1
|
Krisna MA, Jolley KA, Monteith W, Boubour A, Hamers RL, Brueggemann AB, Harrison OB, Maiden MCJ. Development and implementation of a core genome multilocus sequence typing scheme for Haemophilus influenzae. Microb Genom 2024; 10:001281. [PMID: 39120932 PMCID: PMC11315579 DOI: 10.1099/mgen.0.001281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Haemophilus influenzae is part of the human nasopharyngeal microbiota and a pathogen causing invasive disease. The extensive genetic diversity observed in H. influenzae necessitates discriminatory analytical approaches to evaluate its population structure. This study developed a core genome multilocus sequence typing (cgMLST) scheme for H. influenzae using pangenome analysis tools and validated the cgMLST scheme using datasets consisting of complete reference genomes (N = 14) and high-quality draft H. influenzae genomes (N = 2297). The draft genome dataset was divided into a development dataset (N = 921) and a validation dataset (N = 1376). The development dataset was used to identify potential core genes, and the validation dataset was used to refine the final core gene list to ensure the reliability of the proposed cgMLST scheme. Functional classifications were made for all the resulting core genes. Phylogenetic analyses were performed using both allelic profiles and nucleotide sequence alignments of the core genome to test congruence, as assessed by Spearman's correlation and ordinary least square linear regression tests. Preliminary analyses using the development dataset identified 1067 core genes, which were refined to 1037 with the validation dataset. More than 70% of core genes were predicted to encode proteins essential for metabolism or genetic information processing. Phylogenetic and statistical analyses indicated that the core genome allelic profile accurately represented phylogenetic relatedness among the isolates (R 2 = 0.945). We used this cgMLST scheme to define a high-resolution population structure for H. influenzae, which enhances the genomic analysis of this clinically relevant human pathogen.
Collapse
Affiliation(s)
- Made Ananda Krisna
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Biology, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Alexandra Boubour
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Raph L. Hamers
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | | | - Odile B. Harrison
- Department of Biology, University of Oxford, Oxford, UK
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Chen X, Zhang H, Feng J, Zhang L, Zheng M, Luo H, Zhuo H, Xu N, Zhang X, Chen C, Qu P, Li Y. Comparative Genomic Analysis Reveals Genetic Diversity and Pathogenic Potential of Haemophilus seminalis and Emended Description of Haemophilus seminalis. Microbiol Spectr 2023; 11:e0477222. [PMID: 37382545 PMCID: PMC10434262 DOI: 10.1128/spectrum.04772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Haemophilus seminalis is a newly proposed species that is phylogenetically related to Haemophilus haemolyticus. The distribution of H. seminalis in the human population, its genomic diversity, and its pathogenic potential are still unclear. This study reports the finding of our comparative genomic analyses of four newly isolated Haemophilus strains (SZY H8, SZY H35, SZY H36, and SZY H68) from human sputum specimens (Guangzhou, China) along with the publicly available genomes of other phylogenetically related Haemophilus species. Based on pairwise comparisons of the 16S rRNA gene sequences, the four isolates showed <98.65% sequence identity to the type strains of all known Haemophilus species but were identified as belonging to H. seminalis, based on comparable phenotypic and genotypic features. Additionally, the four isolates showed high genome-genome relatedness indices (>95% ANI values) with 17 strains that were previously identified as either "Haemophilus intermedius" or hemin (X-factor)-independent H. haemolyticus and therefore required a more detailed classification study. Phylogenetically, these isolates, along with the two previously described H. seminalis isolates (a total of 23 isolates), shared a highly homologous lineage that is distinct from the clades of the main H. haemolyticus and Haemophilus influenzae strains. These isolates present an open pangenome with multiple virulence genes. Notably, all 23 isolates have a functional heme biosynthesis pathway that is similar to that of Haemophilus parainfluenzae. The phenotype of hemin (X-factor) independence and the analysis of the ispD, pepG, and moeA genes can be used to distinguish these isolates from H. haemolyticus and H. influenzae. Based on the above findings, we propose a reclassification for all "H. intermedius" and two H. haemolyticus isolates belonging to H. seminalis with an emended description of H. seminalis. This study provides a more accurate identification of Haemophilus isolates for use in the clinical laboratory and a better understanding of the clinical significance and genetic diversity in human environments. IMPORTANCE As a versatile opportunistic pathogen, the accurate identification of Haemophilus species is a challenge in clinical practice. In this study, we characterized the phenotypic and genotypic features of four H. seminalis strains that were isolated from human sputum specimens and propose the "H. intermedius" and hemin (X-factor)-independent H. haemolyticus isolates as belonging to H. seminalis. The prediction of virulence-related genes indicates that H. seminalis isolates carry several virulence genes that are likely to play an important role in its pathogenicity. In addition, we depict that the genes ispD, pepG, and moeA can be used as biomarkers for distinguishing H. seminalis from H. haemolyticus and H. influenzae. Our findings provide some insights into the identification, epidemiology, genetic diversity, pathogenic potential, and antimicrobial resistance of the newly proposed H. seminalis.
