1
|
Rebelo AR, Bortolaia V, Leekitcharoenphon P, Hansen DS, Nielsen HL, Ellermann-Eriksen S, Kemp M, Røder BL, Frimodt-Møller N, Søndergaard TS, Coia JE, Østergaard C, Westh H, Aarestrup FM. One day in Denmark: whole-genome sequence-based analysis of Escherichia coli isolates from clinical settings. J Antimicrob Chemother 2025:dkaf028. [PMID: 39881516 DOI: 10.1093/jac/dkaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND WGS can potentially be routinely used in clinical microbiology settings, especially with the increase in sequencing accuracy and decrease in cost. Escherichia coli is the most common bacterial species analysed in those settings, thus fast and accurate diagnostics can lead to reductions in morbidity, mortality and healthcare costs. OBJECTIVES To evaluate WGS for diagnostics and surveillance in a collection of clinical E. coli; to examine the pool of antimicrobial resistance (AMR) determinants circulating in Denmark and the most frequent STs; and to evaluate core-genome MLST (cgMLST) and SNP-based clustering approaches for detecting genetically related isolates. METHODS We analysed the genomes of 699 E. coli isolates collected throughout all Danish Clinical Microbiology Laboratories. We used rMLST and KmerFinder for species identification, ResFinder for prediction of AMR, and PlasmidFinder for plasmid identification. We used Center for Genomic Epidemiology MLST, cgMLSTFinder and CSI Phylogeny to perform typing and clustering analysis. RESULTS Genetic AMR determinants were detected in 56.2% of isolates. We identified 182 MLSTs, most frequently ST-69, ST-73, ST-95 and ST-131. Using a maximum 15-allele difference as the threshold for genetic relatedness, we identified 23 clusters. SNP-based phylogenetic analysis within clusters revealed from 0 to 13 SNPs, except two cases with 111 and 461 SNPs. CONCLUSIONS WGS data are useful to characterize clinical E. coli isolates, including predicting AMR profiles and subtyping in concordance with surveillance data. We have shown that it is possible to adequately cluster isolates through a cgMLST approach, but it remains necessary to define proper interpretative criteria.
Collapse
Affiliation(s)
- Ana Rita Rebelo
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
| | - Valeria Bortolaia
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
| | | | | | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Michael Kemp
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Bent Løwe Røder
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark
| | | | | | - John Eugenio Coia
- Department of Clinical Microbiology, Hospital of South West Jutland, Esbjerg, Denmark
| | - Claus Østergaard
- Department of Clinical Microbiology, Vejle Hospital, Vejle, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Landman F, Jamin C, de Haan A, Witteveen S, Bos J, van der Heide HGJ, Schouls LM, Hendrickx APA. Genomic surveillance of multidrug-resistant organisms based on long-read sequencing. Genome Med 2024; 16:137. [PMID: 39587617 PMCID: PMC11587635 DOI: 10.1186/s13073-024-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Multidrug-resistant organisms (MDRO) pose a significant threat to public health worldwide. The ability to identify antimicrobial resistance determinants, to assess changes in molecular types, and to detect transmission are essential for surveillance and infection prevention of MDRO. Molecular characterization based on long-read sequencing has emerged as a promising alternative to short-read sequencing. The aim of this study was to characterize MDRO for surveillance and transmission studies based on long-read sequencing only. METHODS Genomic DNA of 356 MDRO was automatically extracted using the Maxwell-RSC48. The MDRO included 106 Klebsiella pneumoniae isolates, 85 Escherichia coli, 15 Enterobacter cloacae complex, 10 Citrobacter freundii, 34 Pseudomonas aeruginosa, 16 Acinetobacter baumannii, and 69 methicillin-resistant Staphylococcus aureus (MRSA), of which 24 were from an outbreak. MDRO were sequenced using both short-read (Illumina NextSeq 550) and long-read (Nanopore Rapid Barcoding Kit-24-V14, R10.4.1) whole-genome sequencing (WGS). Basecalling was performed for two distinct models using Dorado-0.3.2 duplex mode. Long-read data was assembled using Flye, Canu, Miniasm, Unicycler, Necat, Raven, and Redbean assemblers. Long-read WGS data with > 40 × coverage was used for multi-locus sequence typing (MLST), whole-genome MLST (wgMLST), whole-genome single-nucleotide polymorphisms (wgSNP), in silico multiple locus variable-number of tandem repeat analysis (iMLVA) for MRSA, and identification of resistance genes (ABRicate). RESULTS