1
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
2
|
Sharipova M, Rudakova N, Mardanova A, Evtugyn V, Akosah Y, Danilova I, Suleimanova A. Biofilm Formation by Mutant Strains of Bacilli under Different Stress Conditions. Microorganisms 2023; 11:1486. [PMID: 37374988 PMCID: PMC10302059 DOI: 10.3390/microorganisms11061486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Bacillus subtilis is traditionally classified as a PGPR that colonizes plant roots through biofilm formation. The current study focused on investigating the influence of various factors on bacilli biofilm formation. In the course of the study, the levels of biofilm formation by the model strain B. subtilis WT 168 and on its basis created regulatory mutants, as well as strains of bacilli with deleted extracellular proteases under conditions of changes in temperature, pH, salt and oxidative stress and presence of divalent metals ions. B. subtilis 168 forms halotolerant and oxidative stress-resistant biofilms at a temperature range of 22 °C-45 °C and a pH range of 6-8.5. The presence of Ca2+, Mn2+ and Mg2+ upsurges the biofilm development while an inhibition with Zn2+. Biofilm formation level was higher in protease-deficient strains. Relative to the wild-type strain, degU mutants showed a decrease in biofilm formation, abrB mutants formed biofilms more efficiently. spo0A mutants showed a plummeted film formation for the first 36 h, followed by a surge after. The effect of metal ions and NaCl on the mutant biofilms formation is described. Confocal microscopy indicated that B. subtilis mutants and protease-deficient strains differ in matrix structure. The highest content of amyloid-like proteins in mutant biofilms was registered for degU-mutants and protease-deficient strains.
Collapse
Affiliation(s)
- Margarita Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Natalia Rudakova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Ayslu Mardanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Paris Commune St. 9, 420008 Kazan, Russia
| | - Yaw Akosah
- Department of Molecular Pathology, NYU College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Iuliia Danilova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Aliya Suleimanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| |
Collapse
|
3
|
Phakatkar AH, Gonçalves JM, Zhou J, Ritter TG, Tamadoni Saray M, Sorokina LV, Amiri A, Angnes L, Shokuhfar T, Shahbazian-Yassar R. Enhanced Bacterial Growth by Polyelemental Glycerolate Particles. ACS APPLIED BIO MATERIALS 2023; 6:1515-1524. [PMID: 36933270 DOI: 10.1021/acsabm.2c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
While polyelemental alloys are shown to be promising for healthcare applications, their effectiveness in promoting bacterial growth remains unexplored. In the present work, we evaluated the interaction of polyelemental glycerolate particles (PGPs) with Escherichia coli (E. coli) bacteria. PGPs were synthesized using the solvothermal route, and nanoscale random distribution of metal cations in the glycerol matrix of PGPs was confirmed. We observed 7-fold growth of E. coli bacteria upon 4 h of interaction with quinary glycerolate (NiZnMnMgSr-Gly) particles in comparison to control E. coli bacteria. Nanoscale microscopic studies on bacteria interactions with PGPs showed the release of metal cations in the bacterium cytoplasm from PGPs. The electron microscopy imaging and chemical mapping indicated bacterial biofilm formation on PGPs without causing significant cell membrane damage. The data showed that the presence of glycerol in PGPs is effective in controlling the release of metal cations, thus preventing bacterial toxicity. The presence of multiple metal cations is expected to provide synergistic effects of nutrients needed for bacterial growth. The present work provides key microscopic insights of mechanisms by which PGPs enhance biofilm growth. This study opens the door for future applications of PGPs in areas where bacterial growth is essential including healthcare, clean energy, and the food industry.
Collapse
Affiliation(s)
- Abhijit H Phakatkar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Josué M Gonçalves
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States.,Department of Fundamental Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-060, Brazil
| | - Jianshu Zhou
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Timothy G Ritter
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Mahmoud Tamadoni Saray
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lioudmila V Sorokina
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Azadeh Amiri
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lucio Angnes
- Department of Fundamental Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-060, Brazil
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
New perspectives for mechanisms, ingredients, and their preparation for promoting the formation of beneficial bacterial biofilm. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
6
|
Li H, Wu Y, Tang Y, Fang B, Luo P, Yang L, Jiang Q. A manganese-oxidizing bacterium-Enterobacter hormaechei strain DS02Eh01: Capabilities of Mn(II) immobilization, plant growth promotion and biofilm formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119775. [PMID: 35843452 DOI: 10.1016/j.envpol.2022.119775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
While biogenic Mn oxides (BioMnOx) generated by Mn(II)-oxidizing bacteria (MOB) have attracted increasing attention, a MOB strain isolated from Mn-polluted sediments was identified and assigned as Enterobacter hormaechei DS02Eh01. Its Mn(II) immobilization activity, plant growth-promoting traits, and biofilm formation capability were investigated. The results showed that strain DS02Eh01 was found to be able to tolerate Mn(II) up to 122 mM. The strain immobilized Mn(II) in aquatic media mainly through extracellular adsorption, bio-oxidation and pH-induced precipitation as well as manganese oxidation. DS02Eh01-derived BioMnOx are negatively charged and have a larger specific surface area (86.70 m2/g) compared to the previously reported BioMnOx. The strain can immobilize Mn(II) at extreme levels, for instance, when it was exposed to 20 mM Mn(II), about 59% of Mn(II) were found immobilized and 17% of Mn(II) were converted to MnOx. The SEM and TEM observation revealed that the DS02Eh01-derived BioMnOx were aggregates doped with granules and microbial pellets. The precipitated Mn(II) and the Mn(III)/Mn(IV) oxides co-existed in BioMnOx, in which Mn(II) and Mn(IV) were found dominant with Mn(II) accounting for 49.6% and Mn(IV) accounting for 41.3%. DS02Eh01 possesses plant growth-promoting traits and biofilm formation capacity even under Mn(II) exposure. Mn(II) exposure at 5 mM was found to stimulate strain DS02Eh01 to form biofilms, from which, the extracted EPS was mainly composed of aromatic proteins. This study reveals that E. hormaechei strain DS02Eh01 possesses the potential in environmental ecoremediation via coupling processes of macrophytes extraction, biochemical immobilization and biosorption.