Collapse
Affiliation(s)
- Xiaowei Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyun Zhang
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Minling Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimin Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huiyan Zhuo
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Ning Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Vancomycin-Resistant Enterococcus faecium and the emergence of new Sequence Types associated with Hospital Infection. Res Microbiol 2023; 174:104046. [PMID: 36858192 DOI: 10.1016/j.resmic.2023.104046] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Enterococcus faecium is a major cause of vancomycin-resistant enterococcal (VRE) infection. New variants of the pathogen have emerged and become dominant in healthcare settings. Two such examples, vanB ST796 and vanA ST1421 sequence types, originally arose in Australia and proceeded to cause VRE outbreaks in other countries. Of concern is the detection of a vancomycin variable enterococcal (VVE) variant of ST1421 in Europe that exhibits a vancomycin-susceptible phenotype but which can revert to resistant in the presence of vancomycin. The recent application of genome sequencing for increasing our understanding of the evolution and spread of VRE is also explored here.
Collapse
|
4
|
Fluit AC, Bayjanov JR, Benaissa-Trouw BJ, Rogers MRC, Díez-Aguilar M, Cantón R, Tunney MM, Elborn JS, Ekkelenkamp MB. Whole-genome analysis of Haemophilus influenzae strains isolated from persons with cystic fibrosis. J Med Microbiol 2022; 71. [PMID: 36006824 DOI: 10.1099/jmm.0.001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Haemophilus influenzae is a commensal of the respiratory tract that is frequently present in cystic fibrosis (CF) patients and may cause infection. Antibiotic resistance is well described for CF strains, and virulence factors have been proposed.Hypothesis/Gap. The genetic diversity of H. influenzae strains present in the lungs of persons with CF is largely unknown despite the fact that this organism is considered to be a pathogen in this condition. The aim was to establish the genetic diversity and susceptibility of H. influenzae strains from persons with CF, and to screen the whole genomes of these strains for the presence of antibiotic resistance determinants and proposed virulence factors.Methods. A total of 67 strains, recovered from respiratory samples from persons with CF from the UK (n=1), Poland (n=2), Spain (n=24) and the Netherlands (n=40), were subjected to whole-genome sequencing using Illumina technology and tested for antibiotic susceptibility. Forty-nine of these strains (one per different sequence type) were analysed for encoded virulence factors and resistance determinants.Results. The 67 strains represented 49 different sequence types. Susceptibility testing showed that all strains were susceptible to aztreonam, ciprofloxacin, imipenem and tetracycline. Susceptibility to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanic acid, cefuroxime, cefixime, ceftriaxone, cefepime, meropenem, clarithromycin, co-trimoxazole and levofloxacin ranged from 70.2-98.5%. Only 6/49 strains (12.2%) harboured acquired resistance genes. Mutations associated with a ß-lactamase-negative ampicillin-resistant phenotype were present in four strains (8.2 %). The potential virulence factors, urease, haemoglobin- and haptoglobin-binding protein/carbamate kinase, and OmpP5 (OmpA), were encoded in more than half of the strains. The genes for HMW1, HMW2, H. influenzae adhesin, a IgA-specific serine endopeptidase autotransporter precursor, a TonB-dependent siderophore, an ABC-transporter ATP-binding protein, a methyltransferase, a BolA-family transcriptional regulator, glycosyltransferase Lic2B, a helix-turn-helix protein, an aspartate semialdehyde dehydrogenase and another glycosyltransferase were present in less than half of the strains.Conclusion. The H. influenzae strains showed limited levels of resistance, with the highest being against co-trimoxazole. Sequences encoding a carbamate kinase and a haemoglobin- and haemoglobin-haptoglobin-binding-like protein, a glycosyl transferase and an urease may aid the colonization of the CF lung. The adhesins and other identified putative virulence factors did not seem to be necessary for colonization.
