial pathogens is a key global threat to public health. It is important to understand the mechanisms of the formation and evolution of these plasmids in patients, hospitals, and the environment. In this study, we detailed the genetic characteristics of a multidrug resistance IncP-2 megaplasmid, pPAG5, and investigated the formation of its MDR regions and evolution. To the best of our knowledge, plasmid pPAG5 is the largest multidrug resistance plasmid ever sequenced in the Pseudomonas genus. Our results may provide further insight into the formation of multidrug resistance plasmids in bacteria and the molecular evolution of plasmids.
Collapse
|
14
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
15
|
Abstract
Naturally occurring plasmids come in different sizes. The smallest are less than a kilobase of DNA, while the largest can be over three orders of magnitude larger. Historically, research has tended to focus on smaller plasmids that are usually easier to isolate, manipulate and sequence, but with improved genome assemblies made possible by long-read sequencing, there is increased appreciation that very large plasmids—known as megaplasmids—are widespread, diverse, complex, and often encode key traits in the biology of their host microorganisms. Why are megaplasmids so big? What other features come with large plasmid size that could affect bacterial ecology and evolution? Are megaplasmids 'just' big plasmids, or do they have distinct characteristics? In this perspective, we reflect on the distribution, diversity, biology, and gene content of megaplasmids, providing an overview to these large, yet often overlooked, mobile genetic elements. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.
Collapse
Affiliation(s)
- James P J Hall
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - João Botelho
- Antibiotic Resistance Evolution Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Adrian Cazares
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
16
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
17
|
Rushton L, Donoghue D, Bull M, Jay P, Mahenthiralingam E. Construction and evaluation of a bioluminescent Pseudomonas aeruginosa reporter for use in preservative efficacy testing. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001072. [PMID: 34382924 PMCID: PMC8513615 DOI: 10.1099/mic.0.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
Preservative efficacy testing (PET) is a fundamental practice in industrial microbiology used to ensure product shelf-life and quality. To improve on current growth-based PET, bioluminescence was evaluated as a real-time bacterial viability indicator using Pseudomonas aeruginosa. Random mutagenesis of an industrial P. aeruginosa strain with a promoter-less luxCDABE mini-Tn5 was used to select a stable reporter (LUX12H5) with an un-altered growth and preservative susceptibility phenotype. Bioluminescence and viability were measured with and without preservatives (isothiazolinones, phenoxyethanol, and dimethyl dimethylol hydantoin) and an antibiotic comparator (ciprofloxacin). In the absence of antimicrobials, a good correlation between bioluminescence and viability (r2=0.92) was established. However, metabolic inhibition by isothiazolinone preservatives caused a rapid decline in light output that did not correlate to a reduced viability. Conversely, after ciprofloxacin exposure, the decline in viability was greater than that of bioluminescence. A positive attribute of the bioluminescence was the early detection of metabolic recovery and re-growth of preservative injured bacteria. Overall, while initial bioluminescence read-outs were less suited to current PET requirements, it shows promise as an early, direct indicator of bacterial regrowth in the context of long-term evaluation of preservative efficacy.