Collapse
Affiliation(s)
- Huilan Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yu Wu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Yankui Tang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China.
| | - Bo Fang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Penghong Luo
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Luling Yang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| | - Qiming Jiang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials & MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530004, China
| |
Collapse
|
7
|
Nie LJ, Ye WQ, Xie WY, Zhou WW. Biofilm: New insights in the biological control of fruits with Bacillus amyloliquefaciens B4. Microbiol Res 2022; 265:127196. [PMID: 36116146 DOI: 10.1016/j.micres.2022.127196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/07/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilms are sessile microbial communities growing on surfaces, which are encased in some self-produced extracellular material. Beneficial biofilm could be widely used in agriculture, food, medicine, environment and other fields. As an ideal biocontrol agent, Bacillus amyloliquefaciens B4 can form a strong biofilm under static conditions. In this study, we screened out metal compounds that enhanced or inhibited the biofilm formation ability of B4, established the relationship between the biofilm of B4 strain and its postharvest biocontrol effect, and explored the regulation of metal compounds on the biofilm formation. The results showed 0.5 mmol L-1 ferric chloride could enhance the biofilm formation and strengthen the antifungal effect of B4, indicating that there was a positive relationship between the growth of biofilm and its biocontrol effect. The enhanced biofilm had a certain biocontrol effect on different fruit, including peach, loquat, Kyoho grape and cherry tomato. Furthermore, the expression of degU and tasA was affected by metal ion treatment, which meant the genes might be essential for the biofilm formation of B4. Our findings suggested that biofilm of B. amyloliquefaciens played an essential role in the process of biocontrol and it might be a novel strategy for managing postharvest fruit decay.
Collapse
Affiliation(s)
- Lin-Jie Nie
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wan-Qiong Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wan-Yue Xie
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Liu X, Zhang L, He X. Emitter clogging characteristics under reclaimed wastewater drip irrigation: a meta-analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4171-4181. [PMID: 35018656 DOI: 10.1002/jsfa.11766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 06/08/2023]
Abstract
BACKGROUND Although reclaimed wastewater drip irrigation (RWDI) is an effective technology for alleviating agricultural crop water stress and protecting the environment, the reclaimed wastewater (RW) may cause emitter clogging. Discharge ratio variation (Dra) and coefficient of uniformity (CU) play a key role in exploring the clogging degree of the emitter. Therefore, a meta-analysis was conducted to identify optimal management methods with an acceptable Dra and CU under RWDI. RESULTS The results indicate that the higher the concentration of various substances in RW, the higher is the risk of the emitter clogging. Suitable concentrations of iron (Fe), manganese (Mn), total suspended solids (TSS), chemical oxygen demand (COD), water hardness and calcium ions (Ca2+ ) in RW were determined to be 0-0.2, 0-0.02, 0-50, 20-30, 200-250 and 0-40 mg L-1 , respectively. Pressure-compensating emitters with relatively high discharge (>2 L h-1 ) could prevent clogging in RWDI systems. CONCLUSION Based on the data analysis, a cumulative RWDI operation time of 375 h was determined as the most suitable time for lateral flushing to prevent clogging. This study identifies the conditions under which an increase in the service life of RWDI systems can be achieved. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xufei Liu
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
| | - Xuefei He
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Martin JE, Waters LS. Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis. Front Mol Biosci 2022; 9:945724. [PMID: 35911964 PMCID: PMC9334652 DOI: 10.3389/fmolb.2022.945724] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn) plays a multifaceted role in the survival of pathogenic and symbiotic bacteria in eukaryotic hosts, and it is also important for free-living bacteria to grow in stressful environments. Previous research has uncovered components of the bacterial Mn homeostasis systems that control intracellular Mn levels, many of which are important for virulence. Multiple studies have also identified proteins that use Mn once it is inside the cell, including Mn-specific enzymes and enzymes transiently loaded with Mn for protection during oxidative stress. Emerging evidence continues to reveal proteins involved in maintaining Mn homeostasis, as well as enzymes that can bind Mn. For some of these enzymes, Mn serves as an essential cofactor. For other enzymes, mismetallation with Mn can lead to inactivation or poor activity. Some enzymes may even potentially be regulated by differential metallation with Mn or zinc (Zn). This review focuses on new developments in regulatory mechanisms that affect Mn homeostasis and usage, additional players in Mn import that increase bacterial survival during pathogenesis, and the interplay between Mn and other metals during Mn-responsive physiological processes. Lastly, we highlight lessons learned from fundamental research that are now being applied to bacterial interactions within larger microbial communities or eukaryotic hosts.