Collapse
Affiliation(s)
- Ad C Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Barry J Benaissa-Trouw
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Michael M Tunney
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - J Stuart Elborn
- Department of Pulmonology, Queen's University Belfast, Belfast, UK
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
5
|
Carrera-Salinas A, González-Díaz A, Calatayud L, Mercado-Maza J, Puig C, Berbel D, Càmara J, Tubau F, Grau I, Domínguez MÁ, Ardanuy C, Martí S. Epidemiology and population structure of Haemophilus influenzae causing invasive disease. Microb Genom 2021; 7. [PMID: 34898424 PMCID: PMC8767337 DOI: 10.1099/mgen.0.000723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study provides an update on invasive Haemophilus influenzae disease in Bellvitge University Hospital (2014–2019), reporting its evolution from a previous period (2008–2013) and analysing the non-typeable H. influenzae (NTHi) population structure using a clade-related classification. Clinical data, antimicrobial susceptibility and serotyping were studied and compared with those of the previous period. Population structure was assessed by multilocus sequence typing (MLST), SNP-based phylogenetic analysis and clade-related classification. The incidence of invasive H. influenzae disease remained constant between the two periods (average 2.07 cases per 100 000 population), while the 30 day mortality rate decreased (20.7–14.7 %, respectively). Immunosuppressive therapy (40 %) and malignancy (36 %) were the most frequent comorbidities. Ampicillin and fluoroquinolone resistance rates had increased between the two periods (10–17.6 % and 0–4.4 %, respectively). NTHi was the main cause of invasive disease in both periods (84.3 and 85.3 %), followed by serotype f (12.9 and 8.8 %). NTHi displayed high genetic diversity. However, two clusters of 13 (n=20) and 5 sequence types (STs) (n=10) associated with clade V included NTHi strains of the most prevalent STs (ST3 and ST103), many of which showed increased frequency over time. Moreover, ST103 and ST160 from clade V were associated with β-lactam resistance. Invasive H. influenzae disease is uncommon, but can be severe, especially in the elderly with comorbidities. NTHi remains the main cause of invasive disease, with ST103 and ST160 (clade V) responsible for increasing β-lactam resistance over time.
Collapse
Affiliation(s)
- Anna Carrera-Salinas
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Aida González-Díaz
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Laura Calatayud
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Julieta Mercado-Maza
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Carmen Puig
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - Dàmaris Berbel
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - Imma Grau
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Infectious Diseases Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Bellvitge University Hospital, IDIBELL-UB, Barcelona, Spain.,Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.,Department of Medicine, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Watts SC, Judd LM, Carzino R, Ranganathan S, Holt KE. Genomic Diversity and Antimicrobial Resistance of Haemophilus Colonizing the Airways of Young Children with Cystic Fibrosis. mSystems 2021; 6:e0017821. [PMID: 34463568 DOI: 10.1128/msystems.00178-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory infection during childhood is a key risk factor in early cystic fibrosis (CF) lung disease progression. Haemophilus influenzae and Haemophilus parainfluenzae are routinely isolated from the lungs of children with CF; however, little is known about the frequency and characteristics of Haemophilus colonization in this context. Here, we describe the detection, antimicrobial resistance (AMR), and genome sequencing of H. influenzae and H. parainfluenzae isolated from airway samples of 147 participants aged ≤12 years enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program, Melbourne, Australia. The frequency of colonization per visit was 4.6% for H. influenzae and 32.1% for H. parainfluenzae, 80.3% of participants had H. influenzae and/or H. parainfluenzae detected on at least one visit, and using genomic data, we estimate 15.6% of participants had persistent colonization with the same strain for at least two consecutive visits. Isolates were genetically diverse and AMR was common, with 52% of H. influenzae and 82% of H. parainfluenzae displaying resistance to at least one drug. The genetic basis for AMR could be identified in most cases; putative novel determinants include a new plasmid encoding blaTEM-1 (ampicillin resistance), a new inhibitor-resistant blaTEM allele (augmentin resistance), and previously unreported mutations in chromosomally carried genes (pbp3, ampicillin resistance; folA/folP, cotrimoxazole resistance; rpoB, rifampicin resistance). Acquired AMR genes were more common in H. parainfluenzae than H. influenzae (51% versus 21%, P = 0.0107) and were mostly associated with the ICEHin mobile element carrying blaTEM-1, resulting in more ampicillin resistance in H. parainfluenzae (73% versus 30%, P = 0.0004). Genomic data identified six potential instances of Haemophilus transmission between participants, of which three involved participants who shared clinic visit days. IMPORTANCE Cystic fibrosis (CF) lung disease begins during infancy, and acute respiratory infections increase the risk of early disease development and progression. Microbes involved in advanced stages of CF are well characterized, but less is known about early respiratory colonizers. We report the population dynamics and genomic determinants of AMR in two early colonizer species, namely, Haemophilus influenzae and Haemophilus parainfluenzae, collected from a pediatric CF cohort. This investigation also reveals that H. parainfluenzae has a high frequency of AMR carried on mobile elements that may act as a potential reservoir for the emergence and spread of AMR to H. influenzae, which has greater clinical significance as a respiratory pathogen in children. This study provides insight into the evolution of AMR and the colonization of H. influenzae and H. parainfluenzae in a pediatric CF cohort, which will help inform future treatment.
