1
|
Tenorio-Carnalla K, Aguilar-Vera A, Hernández-Alvarez AJ, López-Leal G, Mateo-Estrada V, Santamaria RI, Castillo-Ramírez S. Host population structure and species resolution reveal prophage transmission dynamics. mBio 2024; 15:e0237724. [PMID: 39315801 PMCID: PMC11481511 DOI: 10.1128/mbio.02377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Much knowledge about bacteriophages has been obtained via genomics and metagenomics over the last decades. However, most studies dealing with prophage diversity have rarely conducted phage species delimitation (aspect 1) and have hardly integrated the population structure of the host (aspect 2). Yet, these two aspects are essential in assessing phage diversity. Here, we implemented an operational definition of phage species (clustering at 95% identity, 90% coverage) and integrated the host's population structure to understand prophage diversity better. Gathering the most extensive data set of Acinetobacter baumannii phages (4,152 prophages + 122 virulent phages, distributed in 46 countries in the world), we show that 91% (875 out of 963) of the prophage species have four or fewer prophages per species, and just five prophage species have more than 100 prophages. Most prophage species have a narrow host range and are geographically restricted; yet, very few have a broad host range being well spread in distant lineages of A. baumannii. These few broad host range prophage species are not only cosmopolitan but also the most abundant species. We also noted that polylysogens had very divergent prophages, belonging to different prophage species, and prophages can easily be gained and lost within the bacterial lineages. Finally, even with this extensive data set, the prophage diversity has not been fully grasped. Our study highlights how integrating the host population structure and a solid operational definition of phage species allows us to better appreciate phage diversity and its transmission dynamics. IMPORTANCE Much knowledge about bacteriophages has been obtained via genomics and metagenomics over the last decades. However, most studies dealing with prophage diversity have rarely conducted phage species delimitation (aspect 1) and have hardly integrated the population structure of the host (aspect 2). Yet, these two aspects are essential in assessing phage diversity. Here, we implemented an operational definition of phage species (clustering at 95% identity, 90% coverage) and integrated the host's population structure to understand prophage diversity better. Gathering the most extensive data set of Acinetobacter baumannii phages, we show that most prophage species have four or fewer prophages per species, and just five prophage species have more than 100 prophages. Most prophage species have a narrow host range and are geographically restricted; yet, very few have a broad host range being well spread in distant lineages of A. baumannii. These few broad host range prophage species are cosmopolitan and the most abundant species. Prophages in the same bacterial genome are very divergent, and prophages can easily be gained and lost within the bacterial lineages. Finally, even with this extensive data set, the prophage diversity has not been fully grasped. This study shows how integrating the host population structure and clustering at the species level allows us to better appreciate phage diversity and its transmission dynamics.
Collapse
Affiliation(s)
- Karen Tenorio-Carnalla
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alejandro Aguilar-Vera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alfredo J. Hernández-Alvarez
- Unidadad de Administración de Tecnologías de Información, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa Isela Santamaria
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Qiu Z, Yuan K, Cao H, Chen S, Chen F, Mo F, Guo G, Peng J. Cross-talk of MLST and transcriptome unveiling antibiotic resistance mechanism of carbapenem resistance Acinetobacter baumannii clinical strains isolated in Guiyang, China. Front Microbiol 2024; 15:1394775. [PMID: 38946905 PMCID: PMC11211267 DOI: 10.3389/fmicb.2024.1394775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen causing nosocomial infection in the clinic. The occurrence rate of antibiotic resistance is increasing year by year, resulting in a highly serious situation of bacterial resistance. Methods To better understand the local epidemiology of multidrug-resistant A. baumannii, an investigation was conducted on the antibiotic resistance of different types of A. baumannii and its relationship with the genes of A. baumannii. Furthermore, the molecular mechanism underlying antibiotic resistance in A. baumannii was investigated through transcriptome analysis. Results These results showed that a total of 9 STs were detected. It was found that 99% of the strains isolated in the hospital belonged to the same STs, and the clone complex CC208 was widely distributed in various departments and all kinds of samples. Furthermore, these A. baumannii strains showed high resistance to ertapenem, biapenem, meropenem, and imipenem, among which the resistance to ertapenem was the strongest. The detection rate of bla OXA-51 gene in these carbapenem resistance A. baumannii (CRAB) reached 100%; Additionally, the transcriptome results showed that the resistance genes were up-regulated in resistance strains, and these genes involved in biofilm formation, efflux pumps, peptidoglycan biosynthesis, and chaperonin synthesis. Discussion These results suggest that the CC208 STs were the main clonal complex, and showed high carbapenem antibiotic resistance. All these resistant strains were distributed in various departments, but most of them were distributed in intensive care units (ICU). The bla OXA-23 was the main antibiotic resistance genotype; In summary, the epidemic trend of clinical A. baumannii in Guiyang, China was analyzed from the molecular level, and the resistance mechanism of A. baumannii to carbapenem antibiotics was analyzed with transcriptome, which provided a theoretical basis for better control of A. baumannii.