Collapse
Affiliation(s)
- Julia E. Martin
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Lauren S. Waters
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| |
Collapse
|
10
|
Ran X, Zhu Z, Long H, Tian Q, You L, Wu X, Liu Q, Huang S, Li S, Niu X, Wang J. Manganese Stress Adaptation Mechanisms of Bacillus safensis Strain ST7 From Mine Soil. Front Microbiol 2021; 12:758889. [PMID: 34899642 PMCID: PMC8656422 DOI: 10.3389/fmicb.2021.758889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanism of bacterial adaption to manganese-polluted environments was explored using 50 manganese-tolerant strains of bacteria isolated from soil of the largest manganese mine in China. Efficiency of manganese removal by the isolated strains was investigated using atomic absorption spectrophotometry. Bacillus safensis strain ST7 was the most effective manganese-oxidizing bacteria among the tested isolates, achieving up to 82% removal at a Mn(II) concentration of 2,200 mg/L. Bacteria-mediated manganese oxide precipitates and high motility were observed, and the growth of strain ST7 was inhibited while its biofilm formation was promoted by the presence of Mn(II). In addition, strain ST7 could grow in the presence of high concentrations of Al(III), Cr(VI), and Fe(III). Genome-wide analysis of the gene expression profile of strain ST7 using the RNA-seq method revealed that 2,580 genes were differently expressed under Mn(II) exposure, and there were more downregulated genes (n = 2,021) than upregulated genes (n = 559) induced by Mn stress. KAAS analysis indicated that these differently expressed genes were mainly enriched in material metabolisms, cellular processes, organism systems, and genetic and environmental information processing pathways. A total of twenty-six genes from the transcriptome of strain ST7 were involved in lignocellulosic degradation. Furthermore, after 15 genes were knocked out by homologous recombination technology, it was observed that the transporters, multicopper oxidase, and proteins involved in sporulation and flagellogenesis contributed to the removal of Mn(II) in strain ST7. In summary, B. safensis ST7 adapted to Mn exposure by changing its metabolism, upregulating cation transporters, inhibiting sporulation and flagellogenesis, and activating an alternative stress-related sigB pathway. This bacterial strain could potentially be used to restore soil polluted by multiple heavy metals and is a candidate to support the consolidated bioprocessing community.
Collapse
Affiliation(s)
- Xueqin Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhongmei Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Hong Long
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qun Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Longjiang You
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xingdiao Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shihui Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xi Niu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Jiafu Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Animal Science/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Abstract
The dispersal of bacterial cells from a matured biofilm can be mediated either by active or passive mechanisms. In this issue of the Journal of Bacteriology, Nishikawa and Kobayashi demonstrate that the presence of calcium influences the dispersal of spores from the pellicle biofilm of Bacillus subtilis (M. Nishikawa and K. Kobayashi, J Bacteriol 203:e00114-21, 2021, https://doi.org/10.1128/JB.00114-21). The authors propose that temporal heterogeneity in matrix production and chelation of calcium by dipicolinic acid in spores weakens the biofilm matrix and causes passive dispersal.
Collapse
|
12
|
Abstract
Biofilm dispersion is the final stage of biofilm development, during which biofilm cells actively escape from biofilms in response to deteriorating conditions within the biofilm. Biofilm dispersion allows cells to spread to new locations and form new biofilms in better locations. However, dispersal mechanisms have been elucidated only in a limited number of bacteria. Here, we investigated biofilm dispersion in Bacillus subtilis. Biofilm dispersion was clearly observed when B. subtilis was grown under static conditions in modified LB medium containing glycerol and manganese. Biofilm dispersion was synergistically caused by two mechanisms: decreased expression of the epsA operon encoding exopolysaccharide synthetases and the induction of sporulation. Indeed, constitutive expression of the epsA operon in the sporulation-defective ΔsigK mutant prevented biofilm dispersion. The addition of calcium to the medium prevented biofilm dispersion without significantly affecting the expression of the epsA operon and sporulation genes. In synthetic medium, eliminating calcium did not prevent the expression of biofilm matrix genes and, thereby, biofilm formation, but it attenuated biofilm architecture. These results indicate that calcium structurally stabilizes biofilms and causes resistance to biofilm dispersion mechanisms. Sporulation-dependent biofilm dispersion required the spoVF operon, encoding dipicolinic acid (DPA) synthase. During sporulation, an enormous amount of DPA is synthesized and stored in spores as a chelate with calcium. We speculate that, during sporulation, calcium bound to biofilm matrix components may be transported to spores as a calcium-DPA complex, which weakens biofilm structure and leads to biofilm dispersion. IMPORTANCE Bacteria growing as biofilms are notoriously difficult to eradicate and sometimes pose serious threats to public health. Bacteria escape from biofilms by degrading them when biofilm conditions deteriorate. This process, called biofilm dispersion, has been studied as a promising strategy for safely controlling biofilms. However, the regulation and mechanism of biofilm dispersion has been elucidated only in a limited number of bacteria. Here, we identified two biofilm dispersion mechanisms in the Gram-positive, spore-forming bacterium Bacillus subtilis. The addition of calcium to the medium stabilized biofilms and caused resistance to dispersal mechanisms. Our findings provide new insights into biofilm dispersion and biofilm control.