Collapse
Affiliation(s)
- Laura Rushton
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Matthew Bull
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
- Present address: Public Health Wales Microbiology, University Hospital Wales, Cardiff, Wales, UK
| | - Peter Jay
- Unilever R&D Port Sunlight, Wirral, Merseyside, UK
| | | |
Collapse
|
18
|
Urbanowicz P, Bitar I, Izdebski R, Baraniak A, Literacka E, Hrabák J, Gniadkowski M. Epidemic Territorial Spread of IncP-2-Type VIM-2 Carbapenemase-Encoding Megaplasmids in Nosocomial Pseudomonas aeruginosa Populations. Antimicrob Agents Chemother 2021; 65:e02122-20. [PMID: 33526490 PMCID: PMC8097432 DOI: 10.1128/aac.02122-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 11/20/2022] Open
Abstract
In 2003 to 2004, the first five VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) isolates with an In4-like integron, In461 (aadB-blaVIM-2-aadA6), on conjugative plasmids were identified in three hospitals in Poland. In 2005 to 2015, MPPA expanded much in the country, and as many as 80 isolates in a collection of 454 MPPA (∼18%) had In461, one of the two most common MBL-encoding integrons. The organisms occurred in 49 hospitals in 33 cities of 11/16 main administrative regions. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) classified them into 55 pulsotypes and 35 sequence types (STs), respectively, revealing their remarkable genetic diversity overall, with only a few small clonal clusters. S1 nuclease/hybridization assays and mating of 63 representative isolates showed that ∼85% of these had large In461-carrying plasmids, ∼350 to 550 kb, usually self-transmitting with high efficiency (∼10-1 to 10-2 per donor cell). The plasmids from 19 isolates were sequenced and subjected to structural and single-nucleotide-polymorphism (SNP)-based phylogenetic analysis. These formed a subgroup within a family of IncP-2-type megaplasmids, observed worldwide in pseudomonads from various environments and conferring resistance/tolerance to multiple stress factors, including antibiotics. Their microdiversity in Poland arose mainly from acquisition of different accessory fragments, as well as new resistance genes and multiplication of these. Short-read sequence and/or PCR mapping confirmed the In461-carrying plasmids in the remaining isolates to be the IncP-2 types. The study demonstrated a large-scale epidemic spread of multidrug resistance plasmids in P. aeruginosa populations, creating an epidemiological threat. It contributes to the knowledge on IncP-2 types, which are interesting research objects in resistance epidemiology, environmental microbiology, and biotechnology.
Collapse
Affiliation(s)
- Paweł Urbanowicz
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Ibrahim Bitar
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Radosław Izdebski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Anna Baraniak
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Elżbieta Literacka
- Department of Epidemiology and Clinical Microbiology, The National Reference Centre for Susceptibility Testing, National Medicines Institute, Warsaw, Poland
| | - Jaroslav Hrabák
- Biomedical Center, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Marek Gniadkowski
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| |
Collapse
|
19
|
Molina-Mora JA, Chinchilla-Montero D, García-Batán R, García F. Genomic context of the two integrons of ST-111 Pseudomonas aeruginosa AG1: A VIM-2-carrying old-acquaintance and a novel IMP-18-carrying integron. INFECTION GENETICS AND EVOLUTION 2021; 89:104740. [PMID: 33516973 DOI: 10.1016/j.meegid.2021.104740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections mainly in immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials. P. aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple antibiotics, including carbapenems, due to the activity of VIM-2 and IMP-18 metallo-β-lactamases (MBLs). These genes are harbored in two class 1 integrons located inone out of the 57 PaeAG1 genomic islands. However, the genomic context associated to these determinants in PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To select related genomes to PaeAG1, we implemented a pan-genome analysis to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the PaeAG1 genomic islands content in the related strains and finally we described the architecture and possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying integrons. Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome revealed that complete genome sequences are able to separate clones by MLST profile, including a clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in the same known region found in other two ST-111 strains. Also, PaeAG1 has an exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with an arrangement never reported before. Altogether, we provide new insights about the genomic determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using comparative genomics.
Collapse
Affiliation(s)
| | | | - Raquel García-Batán
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| | - Fernando García
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| |
Collapse
|
20
|
Balabanova L, Shkryl Y, Slepchenko L, Cheraneva D, Podvolotskaya A, Bakunina I, Nedashkovskaya O, Son O, Tekutyeva L. Genomic Features of a Food-Derived Pseudomonas aeruginosa Strain PAEM and Biofilm-Associated Gene Expression under a Marine Bacterial α-Galactosidase. Int J Mol Sci 2020; 21:ijms21207666. [PMID: 33081309 PMCID: PMC7593944 DOI: 10.3390/ijms21207666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The biofilm-producing strains of P. aeruginosa colonize various surfaces, including food products and industry equipment that can cause serious human and animal health problems. The biofilms enable microorganisms to evolve the resistance to antibiotics and disinfectants. Analysis of the P. aeruginosa strain (serotype O6, sequence type 2502), isolated from an environment of meat processing (PAEM) during a ready-to-cook product storage (−20 °C), showed both the mosaic similarity and differences between free-living and clinical strains by their coding DNA sequences. Therefore, a cold shock protein (CspA) has been suggested for consideration of the evolution probability of the cold-adapted P. aeruginosa strains. In addition, the study of the action of cold-active enzymes from marine bacteria against the food-derived pathogen could contribute to the methods for controlling P. aeruginosa biofilms. The genes responsible for bacterial biofilm regulation are predominantly controlled by quorum sensing, and they directly or indirectly participate in the synthesis of extracellular polysaccharides, which are the main element of the intercellular matrix. The levels of expression for 14 biofilm-associated genes of the food-derived P. aeruginosa strain PAEM in the presence of different concentrations of the glycoside hydrolase of family 36, α-galactosidase α-PsGal, from the marine bacterium Pseudoalteromonas sp. KMM 701 were determined. The real-time PCR data clustered these genes into five groups according to the pattern of positive or negative regulation of their expression in response to the action of α-galactosidase. The results revealed a dose-dependent mechanism of the enzymatic effect on the PAEM biofilm synthesis and dispersal genes.