Collapse
Affiliation(s)
- Zhilang Qiu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Kexin Yuan
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Huijun Cao
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Sufang Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Feifei Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fei Mo
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Cellular Immunotherapy Engineering Research Center of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Chelaru EC, Muntean AA, Hogea MO, Muntean MM, Popa MI, Popa GL. The Importance of Carbapenemase-Producing Enterobacterales in African Countries: Evolution and Current Burden. Antibiotics (Basel) 2024; 13:295. [PMID: 38666971 PMCID: PMC11047529 DOI: 10.3390/antibiotics13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a worldwide healthcare problem. Multidrug-resistant organisms (MDROs) can spread quickly owing to their resistance mechanisms. Although colonized individuals are crucial for MDRO dissemination, colonizing microbes can lead to symptomatic infections in carriers. Carbapenemase-producing Enterobacterales (CPE) are among the most important MDROs involved in colonizations and infections with severe outcomes. This review aimed to track down the first reports of CPE in Africa, describe their dissemination throughout African countries and summarize the current status of CRE and CPE data, highlighting current knowledge and limitations of reported data. Two database queries were undertaken using Medical Subject Headings (MeSH), employing relevant keywords to identify articles that had as their topics beta-lactamases, carbapenemases and carbapenem resistance pertaining to Africa or African regions and countries. The first information on CPE could be traced back to the mid-2000s, but data for many African countries were established after 2015-2018. Information is presented chronologically for each country. Although no clear conclusions could be drawn for some countries, it was observed that CPE infections and colonizations are present in most African countries and that carbapenem-resistance levels are rising. The most common CPE involved are Klebsiella pneumoniae and Escherichia coli, and the most prevalent carbapenemases are NDM-type and OXA-48-type enzymes. Prophylactic measures, such as screening, are required to combat this phenomenon.