Comparison of wgMLST profiles based on long-read and short-read WGS data revealed > 95% of wgMLST profiles within the species-specific cluster cut-off, except for P. aeruginosa. The wgMLST profiles obtained by long-read and short-read WGS differed only one to nine wgMLST alleles or SNPs for K. pneumoniae, E. coli, E. cloacae complex, C. freundii, A. baumannii complex, and MRSA. For P. aeruginosa, differences were up to 27 wgMLST alleles between long-read and short-read wgMLST and 0-10 SNPs. MLST sequence types and iMLVA types were concordant between long-read and short-read WGS data and conventional MLVA typing. Antimicrobial resistance genes were detected in long-read sequencing data with high sensitivity/specificity (92-100%/99-100%). Long-read sequencing enabled analysis of an MRSA outbreak. CONCLUSIONS We demonstrate that molecular characterization of automatically extracted DNA followed by long-read sequencing is as accurate compared to short-read sequencing and suitable for typing and outbreak analysis as part of genomic surveillance of MDRO. However, the analysis of P. aeruginosa requires further improvement which may be obtained by other basecalling algorithms. The low implementation costs and rapid library preparation for long-read sequencing of MDRO extends its applicability to resource-constrained settings and low-income countries worldwide.
Collapse
Affiliation(s)
- Fabian Landman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Casper Jamin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sandra Witteveen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jeroen Bos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Han G J van der Heide
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo M Schouls
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
3
|
Heljanko V, Karama M, Kymäläinen A, Kurittu P, Johansson V, Tiwari A, Nyirenda M, Malahlela M, Heikinheimo A. Wastewater and environmental sampling holds potential for antimicrobial resistance surveillance in food-producing animals - a pilot study in South African abattoirs. Front Vet Sci 2024; 11:1444957. [PMID: 39421833 PMCID: PMC11483616 DOI: 10.3389/fvets.2024.1444957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global One Health challenge that causes increased mortality and a high financial burden. Animal production contributes to AMR, as more than half of antimicrobials are used in food-producing animals globally. There is a growing body of literature on AMR in food-producing animals in African countries, but the surveillance practices across countries vary considerably. This pilot study aims to explore the potential of wastewater and environmental surveillance (WES) of AMR and its extension to the veterinary field. Floor drainage swab (n = 18, 3/abattoir) and wastewater (n = 16, 2-3/abattoir) samples were collected from six South African abattoirs that handle various animal species, including cattle, sheep, pig, and poultry. The samples were tested for Extended-Spectrum Beta-Lactamase (ESBL) and Carbapenemase-producing Enterobacterales, Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococci (VRE), and Candida auris by using selective culturing and MALDI-TOF MS identification. The phenotype of all presumptive ESBL-producing Escherichia coli (n = 60) and Klebsiella pneumoniae (n = 24) isolates was confirmed with a disk diffusion test, and a subset (15 and 6 isolates, respectively), were further characterized by whole-genome sequencing. In total, 314 isolates (0-12 isolates/sample) withstood MALDI-TOF MS, from which 37 species were identified, E. coli and K. pneumoniae among the most abundant. Most E. coli (n = 48/60; 80%) and all K. pneumoniae isolates were recovered from the floor drainage samples, while 21 presumptive carbapenem-resistant Acinetobacter spp. isolates were isolated equally from floor drainage and wastewater samples. MRSA, VRE, or C. auris were not found. All characterized E. coli and K. pneumoniae isolates represented ESBL-phenotype. Genomic analyses revealed multiple sequence types (ST) of E. coli (n = 10) and K. pneumoniae (n = 5), including STs associated with food-producing animals globally, such as E. coli ST48 and ST10 and K. pneumoniae ST101. Common beta-lactamases linked to food-producing animals, such as bla CTX-M-55 and bla CTX-M-15, were detected. The presence of food-production-animal-associated ESBL-gene-carrying E. coli and K. pneumoniae in an abattoir environment and wastewater indicates the potential of WES in the surveillance of AMR in food-producing animals. Furthermore, the results of this pilot study encourage studying the topic further with refined methodologies.