Collapse
|
13
|
Nordgaard M, Mortensen RMR, Kirk NK, Gallegos‐Monterrosa R, Kovács ÁT. Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization. Microbiologyopen 2021; 10:e1212. [PMID: 34180604 PMCID: PMC8236291 DOI: 10.1002/mbo3.1212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Natural isolates of the soil-dwelling bacterium Bacillus subtilis form robust biofilms under laboratory conditions and colonize plant roots. B. subtilis biofilm gene expression displays phenotypic heterogeneity that is influenced by a family of Rap-Phr regulatory systems. Most Rap-Phr systems in B. subtilis have been studied independently, in different genetic backgrounds and under distinct conditions, hampering true comparison of the Rap-Phr systems' impact on bacterial cell differentiation. Here, we investigated each of the 12 Rap-Phr systems of B.subtilis NCIB 3610 for their effect on biofilm formation. By studying single ∆rap-phr mutants, we show that despite redundancy between the cell-cell communication systems, deletion of each of the 12 Rap-Phr systems influences matrix gene expression. These Rap-Phr systems therefore enable fine-tuning of the timing and level of matrix production in response to specific conditions. Furthermore, some of the ∆rap-phr mutants demonstrated altered biofilm formation in vitro and colonization of Arabidopsis thaliana roots, but not necessarily similarly in both processes, indicating that the pathways regulating matrix gene expression and other factors important for biofilm formation may be differently regulated under these distinct conditions.
Collapse
Affiliation(s)
- Mathilde Nordgaard
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Nikolaj Kaae Kirk
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| | | | - Ákos T. Kovács
- Bacterial Interactions and Evolution GroupDTU BioengineeringTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
14
|
Kuchina A, Brettner LM, Paleologu L, Roco CM, Rosenberg AB, Carignano A, Kibler R, Hirano M, DePaolo RW, Seelig G. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2020; 371:science.aba5257. [PMID: 33335020 DOI: 10.1126/science.aba5257] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.
Collapse
Affiliation(s)
- Anna Kuchina
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Leandra M Brettner
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA
| | - Luana Paleologu
- Department of Microbiology, University of Washington, Seattle, WA, USA.,Department of Biology, University of Washington, Seattle, WA, USA
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Alexander B Rosenberg
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alberto Carignano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Ryan Kibler
- Biological Physics, Structure, and Design, University of Washington, Seattle, WA, USA
| | - Matthew Hirano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - R William DePaolo
- Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Gastroenterology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA. .,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.,Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Hutchings C, Rajasekharan SK, Reifen R, Shemesh M. Mitigating Milk-Associated Bacteria through Inducing Zinc Ions Antibiofilm Activity. Foods 2020; 9:foods9081094. [PMID: 32796547 PMCID: PMC7466369 DOI: 10.3390/foods9081094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Dairy products are a sector heavily impacted by food loss, often due to bacterial contaminations. A major source of contamination is associated with the formation of biofilms by bacterial species adopted to proliferate in milk production environment and onto the surfaces of milk processing equipment. Bacterial cells within the biofilm are characterized by increased resistance to unfavorable environmental conditions and antimicrobial agents. Members of the Bacillus genus are the most commonly found spoilage microorganisms in the dairy environment. It appears that physiological behavior of these species is somehow depended on the availability of bivalent cations in the environment. One of the important cations that may affect the bacterial physiology as well as survivability are Zn2+ ions. Thus, the aim of this study was to examine the antimicrobial effect of Zn2+ ions, intending to elucidate the potential of a zinc-based antibacterial treatment suitable for the dairy industry. The antimicrobial effect of different doses of ZnCl2 was assessed microscopically. In addition, expression of biofilm related genes was evaluated using RT-PCR. Analysis of survival rates following heat treatment was conducted in order to exemplify a possible applicative use of Zn2+ ions. Addition of zinc efficiently inhibited biofilm formation by B. subtilis and further disrupted the biofilm bundles. Expression of matrix related genes was found to be notably downregulated. Microscopic evaluation showed that cell elongation was withheld when cells were grown in the presence of zinc. Finally, B. cereus and B. subtilis cells were more susceptible to heat treatment after being exposed to Zn2+ ions. It is believed that an anti-biofilm activity, expressed in downregulation of genes involved in construction of the extracellular matrix, would account for the higher sensitivity of bacteria during heat pasteurization. Consequently, we suggest that Zn2+ ions can be of used as an effective antimicrobial treatment in various applications in the dairy industry, targeting both biofilms and vegetative bacterial cells.
Collapse
Affiliation(s)
- Carmel Hutchings
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Satish Kumar Rajasekharan
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
| | - Ram Reifen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Moshe Shemesh
- Department of Food Science, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (C.H.); (S.K.R.)
- Correspondence: ; Tel.: +972-3-968-3868
| |
Collapse
|
16
|
Chaves S, Longo M, Gómez López A, Del V Loto F, Mechetti M, Romero CM. Control of microbial biofilm formation as an approach for biomaterials synthesis. Colloids Surf B Biointerfaces 2020; 194:111201. [PMID: 32615520 DOI: 10.1016/j.colsurfb.2020.111201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
The search for new biomaterials with superior mechanical properties is the focus in the area of materials science. A promising pathway is drawing inspiration from nature to design and develop materials with enhanced properties. In this work, a novel strategy to produce functionalized supramolecular bionanomaterials from the microbial biofilm is reported. Tuneable biofilms with specific characteristics were obtained by controlling the culture condition of the microorganism. When the exopolysaccharide (EPS) production was desired the tryptone was the best nutritional component for the EPS production into the biofilm. However, for the expression of a high amount of amyloid protein the combination of peptone and glucose was the best nutritional choice. Each biofilm obtained showed its owner rheology properties. These properties were altered by the addition of extracellular DNA, which increased the viscosity of the biofilm and induced a viscoelastic hydrogel behavior. Besides, as a proof of concept of bionanomaterial, a novel supramolecular polymeric hybrid EPS-Amyloid protein (EPAP) was obtained from the biofilm and it was tested as a new natural functionalized support for enzyme immobilization. The results suggest that this technology could be used as a new concept to obtain biomaterials from biofilms by controlling the nutritional conditions of a microorganism. Understanding environmental factors affecting biofilm formation will help the development of methods for controlling biofilm production and therefore obtaining new biomaterials.