Collapse
Affiliation(s)
- Edgar-Costin Chelaru
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Andrei-Alexandru Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Mihai-Octav Hogea
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mădălina-Maria Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mircea-Ioan Popa
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gabriela-Loredana Popa
- Department of Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Parasitic Disease Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Kou X, Zhu D, Zhang Y, Huang L, Liang J, Wu Z, Liu Z, Guan C, Yu L. Development and clinical validation of a dual ddPCR assay for detecting carbapenem-resistant Acinetobacter baumannii in bloodstream infections. Front Microbiol 2024; 15:1338395. [PMID: 38591042 PMCID: PMC11000175 DOI: 10.3389/fmicb.2024.1338395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
Objective Acinetobacter baumannii (A. baumannii, AB) represents a major species of Gram-negative bacteria involved in bloodstream infections (BSIs) and shows a high capability of developing antibiotic resistance. Especially, carbapenem-resistant Acinetobacter baumannii (CRAB) becomes more and more prevalent in BSIs. Hence, a rapid and sensitive CRAB detection method is of urgent need to reduce the morbidity and mortality due to CRAB-associated BSIs. Methods A dual droplet digital PCR (ddPCR) reaction system was designed for detecting the antibiotic resistance gene OXA-23 and AB-specific gene gltA. Then, the specificity of the primers and probes, limit of detection (LOD), linear range, and accuracy of the assay were evaluated. Furthermore, the established assay approach was validated on 37 clinical isolates and compared with blood culture and drug sensitivity tests. Results The dual ddPCR method established in this study demonstrated strong primer and probe specificity, distinguishing CRAB among 21 common clinical pathogens. The method showed excellent precision (3 × 10-4 ng/μL, CV < 25%) and linearity (OXA-23: y = 1.4558x + 4.0981, R2 = 0.9976; gltA: y = 1.2716x + 3.6092, R2 = 0.9949). While the dual qPCR LOD is 3 × 10-3 ng/μL, the dual ddPCR's LOD stands at 3 × 10-4 ng/μL, indicating a higher sensitivity in the latter. When applied to detect 35 patients with BSIs of AB, the results were consistent with clinical blood culture identification and drug sensitivity tests. Conclusion The dual ddPCR detection method for OXA-23 and gltA developed in this study exhibits good specificity, excellent linearity, and a higher LOD than qPCR. It demonstrates reproducibility even for minute samples, making it suitable for rapid diagnosis and precision treatment of CRAB in BSIs.
Collapse
Affiliation(s)
- Xiaoxia Kou
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Detu Zhu
- Biologics Test and Evaluation Center, Guangzhou Laboratory, Guangzhou, China
| | - Yandong Zhang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liyan Huang
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiawei Liang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ziman Wu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ze Liu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chushi Guan
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Yu
- Department of Laboratory, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Tian C, Song J, Ren L, Huang D, Wang S, Fu L, Zhao Y, Bai Y, Fan X, Ma T, Ying J. Complete genetic characterization of carbapenem-resistant Acinetobacter johnsonii, co-producing NDM-1, OXA-58, and PER-1 in a patient source. Front Cell Infect Microbiol 2023; 13:1227063. [PMID: 37692162 PMCID: PMC10486904 DOI: 10.3389/fcimb.2023.1227063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The emergence of carbapenemase-producing Acinetobacter spp. has been widely reported and become a global threat. However, carbapenem-resistant A. johnsonii strains are relatively rare and without comprehensive genetic structure analysis, especially for isolates collected from human specimen. Here, one A. johnsonii AYTCM strain, co-producing NDM-1, OXA-58, and PER-1 enzymes, was isolated from sputum in China in 2018. Antimicrobial susceptibility testing showed that it was resistant to meropenem, imipenem, ceftazidime, ciprofloxacin, and cefoperazone/sulbactam. Whole-genome sequencing and bioinformatic analysis revealed that it possessed 11 plasmids. bla OXA-58 and bla PER-1 genes were located in the pAYTCM-1 plasmid. Especially, a complex class 1 integron consisted of a 5' conserved segment (5' CS) and 3' CS, which was found to carry sul1, arr-3, qnrVC6, and bla PER-1 cassettes. Moreover, the bla NDM-1 gene was located in 41,087 conjugative plasmids and was quite stable even after 70 passages under antibiotics-free conditions. In addition, six prophage regions were identified. Tracking of closely related plasmids in the public database showed that pAYTCM-1 was similar to pXBB1-9, pOXA23_010062, pOXA58_010030, and pAcsw19-2 plasmids, which were collected from the strains of sewage in China. Concerning the pAYTCM-3 plasmids, results showed that strains were collected from different sources and their hosts were isolated from various countries, such as China, USA, Japan, Brazil, and Mexico, suggesting that a wide spread occurred all over the world. In conclusion, early surveillance is warranted to avoid the extensive spread of this high-risk clone in the healthcare setting.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Jianqin Song