Collapse
Affiliation(s)
- Viivi Heljanko
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Musafiri Karama
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Kymäläinen
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Paula Kurittu
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ananda Tiwari
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Matteo Nyirenda
- Centre for Animal Health Studies, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng, South Africa
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Annamari Heikinheimo
- Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
4
|
Heljanko V, Tyni O, Johansson V, Virtanen JP, Räisänen K, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Clinically relevant sequence types of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae detected in Finnish wastewater in 2021-2022. Antimicrob Resist Infect Control 2024; 13:14. [PMID: 38291521 PMCID: PMC10829384 DOI: 10.1186/s13756-024-01370-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a critical threat to human health. Escherichia coli and Klebsiella pneumoniae are clinically the most important species associated with AMR and are the most common carbapenemase-producing (CP) Enterobacterales detected in human specimens in Finland. Wastewater surveillance has emerged as a potential approach for population-level surveillance of AMR, as wastewater could offer a reflection from a larger population with one sample and minimal recognized ethical issues. In this study, we investigated the potential of wastewater surveillance to detect CP E. coli and K. pneumoniae strains similar to those detected in human specimens. METHODS Altogether, 89 composite samples of untreated community wastewater were collected from 10 wastewater treatment plants across Finland in 2021-2022. CP E. coli and K. pneumoniae were isolated using selective culture media and identified using MALDI-TOF MS. Antimicrobial susceptibility testing was performed using disk diffusion test and broth microdilution method, and a subset of isolates was characterized using whole-genome sequencing. RESULTS CP E. coli was detected in 26 (29.2%) and K. pneumoniae in 25 (28.1%) samples. Among E. coli, the most common sequence type (ST) was ST410 (n = 7/26, 26.9%), while ST359 (n = 4/25, 16.0%) predominated among K. pneumoniae. Globally successful STs were detected in both E. coli (ST410, ST1284, ST167, and ST405) and K. pneumoniae (ST512, ST101, and ST307). K. pneumoniae carbapenemases (KPC) were the most common carbapenemases in both E. coli (n = 11/26, 42.3%) and K. pneumoniae (n = 13/25, 52.0%), yet also other carbapenemases, such as blaNDM-5, blaOXA-48, and blaOXA-181, were detected. We detected isolates harboring similar ST and enzyme type combinations previously linked to clusters in Finland, such as E. coli ST410 with blaKPC-2 and K. pneumoniae ST512 with blaKPC-3. CONCLUSIONS Our study highlights the presence of clinically relevant strains of CP E. coli and K. pneumoniae in community wastewater. The results indicate that wastewater surveillance could serve as a monitoring tool for CP Enterobacterales. However, the specificity and sensitivity of the methods should be improved, and technologies, like advanced sequencing methods, should be utilized to distinguish data with public health relevance, harness the full potential of wastewater surveillance, and implement the data in public health surveillance.