Collapse
Affiliation(s)
- Larissa Balabanova
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- Correspondence: (L.B.); (Y.S.)
| | - Yuri Shkryl
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia
- Correspondence: (L.B.); (Y.S.)
| | - Lubov Slepchenko
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Daria Cheraneva
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Anna Podvolotskaya
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Irina Bakunina
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Olga Nedashkovskaya
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, the Russian Academy of Sciences, 690022 Vladivostok, Russia; (L.S.); (D.C.); (I.B.); (O.N.)
| | - Oksana Son
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| | - Liudmila Tekutyeva
- Basic Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, 690090 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
| |
Collapse
|
21
|
Salicylate UV-Filters in Sunscreen Formulations Compromise the Preservative System Efficacy against Pseudomonas aeruginosa and Burkholderia cepacia. COSMETICS 2020. [DOI: 10.3390/cosmetics7030063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Contamination of personal-care products are a serious health concern and therefore, preservative solutions are necessary for the costumers’ safety. High sun protection factor (SPF) sunscreen formulations are known to be difficult to preserve, due to their high ratio of organic phase containing the UV-filters. Salicylate esters such as octyl salicylate (OS) and homosalate (HS) are among the most common UV-filters currently used in the market, and can undergo hydrolysis by esterase molecules produced by contaminant microorganisms. The hydrolysis product, salicylic acid (SA) can be assimilated by certain bacteria that contain the chorismate pathway, in which its final product is pyochelin, an iron-chelating siderophore. Here, we show that OS and HS can compromise the preservative efficacy against two pathogenic important bacteria, Pseudomonas aeruginosa and Burkholderia cepacia. Challenge tests of formulations containing the UV-filters demonstrated that only bacteria with the chorismate pathway failed to be eradicated by the preservation system. mRNA expression levels of the bacterial pchD gene, which metabolizes SA to produce pyochelin, indicate a significant increase that was in correlation with increasing concentrations of both OS and HS. These data suggest that certain UV-filters can provide a source for bacterial resistance against common preservatives in sunscreen formulations.
Collapse
|
22
|
Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. DIVERSITY 2020. [DOI: 10.3390/d12080289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Pseudomonas genus includes many species living in diverse environments and hosts. It is important to understand which are the major evolutionary groups and what are the genomic/proteomic components they have in common or are unique. Towards this goal, we analyzed 494 complete Pseudomonas proteomes and identified 297 core-orthologues. The subsequent phylogenomic analysis revealed two well-defined species (Pseudomonas aeruginosa and Pseudomonas chlororaphis) and four wider phylogenetic groups (Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas syringae, Pseudomonas putida) with a sufficient number of proteomes. As expected, the genus-level core proteome was highly enriched for proteins involved in metabolism, translation, and transcription. In addition, between 39–70% of the core proteins in each group had a significant presence in each of all the other groups. Group-specific core proteins were also identified, with P. aeruginosa having the highest number of these and P. fluorescens having none. We identified several P. aeruginosa-specific core proteins (such as CntL, CntM, PlcB, Acp1, MucE, SrfA, Tse1, Tsi2, Tse3, and EsrC) that are known to play an important role in its pathogenicity. Finally, a holin family bacteriocin and a mitomycin-like biosynthetic protein were found to be core-specific for P. cholororaphis and we hypothesize that these proteins may confer a competitive advantage against other root-colonizers.