Collapse
Affiliation(s)
- Silvina Chaves
- Instituto de Medicina Molecular y Celular Aplicada (IMMCA), CONICET-UNT-SIPROSA, Pje. Dorrego 1080, San Miguel de Tucumán, Argentina
| | - Marianella Longo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Azucena Gómez López
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Flavia Del V Loto
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina
| | - Magdalena Mechetti
- Laboratorio de Física de Fluidos y Electrorreología, Instituto de Física del Noroeste Argentino-INFINOA (CONICET-UNT), Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, 4000, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB, Tucumán Fac. Bioq., Qca. y Farmacia (UNT), Ayacucho 471, 4000, Tucumán, Argentina.
| |
Collapse
|
17
|
Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis. J Bacteriol 2020; 202:JB.00120-20. [PMID: 32393519 DOI: 10.1128/jb.00120-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms robust biofilms in the presence of large amounts of carbon sources, such as glycerol. However, little is known about the importance of the metabolic systems, or the relationship between metabolic systems and regulatory systems, involved in biofilm formation. Glutamate synthase, encoded by gltAB, is an enzyme that converts 2-ketoglutarate (a tricarboxylic acid [TCA] cycle intermediate) and glutamine into glutamate, which is a general amino group donor in metabolism. Here, we show that a ΔgltA mutant exhibited early arrest of biofilm formation in complex medium containing glycerol. This phenotype was not due to glutamate auxotrophy. Consistent with its biofilm formation phenotype, the ΔgltA mutant exhibited an early decrease in expression of the epsA and tapA operons, which are responsible for production of biofilm matrix polymers. This resulted from decreased activity of their regulator, Spo0A, as evidenced by reduced expression of other Spo0A-regulated genes in the ΔgltA mutant. The ΔgltA mutation prevented biofilm formation only in the presence of large amounts of glycerol. Moreover, limited expression of citrate synthase (but not other TCA enzymes) restored biofilm-forming ability to the ΔgltA mutant. These results indicate that the ΔgltA mutant accumulates an inhibitory intermediate (citrate) in the TCA cycle in the presence of large amounts of glycerol. The ΔgltA mutant formed biofilms when excess iron was added to the medium. Taken together, the data suggest that accumulation of citrate ions by the ΔgltA mutant causes iron shortage due to chelation, which prevents activation of Spo0A and causes defective biofilm formation.IMPORTANCE Bacillus subtilis, a model organism for bacterial biofilm formation, forms robust biofilms in a medium-dependent manner. Although the regulatory network that controls biofilm formation has been well studied, the importance of the underlying metabolic systems remains to be elucidated. The present study demonstrates that a metabolic disorder in a well-conserved metabolic system causes accumulation of an inhibitory metabolic intermediate that prevents activation of the system that regulates biofilm formation. These findings increase our understanding of the coordination between cellular metabolic status and the regulatory networks governing biofilm formation.
Collapse
|
18
|
Targeted Metabolomics Revealed the Regulatory Role of Manganese on Small-Molecule Metabolism of Biofilm Formation in Escherichia coli. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00139-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Enhanced Degradation of Naproxen by Immobilization of Bacillus thuringiensis B1(2015b) on Loofah Sponge. Molecules 2020; 25:molecules25040872. [PMID: 32079161 PMCID: PMC7070439 DOI: 10.3390/molecules25040872] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The naproxen-degrading bacterium Bacillus thuringiensis B1(2015b) was immobilised onto loofah sponge and introduced into lab-scale trickling filters. The trickling filters constructed for this study additionally contained stabilised microflora from a functioning wastewater treatment plant to assess the behavior of introduced immobilized biocatalyst in a fully functioning bioremediation system. The immobilised cells degraded naproxen (1 mg/L) faster in the presence of autochthonous microflora than in a monoculture trickling filter. There was also abundant colonization of the loofah sponges by the microorganisms from the system. Analysis of the influence of an acute, short-term naproxen exposure on the indigenous community revealed a significant drop in its diversity and qualitative composition. Bioaugmentation was also not neutral to the microflora. Introducing a new microorganism and increasing the removal of the pollutant caused changes in the microbial community structure and species composition. The incorporation of the immobilised B1(2015b) was successful and the introduced strain colonized the basic carrier in the trickling filter after the complete biodegradation of the naproxen. As a result, the bioremediation system could potentially be used to biodegrade naproxen in the future.