Collapse
Affiliation(s)
- Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Olga Tyni
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kati Räisänen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
5
|
Larcher R, Laffont-Lozes P, Naciri T, Bourgeois PM, Gandon C, Magnan C, Pantel A, Sotto A. Continuous infusion of meropenem-vaborbactam for a KPC-3-producing Klebsiella pneumoniae bloodstream infection in a critically ill patient with augmented renal clearance. Infection 2023; 51:1835-1840. [PMID: 37277691 PMCID: PMC10665223 DOI: 10.1007/s15010-023-02055-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
PURPOSE To demonstrate the feasibility of continuous infusion of meropenem-vaborbactam to optimize the treatment of carbapenem-resistant Enterobacterales. METHODS Report of a case of a Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae bloodstream infection comfirmed by whole genome sequencing and therapeutic drug monitoring (TDM) of meropenem. RESULTS A patient with augmented renal clearance (ARC) went into septic shock caused by an ST11 KPC-3-producing K. pneumoniae bloodstream infection that was successfully treated with a continuous infusion of meropenem-vaborbactam at a dosage of 1 g/1 g q4h as a 4-h infusion. TDM confirmed sustained concentrations of meropenem ranging from 8 to 16 mg/L throughout the dosing interval. CONCLUSION Continuous infusion of meropenem-vaborbactam was feasible. It could be appropriate for optimizing the management of critically ill patients with ARC, as it resulted in antibiotic concentrations above the minimum inhibitory concentration for susceptible carbapenem-resistant Enterobacterales (up to 8 mg/L) throughout the dosing interval.
Collapse
Affiliation(s)
- Romaric Larcher
- Department of Infectious and Tropical Diseases, PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Nimes University Hospital, Nimes, France.
- Service Des Maladies Infectieuses Et Tropicales, Hôpital Caremeau-Centre Hospitalo-Universitaire de Nîmes, 1 Place Robert Debre, 30000, Nîmes, France.
| | - Paul Laffont-Lozes
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
- Department of Pharmacy, Nimes University Hospital, Nimes, France
| | - Tayma Naciri
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Pierre-Marie Bourgeois
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Cléa Gandon
- Department of Anesthesiology and Critical Care Medicine, Nimes University Hospital, Nimes, France
| | - Chloé Magnan
- Department of Microbiology and Hospital Hygiene, VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes University Hospital, Nimes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes University Hospital, Nimes, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes University Hospital, Nimes, France
| |
Collapse
|
6
|
van Kleef – van Koeveringe S, Matheeussen V, Jansens H, Perales Selva N, De Coninck D, De Bruyne K, Mensaert K, Kluytmans - van den Bergh M, Kluytmans J, Goossens H, Dhaeze W. Epidemiology and molecular typing of multidrug-resistant bacteria in day care centres in Flanders, Belgium. Epidemiol Infect 2023; 151:e156. [PMID: 37711023 PMCID: PMC10548538 DOI: 10.1017/s0950268823001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
The global prevalence and spread of multidrug-resistant organisms (MDROs) represent an emerging public health threat. Day care centre (DCC) attendance is a risk factor for MDRO carriage in children and their environment. This study aimed to map the epidemiology of carriage and potential transmission of these organisms within 18 Flemish DDCs (Belgium). An MDRO prevalence survey was organised between November 2018 and February 2019 among children attending the centres. Selective chromogenic culture media were used for the detection of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E), carbapenemase-producing Enterobacterales (CPE), and vancomycin-resistant Enterococci (VRE) in faecal swabs obtained from diapers or jars (n = 448). All isolated MDROs were subjected to resistance gene sequencing. A total of 71 of 448 samples (15.8%) yielded isolates of ESBL-E with a predominance of Escherichia coli (92.2% of ESBL-E) and ESBL resistance gene blaCTX-M-15 (50.7% of ESBL coding genes in E. coli). ESBL-E prevalence varied between DCCs, ranging from 0 to 50%. Transmission, based on the clonal relatedness of ESBL-E strains, was observed. CPE was identified in only one child carrying an E. coli with an OXA-244 gene. VRE was absent from all samples. The observed prevalence of ESBL-E in Flemish DCCs is high compared with previous studies, and our findings re-emphasise the need for rigorous hygiene measures within such centres to control the further spread of MDROs in the community.