- Department of Traditional Chinese Medicine, Hangzhou Linping District Hospital of Integrated Chinese and Western Medicine, Hangzhou, China
| | - Lingzhi Ren
- Department of Clinical Laboratory, The People’s Hospital of Zhangqiu Area, Jinan, China
| | - Delian Huang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Wang
- Core Facility, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, Zhejiang, China
| | - Yongfeng Bai
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xueyu Fan
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Tianhong Ma
- Department of Pharmacy, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Junjie Ying
- Department of Urology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
6
|
Santoro F, Pastore G, Fox V, Petit MA, Iannelli F, Pozzi G. Streptococcus pyogenes Φ1207.3 Is a Temperate Bacteriophage Carrying the Macrolide Resistance Gene Pair mef(A)- msr(D) and Capable of Lysogenizing Different Streptococci. Microbiol Spectr 2023; 11:e0421122. [PMID: 36625667 PMCID: PMC9927172 DOI: 10.1128/spectrum.04211-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pyogenes prophage Φ1207.3 (formerly Tn1207.3) carries the mef(A)-msr(D) resistance genes, responsible for type M macrolide resistance. To investigate if Φ1207.3 is a functional bacteriophage, we transferred the element from the original S. pyogenes host in a prophage-free and competence-deficient S. pneumoniae strain. Pneumococcal cultures of the Φ1207.3-carrying lysogen were treated with mitomycin C to assess if Φ1207.3 enters the lytic cycle. Mitomycin C induced a limited phage burst and a growth impairment, resulting in early entrance into the stationary phase. To determine if Φ1207.3 is able to produce mature phage particles, we prepared concentrated supernatants recovered from a mitomycin C-induced pneumococcal culture by sequential centrifugation and ultracentrifugation steps. Negative-staining transmission electron microscopy (TEM) of supernatants revealed the presence of phage particles with an icosahedral, electron-dense capsid and a long, noncontractile tail, typical of a siphovirus. Quantification of Φ1207.3 was performed by quantitative PCR (qPCR) and semiquantitatively by TEM. PCR quantified 3.34 × 104 and 6.06 × 104 excised forms of phage genome per milliliter of supernatant obtained from the untreated and mitomycin C-treated cultures, respectively. By TEM, we estimated 3.02 × 103 and 7.68 × 103 phage particles per milliliter of supernatant. The phage preparations of Φ1207.3 infected and lysogenized pneumococcal recipient strains at a frequency of 7.5 × 10-6 lysogens/recipient but did not show sufficient lytic activity to form plaques. Phage lysogenization efficiently occurred after 30 min of contact of the phages with the recipient cells and required a minimum of 103 phage particles. IMPORTANCE Bacteriophages play an important role in bacterial physiology and genome evolution. The widespread use of genome sequencing revealed that bacterial genomes can contain several different integrated temperate bacteriophages, which can constitute up to 20% of the genome. Most of these bacteriophages are only predicted in silico and are never shown to be functional. In fact, it is often difficult to induce the lytic cycle of temperate bacteriophages. In this work, we show that Φ1207.3, a peculiar bacteriophage originally from Streptococcus pyogenes, which can lysogenize different streptococci and carries the macrolide resistance mef(A)-msr(D) gene pair, is capable of producing mature virions, but only at a low level, while not being able to produce plaques. This temperate phage is probably a partially functional phage, which seems to have lost lytic characteristics to specialize in lysogenization. While we are not used to conceiving phages separately from lysis, this behavior could actually be more frequent than expected.
Collapse
Affiliation(s)
- Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Valeria Fox
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marie-Agnes Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci 2022; 1518:166-182. [PMID: 36316792 PMCID: PMC9771954 DOI: 10.1111/nyas.14918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic Acinetobacter species, most notably Acinetobacter baumannii, are a significant cause of healthcare-associated infections worldwide. Acinetobacter infections are of particular concern to global health due to the high rates of multidrug resistance and extensive drug resistance. Widespread genome sequencing and analysis has determined that bacterial antibiotic resistance is often acquired and disseminated through the movement of mobile genetic elements, including insertion sequences (IS), transposons, integrons, and conjugative plasmids. In Acinetobacter specifically, resistance to carbapenems and cephalosporins is highly correlated with IS, as many ISAba elements encode strong outwardly facing promoters that are required for sufficient expression of β-lactamases to confer clinical resistance. Here, we review the role of mobile genetic elements in antibiotic resistance in Acinetobacter species through the framework of the mechanism of resistance acquisition and with a focus on experimentally validated mechanisms.