Collapse
|
20
|
Ramchandran R, Ramesh S, A A, Thakur R, Chakrabarti A, Roy U. Improved Production of Two Anti- Candida Lipopeptide Homologues Co- Produced by the Wild-Type Bacillus subtilis RLID 12.1 under Optimized Conditions. Curr Pharm Biotechnol 2019; 21:438-450. [PMID: 31804165 DOI: 10.2174/1389201020666191205115008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antifungal cyclic lipopeptides, bioactive metabolites produced by many species of the genus Bacillus, are promising alternatives to synthetic fungicides and antibiotics for the biocontrol of human pathogenic fungi. In a previous study, the co- production of five antifungal lipopeptides homologues (designated as AF1, AF2, AF3, AF4 and AF5) by the producer strain Bacillus subtilis RLID 12.1 using unoptimized medium was reported; though the two homologues AF3 and AF5 differed by 14 Da and in fatty acid chain length were found effective in antifungal action, the production/ yield rate of these two lipopeptides determined by High-Performance Liquid Chromatography was less in the unoptimized media. METHODS In this study, the production/yield enhancement of the two compounds AF3 and AF5 was specifically targeted. Following the statistical optimization (Plackett-Burman and Box-Behnken designs) of media formulation, temperature and growth conditions, the production of AF3 and AF5 was improved by about 25.8- and 7.4-folds, respectively under static conditions. RESULTS To boost the production of these two homologous lipopeptides in the optimized media, heat-inactivated Candida albicans cells were used as a supplement resulting in 34- and 14-fold increase of AF3 and AF5, respectively. Four clinical Candida auris isolates had AF3 and AF5 MICs (100 % inhibition) ranging between 4 and 16 μg/ml indicating the lipopeptide's clinical potential. To determine the in vitro pharmacodynamic potential of AF3 and AF5, time-kill assays were conducted which showed that AF3 (at 4X and 8X concentrations) at 48h exhibited mean log reductions of 2.31 and 3.14 CFU/ml of C. albicans SC 5314, respectively whereas AF5 at 8X concentration showed a mean log reduction of 2.14 CFU/ml. CONCLUSION With the increasing threat of multidrug-resistant yeasts and fungi, these antifungal lipopeptides produced by optimized method promise to aid in the development of novel antifungal that targets disease-causing fungi with improved efficacy.
Collapse
Affiliation(s)
- Ramya Ramchandran
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - Anviksha A
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| | - RamLal Thakur
- Department of Microbiology, Sardar Bhagwan Singh Post Graduate Institute of Biomedical Science & Research, Balawala, Dehradun, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K Birla Goa Campus, Goa 403726, India
| |
Collapse
|
21
|
Domingo G, Villa F, Vannini C, Garuglieri E, Onelli E, Bracale M, Cappitelli F. Label-Free Proteomic Approach to Study the Non-lethal Effects of Silver Nanoparticles on a Gut Bacterium. Front Microbiol 2019; 10:2709. [PMID: 31866956 PMCID: PMC6906586 DOI: 10.3389/fmicb.2019.02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/08/2019] [Indexed: 01/14/2023] Open
Abstract
Among all the food-related nanoparticles consumed every day, silver nanoparticles (AgNPs) have become one of the most commonly utilized because of their antimicrobial properties. Despite their common use, the effects of sublethal concentrations of AgNPs, especially on gut biofilms, have been poorly investigated. To address this issue, we investigated in vitro the proteomic response of a monospecies Escherichia coli gut biofilm to chronic and acute exposures in sublethal concentrations of AgNPs. We used a new gel- and label-free proteomic approach based on shotgun nanoflow liquid chromatography-tandem mass spectrometry. This approach allows a quantification of the whole proteome at a dynamic range that is higher than the traditional proteomic investigation. To assess all different possible exposure scenarios, we compared the biofilm proteome of four treatments: (i) untreated cells for the control treatment, (ii) cells treated with 1 μg/ml AgNPs for 24 h for the acute treatment, (iii) cells grown with 1 μg/ml AgNPs for 96 h for the chronic treatment, and (iv) cells grown in the presence of 1 μg/ml AgNPs for 72 h and then further treated for 24 h with 10 μg/ml AgNPs for the chronic + acute treatment. Among the 1,917 proteins identified, 212 were significantly differentially expressed proteins. Several pathways were altered including biofilm formation, bacterial adhesion, stress response to reactive oxygen species, and glucose utilization.
Collapse
Affiliation(s)
- Guido Domingo
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Candida Vannini
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Elisa Garuglieri
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elisabetta Onelli
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Marcella Bracale
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Varese, Italy
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Harding M, Nadworny P, Buziak B, Omar A, Daniels G, Feng J. Improved Methods for Treatment of Phytopathogenic Biofilms: Metallic Compounds as Anti-Bacterial Coatings and Fungicide Tank-Mix Partners. Molecules 2019; 24:E2312. [PMID: 31234482 PMCID: PMC6630349 DOI: 10.3390/molecules24122312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022] Open
Abstract
Fungi and bacteria cause disease issues in cultivated plants world-wide. In most cases, the fungi and bacteria colonize plant tissues as biofilms, which can be very challenging to destroy or eradicate. In this experiment, we employed a novel (biofilm) approach to crop disease management by evaluating the efficacies of six fungicides, and four silver-based compounds, versus biofilms formed by fungi and bacteria, respectively. The aim was to identify combinations of fungicides and metallic cations that showed potential to improve the control of white mold (WM), caused by the ascomycete fungus Sclerotinia sclerotiorum, and to evaluate novel high valency silver compounds as seed coatings to prevent biofilm formation of four bacterial blight pathogens on dry bean seeds. Our results confirmed that mature fungal biofilms were recalcitrant to inactivation by fungicides. When metallic cations were added to the fungicides, their efficacies were improved. Some improvements were statistically significant, with one combination (fluazinam + Cu2+) showing a synergistic effect. Additionally, coatings with silver compounds could reduce bacterial blight biofilms on dry bean seeds and oxysilver nitrate was the most potent inhibitor of bacterial blight.
