1
|
Zhu X, Huang Y, Shi Y, Gao X, Chen D, Liu C, Cao S, Xue X, Li Y. Comparative genomic analysis of food-animal-derived and human-derived Clostridium perfringens isolates from markets in Shandong, China. Front Microbiol 2025; 16:1543511. [PMID: 40236475 PMCID: PMC11996926 DOI: 10.3389/fmicb.2025.1543511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Clostridium perfringens (C. perfringens) is a foodborne pathogen that poses a significant threat to both animal husbandry and public health. In this study, 27 C. perfringens strains were isolated from animal samples and animal-derived food products. Antibiotics resistances among the isolates were phenotypically and genotypically analyzed and Whole genome sequencing (WGS). In combination with the genomes of 141 human-derived C. perfringens strains from public databases, this study conducted comprehensive analyses of antibiotic resistance genes, virulence genes, multilocus sequence typing (MLST), prophage detection, and pan-genome analysis for a total of 168 strains of C. perfringens. Antibiotics resistances among the isolates were phenotypically and genotypically analyzed and found 24 of them (88.9%, 24/27) were identified as multidrug-resistant (MDR). WGS analysis revealed that 13 strains belonged to known sequence types (ST), and the remaining strains represented 10 new STs. By analysis in combination with data of 141 C. perfringens isolates from the database, it was implied that ST221, ST72 and ST370 were present in both animal-derived and human-derived C. perfringens. It is worth noting that 108 out of 168 strains of C. perfringens (64.3%, 108/168) were found to carry prophages, which were found more prevalent in human-derived C. perfringens isolates. Pan-genome and phylogenetic analysis of 168 C. perfringens strains indicated that C. perfringens possesses an open pan-genome with genetic diversity. This study provides genomic insights into C. perfringens from food animals and humans, shedding light on the importance for monitoring the C. perfringens in livestock in China for better public health.
Collapse
Affiliation(s)
- Xinyang Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yucui Huang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yuxia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaojie Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Duanduan Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Cheng Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Shengliang Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Weifang, Shandong, China
| | - Yubao Li
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
2
|
Fang M, Yuan Y, Tian X, Liu Y, Wu K, Zhu Y, Zhang L, Fox EM, Li R, Bai L, Li M, Macori G, Wang X, Ye D, Yang Z, Zhang R, Wang J. Genomic and antimicrobial resistance profiles of Clostridium perfringens isolated from pets in China. Vet Microbiol 2025; 304:110490. [PMID: 40174304 DOI: 10.1016/j.vetmic.2025.110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
Clostridium perfringens is a notable pathogen causing diarrhea in domestic animals. However, data on this pathogen's prevalence and genomic characteristics in pets are limited. We collected 300 fecal samples from companion animals across two cities in China and isolated 150 strains for genomic sequencing and antimicrobial susceptibility testing (AST). Our findings showed a high prevalence of two key virulence genes (VGs), pfoA (77.33 %, 116/150) and cpb2 (60.67 %, 91/150). Moreover, for the first time in China, we identified a strain carrying netF. The analysis of AST and genomic antimicrobial resistance genes (ARGs) highlighted the resistance patterns of pet-derived C. perfringens strains in China. Particularly, we observed a high resistance rate to erythromycin, primarily associated with erm(Q), which was found in 88.67 % (133/150) of all isolates. This resistance rate was higher than that reported in previous studies. Genetic context analysis identified a novel plasmid group harboring the erm(Q) gene. In summary, this study revealed the antibiotic resistance and genomic characteristics of C. perfringens strains derived from pets in China, providing a reference for the prevention of related diseases and further research. Notably, these findings underscore the need for continuous monitoring of resistance trends, particularly concerning the spread of erm(Q), to lessen the impact of antimicrobial resistance in veterinary medicine.
Collapse
Affiliation(s)
- Mingjin Fang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yuan Yuan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Xin Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Ying Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Ke Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yanyan Zhu
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Likun Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Ruichao Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Li Bai
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing, China; Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), China National Center for Food Safety Risk Assessment (CFSA), Beijing, China
| | - Menghan Li
- NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing, China; Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), China National Center for Food Safety Risk Assessment (CFSA), Beijing, China
| | - Guerrino Macori
- University College Dublin, School of Biology and Environmental Science, Dublin, Ireland & UCD Centre for Food Safety, Dublin, Ireland
| | - Xinglong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Dongyang Ye
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Zengqi Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China.
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China.
| |
Collapse
|
3
|
Camargo A, Ramírez JD, Kiu R, Hall LJ, Muñoz M. Unveiling the pathogenic mechanisms of Clostridium perfringens toxins and virulence factors. Emerg Microbes Infect 2024; 13:2341968. [PMID: 38590276 PMCID: PMC11057404 DOI: 10.1080/22221751.2024.2341968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Clostridium perfringens causes multiple diseases in humans and animals. Its pathogenic effect is supported by a broad and heterogeneous arsenal of toxins and other virulence factors associated with a specific host tropism. Molecular approaches have indicated that most C. perfringens toxins produce membrane pores, leading to osmotic cell disruption and apoptosis. However, identifying mechanisms involved in cell tropism and selective toxicity effects should be studied more. The differential presence and polymorphisms of toxin-encoding genes and genes encoding other virulence factors suggest that molecular mechanisms might exist associated with host preference, receptor binding, and impact on the host; however, this information has not been reviewed in detail. Therefore, this review aims to clarify the current state of knowledge on the structural features and mechanisms of action of the major toxins and virulence factors of C. perfringens and discuss the impact of genetic diversity of toxinotypes in tropism for several hosts.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymond Kiu
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|