Collapse
|
23
|
A Novel Inducible Prophage from Burkholderia Vietnamiensis G4 is Widely Distributed across the Species and Has Lytic Activity against Pathogenic Burkholderia. Viruses 2020; 12:v12060601. [PMID: 32486377 PMCID: PMC7354579 DOI: 10.3390/v12060601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022] Open
Abstract
Burkholderia species have environmental, industrial and medical significance, and are important opportunistic pathogens in individuals with cystic fibrosis (CF). Using a combination of existing and newly determined genome sequences, this study investigated prophage carriage across the species B. vietnamiensis, and also isolated spontaneously inducible prophages from a reference strain, G4. Eighty-one B. vietnamiensis genomes were bioinformatically screened for prophages using PHASTER (Phage Search Tool Enhanced Release) and prophage regions were found to comprise up to 3.4% of total genetic material. Overall, 115 intact prophages were identified and there was evidence of polylysogeny in 32 strains. A novel, inducible Mu-like phage (vB_BvM-G4P1) was isolated from B. vietnamiensis G4 that had lytic activity against strains of five Burkholderia species prevalent in CF infections, including the Boston epidemic B. dolosa strain SLC6. The cognate prophage to vB_BvM-G4P1 was identified in the lysogen genome and was almost identical (>93.5% tblastx identity) to prophages found in 13 other B. vietnamiensis strains (17% of the strain collection). Phylogenomic analysis determined that the G4P1-like prophages were widely distributed across the population structure of B. vietnamiensis. This study highlights how genomic characterization of Burkholderia prophages can lead to the discovery of novel bacteriophages with potential therapeutic or biotechnological applications.
Collapse
|
24
|
Cazares A, Moore MP, Hall JPJ, Wright LL, Grimes M, Emond-Rhéault JG, Pongchaikul P, Santanirand P, Levesque RC, Fothergill JL, Winstanley C. A megaplasmid family driving dissemination of multidrug resistance in Pseudomonas. Nat Commun 2020; 11:1370. [PMID: 32170080 PMCID: PMC7070040 DOI: 10.1038/s41467-020-15081-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Multidrug resistance (MDR) represents a global threat to health. Here, we used whole genome sequencing to characterise Pseudomonas aeruginosa MDR clinical isolates from a hospital in Thailand. Using long-read sequence data we obtained complete sequences of two closely related megaplasmids (>420 kb) carrying large arrays of antibiotic resistance genes located in discrete, complex and dynamic resistance regions, and revealing evidence of extensive duplication and recombination events. A comprehensive pangenomic and phylogenomic analysis indicates that: 1) these large plasmids comprise an emerging family present in different members of the Pseudomonas genus, and associated with multiple sources (geographical, clinical or environmental); 2) the megaplasmids encode diverse niche-adaptive accessory traits, including multidrug resistance; 3) the accessory genome of the megaplasmid family is highly flexible and diverse. The history of the megaplasmid family, inferred from our analysis of the available database, suggests that members carrying multiple resistance genes date back to at least the 1970s.
Collapse
Affiliation(s)
- Adrian Cazares
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Matthew P Moore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - James P J Hall
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Laura L Wright
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Macauley Grimes
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | | | | | - Roger C Levesque
- Institute for Integrative and Systems Biology (IBIS), University Laval, Quebec City, QC, Canada
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Genome Sequence of Pluralibacter gergoviae ECO77, a Multireplicon Isolate of Industrial Origin. Microbiol Resour Announc 2020; 9:9/9/e01561-19. [PMID: 32107303 PMCID: PMC7046824 DOI: 10.1128/mra.01561-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In order to expand the limited understanding of the genomics of antimicrobial-resistant industrial bacteria, we report the genome sequence of Pluralibacter gergoviae ECO77, a historical contaminant strain of industrial origin. The multireplicon 6.16-Mbp genome of ECO77 consists of a 5.37-Mbp main chromosome, a megaplasmid (605,666 bp), and a large plasmid (182,007 bp). In order to expand the limited understanding of the genomics of antimicrobial-resistant industrial bacteria, we report the genome sequence of Pluralibacter gergoviae ECO77, a historical contaminant strain of industrial origin. The multireplicon 6.16-Mbp genome of ECO77 consists of a 5.37-Mbp main chromosome, a megaplasmid (605,666 bp), and a large plasmid (182,007 bp).
Collapse
|