Collapse
Affiliation(s)
- Stefanie van Kleef – van Koeveringe
- Laboratory of Medical Microbiology, University Hospital Antwerp, Edegem, Belgium
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Veerle Matheeussen
- Laboratory of Medical Microbiology, University Hospital Antwerp, Edegem, Belgium
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Hilde Jansens
- Laboratory of Medical Microbiology, University Hospital Antwerp, Edegem, Belgium
- Department of Infection Control, University Hospital Antwerp, Edegem, Belgium
| | | | - Dieter De Coninck
- bioMérieux, Augmented Diagnostics, Industrial Microbiology, Applied Maths NV, Sint-Martens-Latem, Belgium
| | - Katrien De Bruyne
- bioMérieux, Augmented Diagnostics, Industrial Microbiology, Applied Maths NV, Sint-Martens-Latem, Belgium
| | - Klaas Mensaert
- bioMérieux, Augmented Diagnostics, Industrial Microbiology, Applied Maths NV, Sint-Martens-Latem, Belgium
| | - Marjolein Kluytmans - van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, the Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Kluytmans
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, and Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, University Hospital Antwerp, Edegem, Belgium
- Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Wouter Dhaeze
- Department Prevention, Agency for Care and Health, Leuven, Belgium
| | | |
Collapse
|
7
|
Azarian T, Sherry NL, Baker K, Holt KE, Okeke IN. Making microbial genomics work for clinical and public health microbiology. Microb Genom 2022; 8:mgen000900. [PMID: 36112024 PMCID: PMC9676031 DOI: 10.1099/mgen.0.000900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 01/05/2025] Open
Affiliation(s)
- Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate Baker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn E. Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Palma F, Mangone I, Janowicz A, Moura A, Chiaverini A, Torresi M, Garofolo G, Criscuolo A, Brisse S, Di Pasquale A, Cammà C, Radomski N. In vitro and in silico parameters for precise cgMLST typing of Listeria monocytogenes. BMC Genomics 2022; 23:235. [PMID: 35346021 PMCID: PMC8961897 DOI: 10.1186/s12864-022-08437-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 02/02/2023] Open
Abstract
Background Whole genome sequencing analyzed by core genome multi-locus sequence typing (cgMLST) is widely used in surveillance of the pathogenic bacteria Listeria monocytogenes. Given the heterogeneity of available bioinformatics tools to define cgMLST alleles, our aim was to identify parameters influencing the precision of cgMLST profiles. Methods We used three L. monocytogenes reference genomes from different phylogenetic lineages and assessed the impact of in vitro (i.e. tested genomes, successive platings, replicates of DNA extraction and sequencing) and in silico parameters (i.e. targeted depth of coverage, depth of coverage, breadth of coverage, assembly metrics, cgMLST workflows, cgMLST completeness) on cgMLST precision made of 1748 core loci. Six cgMLST workflows were tested, comprising assembly-based (BIGSdb, INNUENDO, GENPAT, SeqSphere and BioNumerics) and assembly-free (i.e. kmer-based MentaLiST) allele callers. Principal component analyses and generalized linear models were used to identify the most impactful parameters on cgMLST precision. Results The isolate’s genetic background, cgMLST workflows, cgMLST completeness, as well as depth and breadth of coverage were the parameters that impacted most on cgMLST precision (i.e. identical alleles against reference circular genomes). All workflows performed well at ≥40X of depth of coverage, with high loci detection (> 99.54% for all, except for BioNumerics with 97.78%) and showed consistent cluster definitions using the reference cut-off of ≤7 allele differences. Conclusions This highlights that bioinformatics workflows dedicated to cgMLST allele calling are largely robust when paired-end reads are of high quality and when the sequencing depth is ≥40X. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08437-4.
Collapse
|
9
|
van der Zwet W, Nijsen I, Jamin C, van Alphen L, von Wintersdorff C, Demandt A, Savelkoul P. Role of the environment in transmission of Gram-negative bacteria in two consecutive outbreaks in a haematology-oncology department. Infect Prev Pract 2022; 4:100209. [PMID: 35295671 PMCID: PMC8918851 DOI: 10.1016/j.infpip.2022.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- W.C. van der Zwet
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
- Corresponding author.
| | - I.E.J. Nijsen
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C. Jamin
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - L.B. van Alphen
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C.J.H. von Wintersdorff
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A.M.P. Demandt
- Dept. Haematology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P.H.M. Savelkoul
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|