Collapse
Affiliation(s)
- Hannah R. Noel
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Jessica R. Petrey
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology University of Illinois Chicago Chicago Illinois USA
| |
Collapse
|
8
|
Tian C, Xing M, Fu L, Zhao Y, Fan X, Wang S. Emergence of uncommon KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Front Cell Infect Microbiol 2022; 12:943735. [PMID: 36034705 PMCID: PMC9411868 DOI: 10.3389/fcimb.2022.943735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To characterize one KL38-OCL6-ST220 carbapenem-resistant Acinetobacter pittii strain, co-producing chromosomal NDM-1 and OXA-820 carbapenemases. Methods A. pittii TCM strain was isolated from a bloodstream infection (BSI). Antimicrobial susceptibility tests were conducted via disc diffusion and broth microdilution. Stability experiments of blaNDM-1 and blaOXA-820 carbapenemase genes were further performed. Whole-genome sequencing (WGS) was performed on the Illumina and Oxford Nanopore platforms. Multilocus sequence typing (MLST) was analyzed based on the Pasteur and Oxford schemes. Resistance genes, virulence factors, and insertion sequences (ISs) were identified with ABRicate based on ResFinder 4.0, virulence factor database (VFDB), and ISfinder. Capsular polysaccharide (KL), lipooligosaccharide outer core (OCL), and plasmid reconstruction were tested using Kaptive and PLACNETw. PHASTER was used to predict prophage regions. A comparative genomics analysis of all ST220 A. pittii strains from the public database was carried out. Point mutations, average nucleotide identity (ANI), DNA–DNA hybridization (DDH) distances, and pan-genome analysis were performed. Results A. pittii TCM was ST220Pas and ST1818Oxf with KL38 and OCL6, respectively. It was resistant to imipenem, meropenem, and ciprofloxacin but still susceptible to amikacin, colistin, and tigecycline. WGS revealed that A. pittii TCM contained one circular chromosome and four plasmids. The Tn125 composite transposon, including blaNDM-1, was located in the chromosome with 3-bp target site duplications (TSDs). Many virulence factors and the blaOXA-820 carbapenemase gene were also identified. The stability assays revealed that blaNDM-1 and blaOXA-820 were stabilized by passage in an antibiotic-free medium. Moreover, 12 prophage regions were identified in the chromosome. Phylogenetic analysis showed that there are 11 ST220 A. pittii strains, and one collected from Anhui, China was closely related. All ST220 A. pittii strains presented high ANI and DDH values; they ranged from 99.85% to 100% for ANI and from 97.4% to 99.9% for DDH. Pan-genome analysis revealed 3,200 core genes, 0 soft core genes, 1,571 shell genes, and 933 cloud genes among the 11 ST220 A. pittii strains. Conclusions The coexistence of chromosomal NDM-1 and OXA-820 carbapenemases in A. pittii presents a huge challenge in healthcare settings. Increased surveillance of this species in hospital and community settings is urgently needed.
Collapse
Affiliation(s)
- Chongmei Tian
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengyu Xing
- Department of Pharmacy, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Fu
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Yaping Zhao
- Department of Pharmacy, Shaoxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Shaoxing, China
| | - Xueyu Fan
- Department of Clinical Laboratory, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Siwei Wang
- Core Facility, Quzhou People’s Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- *Correspondence: Siwei Wang,
| |
Collapse
|
9
|
Acinetobacter Baumannii: More Ways to Die. Microbiol Res 2022; 261:127069. [DOI: 10.1016/j.micres.2022.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|