1
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
2
|
Ko EM, Oh Y, Oh JI. Negative regulation of the acsA1 gene encoding the major acetyl-CoA synthetase by cAMP receptor protein in Mycobacterium smegmatis. J Microbiol 2022; 60:1139-1152. [PMID: 36279104 DOI: 10.1007/s12275-022-2347-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Acetyl-CoA synthetase (ACS) is the enzyme that irreversibly catalyzes the synthesis of acetyl-CoA from acetate, CoA-SH, and ATP via acetyl-AMP as an intermediate. In this study, we demonstrated that AcsA1 (MSMEG_6179) is the predominantly expressed ACS among four ACSs (MSMEG_6179, MSMEG_0718, MSMEG_3986, and MSMEG_5650) found in Mycobacterium smegmatis and that a deletion mutation of acsA1 in M. smegmatis led to its compromised growth on acetate as the sole carbon source. Expression of acsA1 was demonstrated to be induced during growth on acetate as the sole carbon source. The acsA1 gene was shown to be negatively regulated by Crp1 (MSMEG_6189) that is the major cAMP receptor protein (CRP) in M. smegmatis. Using DNase I footprinting analysis and site-directed mutagenesis, a CRP-binding site (GGTGA-N6-TCACA) was identified in the upstream regulatory region of acsA1, which is important for repression of acsA1 expression. We also demonstrated that inhibition of the respiratory electron transport chain by inactivation of the major terminal oxidase, aa3 cytochrome c oxidase, led to a decrease in acsA1 expression probably through the activation of CRP. In conclusion, AcsA1 is the major ACS in M. smegmatis and its gene is under the negative regulation of Crp1, which contributes to some extent to the induction of acsA1 expression under acetate conditions. The growth of M. smegmatis is severely impaired on acetate as the sole carbon source under respiration-inhibitory conditions.
Collapse
Affiliation(s)
- Eon-Min Ko
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, 28159, Republic of Korea
| | - Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
3
|
Thomson M, Liu Y, Nunta K, Cheyne A, Fernandes N, Williams R, Garza-Garcia A, Larrouy-Maumus G. Expression of a novel mycobacterial phosphodiesterase successfully lowers cAMP levels resulting in reduced tolerance to cell wall-targeting antimicrobials. J Biol Chem 2022; 298:102151. [PMID: 35718063 PMCID: PMC9293780 DOI: 10.1016/j.jbc.2022.102151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/09/2023] Open
Abstract
cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Michael Thomson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Kanokkan Nunta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | - Richard Williams
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Harold LK, Jinich A, Hards K, Cordeiro A, Keighley LM, Cross A, McNeil MB, Rhee K, Cook GM. Deciphering functional redundancy and energetics of malate oxidation in mycobacteria. J Biol Chem 2022; 298:101859. [PMID: 35337802 PMCID: PMC9062433 DOI: 10.1016/j.jbc.2022.101859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidation of malate to oxaloacetate, catalyzed by either malate dehydrogenase (Mdh) or malate quinone oxidoreductase (Mqo), is a critical step of the tricarboxylic acid cycle. Both Mqo and Mdh are found in most bacterial genomes, but the level of functional redundancy between these enzymes remains unclear. A bioinformatic survey revealed that Mqo was not as widespread as Mdh in bacteria but that it was highly conserved in mycobacteria. We therefore used mycobacteria as a model genera to study the functional role(s) of Mqo and its redundancy with Mdh. We deleted mqo from the environmental saprophyte Mycobacterium smegmatis, which lacks Mdh, and found that Mqo was essential for growth on nonfermentable carbon sources. On fermentable carbon sources, the Δmqo mutant exhibited delayed growth and lowered oxygen consumption and secreted malate and fumarate as terminal end products. Furthermore, heterologous expression of Mdh from the pathogenic species Mycobacterium tuberculosis shortened the delayed growth on fermentable carbon sources and restored growth on nonfermentable carbon sources at a reduced growth rate. In M. tuberculosis, CRISPR interference of either mdh or mqo expression resulted in a slower growth rate compared to controls, which was further inhibited when both genes were knocked down simultaneously. These data reveal that exergonic Mqo activity powers mycobacterial growth under nonenergy limiting conditions and that endergonic Mdh activity complements Mqo activity, but at an energetic cost for mycobacterial growth. We propose Mdh is maintained in slow-growing mycobacterial pathogens for use under conditions such as hypoxia that require reductive tricarboxylic acid cycle activity.