Collapse
Affiliation(s)
- Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
| | - Rosemary Carzino
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarath Ranganathan
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbournegrid.1008.9, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash Universitygrid.1002.3, Melbourne, Victoria, Australia
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
8
|
Nørskov-Lauritsen N, Pedersen N, Lam JUH, Nielsen HL, Kobel CM, Hansen DS. Haemophilus influenzae one day in Denmark: prevalence, circulating clones, and dismal resistance to aminopenicillins. Eur J Clin Microbiol Infect Dis 2021; 40:2077-2085. [PMID: 33891188 DOI: 10.1007/s10096-021-04247-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 11/25/2022]
Abstract
Haemophilus influenzae is a common cause of mucosal infections that warrants accurate surveillance. We aimed to assess the prevalence of the species in clinical specimens, and characterise population structure and resistance to aminopenicillins by whole genome sequencing.We assessed the point prevalence by entering the database records of 1 day in Denmark and examined the genome sequences of nationwide, collected isolates from the same day. The prevalence of H. influenzae in clinical samples on the 10th of January 2018 was 1.78 per 100,000 person-days (all samples), and 2.47 per 1000 hospital bed-days (hospital samples). Of 2009 bacteria deemed clinically relevant and collected in a concerted action by the Danish departments of clinical microbiology, 62 (3.1%) were H. influenzae. All 62 isolates belonged to phylogenetic group I and were unencapsulated. Three strains from separate Danish regions had identical core genome sequences, but a small number of intergenic mutations testified to circulating clones, rather than individual cases of patient-to-patient transmission. The TEM-1 β-lactamase gene was present in 24 strains, while 13 strains were genetically categorised as ampicillin-resistant due to substitutions in penicillin-binding protein 3; shared patterns of amino acid substitutions in unrelated strains indicated putative lateral transfer of chromosomal resistance. Circulating clones of H. influenzae are frequent, and host factors, rather than direct transmission of epidemic strains, may be the primary cause of infection. The bleak presence of ampicillin resistance revealed by sequencing of point prevalence strains underscores the necessity for close examination of testing methods.
Collapse
Affiliation(s)
| | - Nanna Pedersen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Janni U H Lam
- Data Integration and Analysis, State Serum Institute, Copenhagen, Denmark
| | - Hans L Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Carl M Kobel
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Dennis S Hansen
- Department of Clinical Microbiology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| |
Collapse
|
9
|
Kc R, O'Toole RF. Draft genome sequence of a nontypeable Haemophilus influenzae strain used in the study of human respiratory infection. BMC Res Notes 2021; 14:123. [PMID: 33794985 PMCID: PMC8015102 DOI: 10.1186/s13104-021-05528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/13/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives Nontypeable Haemophilus influenzae (NTHi) is an important human respiratory bacterium that can cause a range of diseases including sinusitis, otitis media, conjunctivitis, pneumonia as well as acute exacerbations of chronic obstructive pulmonary disease (COPD). A number of studies have used NTHi clinical isolate RHH-3 as a laboratory strain for experimentation examining the effect of cigarette smoke and more recently, biomass smoke, on the susceptibility and response of cells lining the respiratory tract to infection. Therefore, definition of the genome content of RHH-3 is required to fully elucidate human-NTHi interactions associated with initial infection and subsequent development of respiratory disease. Data description Here, we present the draft genome sequence of NTHi RHH-3 collected from the sputum of a patient at the Royal Hobart Hospital, Tasmania, Australia. The assembled genome size was 1,839,376 bp consisting of 61 contigs (> 500 bp), with a G+C content of 38.1%. This draft genome data can be accessed at DDBJ/ENA/GenBank under the accession number JADPRR000000000.
Collapse
Affiliation(s)
- Rajendra Kc
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, 7005, Australia
| | - Ronan F O'Toole
- Department of Pharmacy and Biomedical Sciences, School of Molecular Sciences, College of Science, Health and Engineering, La Trobe University, Victoria, 3690, Australia.
| |
Collapse
|