Collapse
Affiliation(s)
- Michael Harding
- Alberta Agriculture and Forestry, Crop Diversification Centre South, 301 Horticulture Station Road East, Brooks, AB T1R 1E6, Canada.
| | - Patricia Nadworny
- Innovotech, Inc., Suite L131, 2011-94 Street, Edmonton, AB T6N 1H1, Canada.
| | - Brenton Buziak
- Innovotech, Inc., Suite L131, 2011-94 Street, Edmonton, AB T6N 1H1, Canada.
| | - Amin Omar
- Innovotech, Inc., Suite L131, 2011-94 Street, Edmonton, AB T6N 1H1, Canada.
| | - Greg Daniels
- Alberta Agriculture and Forestry, Crop Diversification Centre South, 301 Horticulture Station Road East, Brooks, AB T1R 1E6, Canada.
| | - Jie Feng
- Alberta Agriculture and Forestry, Alberta Plant Health Lab, 17507 Fort Road NW, Edmonton, AB T5Y 6H3, Canada.
| |
Collapse
|
23
|
Hall JW, Lima BP, Herbomel GG, Gopinath T, McDonald L, Shyne MT, Lee JK, Kreth J, Ross KF, Veglia G, Herzberg MC. An intramembrane sensory circuit monitors sortase A-mediated processing of streptococcal adhesins. Sci Signal 2019; 12:12/580/eaas9941. [PMID: 31064885 DOI: 10.1126/scisignal.aas9941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial adhesins mediate adhesion to substrates and biofilm formation. Adhesins of the LPXTG family are posttranslationally processed by the cell membrane-localized peptidase sortase A, which cleaves the LPXTG motif. This generates a short C-terminal peptide (C-pep) that remains in the cell membrane, whereas the mature adhesin is incorporated into the cell wall. Genes encoding adhesins of the oral bacterium Streptococcus gordonii were differentially expressed depending on whether the bacteria were isolated from saliva or dental plaque and appeared to be coordinately regulated. Deletion of sspA and sspB (sspAB), both of which encode LPXTG-containing adhesins, unexpectedly enhanced adhesion and biofilm formation. C-peps produced from a model LPXTG-containing adhesin localized to the cell membrane and bound to and inhibited the intramembrane sensor histidine kinase SGO_1180, thus preventing activation of the cognate response regulator SGO_1181. The absence of SspAB C-peps induced the expression of the scaCBA operon encoding the lipoprotein adhesin ScaA, which was sufficient to preserve and even enhance biofilm formation. This C-pep-driven regulatory circuit also exists in pathogenic streptococci and is likely conserved among Gram-positive bacteria. This quality control mechanism ensures that the bacteria can form biofilms under diverse environmental conditions and may play a role in optimizing adhesion and biofilm formation.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno P Lima
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - LeAnna McDonald
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael T Shyne
- Biostatistical Design and Analysis Center (BDAC), Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Karen F Ross
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Dinh ТL, Akhmetova GR, Martykanova DS, Rudakova NL, Sharipova МR. Influence of Divalent Metal Ions on Biofilm Formation by Bacillus subtilis. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00621-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Feng ZV, Miller BR, Linn TG, Pho T, Hoang KNL, Hang MN, Mitchell SL, Hernandez RT, Carlson EE, Hamers RJ. Biological impact of nanoscale lithium intercalating complex metal oxides to model bacterium B. subtilis. ENVIRONMENTAL SCIENCE. NANO 2019; 6:305-314. [PMID: 31572614 PMCID: PMC6768416 DOI: 10.1039/c8en00995c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The wide applications of lithium intercalating complex metal oxides in energy storage devices call for a better understanding of their environmental impact at the end of their life cycle. In this study, we examine the biological impact of a panel of nanoscale lithium nickel manganese cobalt oxides (Li x Ni y Mn z Co1-y-z O2, 0 < x, y, z < 1, abbreviated to NMCs) to a model Gram-positive bacterium, Bacillus subtilis, in terms of cellular respiration and growth. A highly sensitive single-cell gel electrophoresis method is also applied for the first time to understand the genotoxicity of these nanomaterials to bacterial cells. Results from these assays indicate that the free Ni and Co ions released from the incongruent dissolution of the NMC material in B. subtilis growth medium induced both hindered growth and cellular respiration. More remarkably, the DNA damage induced by the combination of the two ions in solution is comparable to that induced by the NMC material, which suggests that the free Ni and Co ions are responsible for the toxicity observed. A material redesign by enriching Mn is also presented. The combined approaches of evaluating their impact on bacterial growth, respiration, and DNA damage at a single-cell level, as well as other phenotypical changes allows us to probe the nanomaterials and bacterial cells from a mechanistic prospective, and provides a useful means to an understanding of bacterial response to new potential environmental stressors.