Collapse
Affiliation(s)
- Liam K Harold
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Alexandra Cordeiro
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Laura M Keighley
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alec Cross
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matthew B McNeil
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Kyu Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
5
|
Regulation of the icl1 Gene Encoding the Major Isocitrate Lyase in Mycobacterium smegmatis. J Bacteriol 2021; 203:e0040221. [PMID: 34516281 DOI: 10.1128/jb.00402-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium smegmatis has two isocitrate lyase (ICL) isozymes (MSMEG_0911 and MSMEG_3706). We demonstrated that ICL1 (MSMEG_0911) is the predominantly expressed ICL in M. smegmatis and plays a major role in growth on acetate or fatty acid as the sole carbon and energy source. Expression of the icl1 gene in M. smegmatis was demonstrated to be strongly upregulated during growth on acetate relative to that in M. smegmatis grown on glucose. Expression of icl1 was shown to be positively regulated by the RamB activator, and three RamB-binding sites (RamBS1, RamBS2, and RamBS3) were identified in the upstream region of icl1 using DNase I footprinting analysis. Succinyl coenzyme A (succinyl-CoA) was shown to increase the affinity of binding of RamB to its binding sites and enable RamB to bind to RamBS2, which is the most important site for RamB-mediated induction of icl1 expression. These results suggest that succinyl-CoA serves as a coinducer molecule for RamB. Our study also showed that cAMP receptor protein (Crp1; MSMEG_6189) represses icl1 expression in M. smegmatis grown in the presence of glucose. Therefore, the strong induction of icl1 expression during growth on acetate as the sole carbon source relative to the weak expression of icl1 during growth on glucose is likely to result from combined effects of RamB-mediated induction of icl1 in the presence of acetate and Crp-mediated repression of icl1 in the presence of glucose. IMPORTANCE Carbon flux through the glyoxylate shunt has been suggested to affect virulence, persistence, and antibiotic resistance of Mycobacterium tuberculosis. Therefore, it is important to understand the precise mechanism underlying the regulation of the icl gene encoding the key enzyme of the glyoxylate shunt. Using Mycobacterium smegmatis, this study revealed the regulation mechanism underlying induction of icl1 expression in M. smegmatis when the glyoxylate shunt is required. The conservation of the cis- and trans-acting regulatory elements related to icl1 regulation in both M. smegmatis and M. tuberculosis implies that a similar regulatory mechanism operates for the regulation of icl1 expression in M. tuberculosis.
Collapse
|
6
|
Alarico S, Nunes-Costa D, Silva A, Costa M, Macedo-Ribeiro S, Empadinhas N. A genuine mycobacterial thermophile: Mycobacterium hassiacum growth, survival and GpgS stability at near-pasteurization temperatures. MICROBIOLOGY-SGM 2021; 166:474-483. [PMID: 32100712 DOI: 10.1099/mic.0.000898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycobacterium hassiacum is so far the most thermophilic among mycobacteria as it grows optimally at 50 °C and up to 65 °C in a glycerol-based medium, as verified in this study. Since this and other nontuberculous mycobacteria (NTM) thrive in diverse natural and artificial environments, from where they may access and infect humans, we deemed essential to probe M. hassiacum resistance to heat, a strategy routinely used to control microbial growth in water-supply systems, as well as in the food and drink industries. In addition to possibly being a threat in its own right in rare occasions, M. hassiacum is also a good surrogate for studying other NTM species more often associated with opportunistic infection, namely Mycobacterium avium and Mycobacterium abscessus as well as their strictly pathogenic counterparts Mycobacterium tuberculosis and Mycobacterium leprae. In this regard, this thermophilic species is likely to be useful as a source of stable proteins that may provide more detailed structures of potential drug targets. Here, we investigate M. hassiacum growth at near-pasteurization temperatures and at different pHs and also characterize its thermostable glucosyl-3-phosphoglycerate synthase (GpgS), an enzyme considered essential for M. tuberculosis growth and associated with both nitrogen starvation and thermal stress in different NTM species.
Collapse
Affiliation(s)
- Susana Alarico
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB - PhD Programme in Biomedicine and Experimental Biology, Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Alexandra Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mafalda Costa
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra Macedo-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nuno Empadinhas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Ko EM, Oh JI. Induction of the cydAB Operon Encoding the bd Quinol Oxidase Under Respiration-Inhibitory Conditions by the Major cAMP Receptor Protein MSMEG_6189 in Mycobacterium smegmatis. Front Microbiol 2020; 11:608624. [PMID: 33343552 PMCID: PMC7739888 DOI: 10.3389/fmicb.2020.608624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022] Open
Abstract
The respiratory electron transport chain (ETC) of Mycobacterium smegmatis is terminated with two terminal oxidases, the aa 3 cytochrome c oxidase and the cytochrome bd quinol oxidase. The bd quinol oxidase with a higher binding affinity for O2 than the aa 3 oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant crp1 (MSMEG_6189) and crp2 (MSMEG_0539) mutant strains of M. smegmatis, we demonstrated that Crp1 plays a predominant role in induction of the cydAB operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the cydA gene, both of which are necessary for induction of cydAB expression under ETC-inhibitory conditions. The intracellular level of cAMP in M. smegmatis was found to be increased under ETC-inhibitory conditions. The crp2 gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in M. smegmatis. Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in M. smegmatis exposed to ETC-inhibitory conditions.
Collapse
Affiliation(s)
- Eon-Min Ko
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
8
|
Tripartite Regulation of the glpFKD Operon Involved in Glycerol Catabolism by GylR, Crp, and SigF in Mycobacterium smegmatis. J Bacteriol 2019; 201:JB.00511-19. [PMID: 31570530 DOI: 10.1128/jb.00511-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022] Open
Abstract
The glpD (MSMEG_6761) gene encoding glycerol-3-phosphate dehydrogenase was shown to be crucial for M. smegmatis to utilize glycerol as the sole carbon source. The glpD gene likely forms the glpFKD operon together with glpF and glpK, encoding a glycerol facilitator and glycerol kinase, respectively. The gylR (MSMEG_6757) gene, whose product belongs to the IclR family of transcriptional regulators, was identified 182 bp upstream of glpF It was demonstrated that GylR serves as a transcriptional activator and is involved in the induction of glpFKD expression in the presence of glycerol. Three GylR-binding sites with the consensus sequence (GKTCGRC-N3-GYCGAMC) were identified in the upstream region of glpF by DNase I footprinting analysis. The presence of glycerol-3-phosphate was shown to decrease the binding affinity of GylR to the glpF upstream region with changes in the quaternary structure of GylR from tetramer to dimer. Besides GylR, cAMP receptor protein (Crp) and an alternative sigma factor, SigF, are also implicated in the regulation of glpFKD expression. Crp functions as a repressor, while SigF induces expression of glpFKD under energy-limiting conditions. In conclusion, we suggest here that the glpFKD operon is under the tripartite control of GylR, SigF, and Crp, which enables M. smegmatis to integrate the availability of glycerol, cellular energy state, and cellular levels of cAMP to exquisitely control expression of the glpFKD operon involved in glycerol metabolism.IMPORTANCE Using genetic approaches, we first revealed that glycerol is catabolized through the glycolytic pathway after conversion to dihydroxyacetone phosphate in two sequential reactions catalyzed by glycerol kinase (GlpK) and flavin adenine dinucleotide (FAD)-containing glycerol-3-phosphate dehydrogenase (GlpD) in M. smegmatis Our study also revealed that in addition to the GylR transcriptional activator that mediates the induction of the glpFKD operon by glycerol, the operon is regulated by SigF and Crp, which reflect the cellular energy state and cAMP level, respectively.
Collapse
|
9
|
Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proc Natl Acad Sci U S A 2015; 112:10497-502. [PMID: 26240343 DOI: 10.1073/pnas.1508385112] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of microbial cells in global soils exist in a spectrum of dormant states. However, the metabolic processes that enable them to survive environmental challenges, such as nutrient-limitation, remain to be elucidated. In this work, we demonstrate that energy-starved cultures of Pyrinomonas methylaliphatogenes, an aerobic heterotrophic acidobacterium isolated from New Zealand volcanic soils, persist by scavenging the picomolar concentrations of H2 distributed throughout the atmosphere. Following the transition from exponential to stationary phase due to glucose limitation, the bacterium up-regulates by fourfold the expression of an eight-gene operon encoding an actinobacteria-type H2-uptake [NiFe]-hydrogenase. Whole-cells of the organism consume atmospheric H2 in a first-order kinetic process. Hydrogen oxidation occurred most rapidly under oxic conditions and was weakly associated with the cell membrane. We propose that atmospheric H2 scavenging serves as a mechanism to sustain the respiratory chain of P. methylaliphatogenes when organic electron donors are scarce. As the first observation of H2 oxidation to our knowledge in the Acidobacteria, the second most dominant soil phylum, this work identifies new sinks in the biogeochemical H2 cycle and suggests that trace gas oxidation may be a general mechanism for microbial persistence.
Collapse
|