Collapse
Affiliation(s)
- Z. Vivian Feng
- Chemistry Department, Augsburg University, Minneapolis, MN 55454, USA
| | - Blake R. Miller
- Chemistry Department, Augsburg University, Minneapolis, MN 55454, USA
| | - Taylor G. Linn
- Chemistry Department, Augsburg University, Minneapolis, MN 55454, USA
| | - Thomas Pho
- Chemistry Department, Augsburg University, Minneapolis, MN 55454, USA
| | | | - Mimi N. Hang
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
26
|
Richter A, Hölscher T, Pausch P, Sehrt T, Brockhaus F, Bange G, Kovács ÁT. Hampered motility promotes the evolution of wrinkly phenotype in Bacillus subtilis. BMC Evol Biol 2018; 18:155. [PMID: 30326845 PMCID: PMC6192195 DOI: 10.1186/s12862-018-1266-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Selection for a certain trait in microbes depends on the genetic background of the strain and the selection pressure of the environmental conditions acting on the cells. In contrast to the sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, flagellum dependent motility facilitates the prompt establishment of floating biofilms on the air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be preferably established by motile cells, causing a reduced fitness of non-motile derivatives in the presence of the wild type strain. RESULTS Here, we show that lack of active flagella promotes the evolution of matrix overproducers that can be distinguished by the characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, allowing an increased expression of the operon responsible for exopolysaccharide production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells lack flagella, but not in the wild type background. CONCLUSIONS Our experiments suggest that loss of function phenotypes could expose rapid evolutionary adaptation in bacterial biofilms that is otherwise not evident in the wild type strains.
Collapse
Affiliation(s)
- Anne Richter
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kongens Lyngby, Denmark.,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Patrick Pausch
- LOEWE Center for Synthetic Microbiology, Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Tim Sehrt
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Franziska Brockhaus
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Gert Bange
- LOEWE Center for Synthetic Microbiology, Department of Chemistry, Philipps University Marburg, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 221, 2800, Kongens Lyngby, Denmark. .,Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
27
|
Hussain MS, Kwon M, Oh DH. Impact of manganese and heme on biofilm formation of Bacillus cereus food isolates. PLoS One 2018; 13:e0200958. [PMID: 30048488 PMCID: PMC6062052 DOI: 10.1371/journal.pone.0200958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/04/2018] [Indexed: 12/02/2022] Open
Abstract
The objective of this study was to determine the impact of manganese (Mn2+) and heme on the biofilm formation characteristics of six B. cereus food isolates and two reference strains (ATCC 10987 and ATCC 14579). The data obtained from the crystal violet assay revealed that addition of a combination of Mn2+ and heme to BHI growth medium induced B. cereus biofilm formation. However, the induction of biofilm formation was strictly strain-dependent. In all of the induced strains, the impact of Mn2+ was greater than that of heme. The impact of these two molecules on the phenotypic characteristics related to biofilm formation, such as cell density, sporulation and swarming ability, was determined in a selected food isolate (GIHE 72-5). Addition of Mn2+ and heme to BHI significantly (p < 0.05) increased the number of cells, which was correlated with the results of crystal violet assays as well as scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analyses. In addition, induced biofilms showed higher numbers of spores and greater resistance to benzalkonium chloride. The swarming ability of B. cereus planktonic cells was increased in the presence of Mn2+ and heme in BHI. The expression levels of a number of selected genes, which are involved in mobility and extracellular polymeric substances (EPS) formation in B. cereus, were positively correlated with biofilm formation in the presence of Mn2+ and heme in BHI. These results further confirming the role of these molecules in swarming mobility and making matrix components related to B. cereus biofilm formation. These data indicate that signaling molecules present in the food environment might substantially trigger B. cereus biofilm formation, which could pose a threat to the food industry.
Collapse
Affiliation(s)
- Mohammad Shakhawat Hussain
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Minyeong Kwon
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture & Life Science, Kangwon National University, Chuncheon, Gangwon, South Korea
| |
Collapse
|
28
|
Ramachandran R, Ramesh S, Ramkumar S, Chakrabarti A, Roy U. Calcium Alginate Bead-mediated Enhancement of the Selective Recovery of a Lead Novel Antifungal Bacillomycin Variant. Appl Biochem Biotechnol 2018; 186:917-936. [PMID: 29797296 DOI: 10.1007/s12010-018-2778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
In the pursuit of new antifungal compounds, five coproduced lipopeptide variants (AF1 to AF5) from wild-type Bacillus subtilis RLID 12.1 were identified in our previous study. Out of five, AF4 was identified as a novel lead molecule belonging to the bacillomycin family showing less cytotoxicity at its respective minimum inhibitory concentrations (MIC) evaluated against 81 strains of Candida and Cryptococcus species (including clinical isolates); besides this, AF4 purified in the present study exhibited encouraging MIC values against 10 clinical mycelial fungi. Aiming for a selective production augmentation of AF4 lipopeptide variant, a new fermentation media comprising malt extract (1.01%), dextrose (0.55%), peptone (1.79%), MnSO4 (2 mM), and NaCl (0.5%) was formulated. Maximum production of 954.8 ± 10.8 mg/L was achieved with 44% selectivity at 30 °C compared to unoptimized conditions (186.4 ± 6.1 mg/L). Use of calcium alginate beads in the formulated media during the onset of lipopeptide production resulted in an augmentation in the selectivity of the most efficacious AF4 variant to about 72% presumably due to attenuation of other coproduced lipopeptide variants AF1 and AF2. Difference in yield of lipopeptides varied with bead size, bead preparation ratios, and sodium alginate concentrations. Use of Ca-alginate beads in the upstream production process of the lead AF4 variant may be considered as a novel strategy to address the potential challenge that may arise during the scale-up and downstream processing steps. Another significant finding derived from the study is that the proportion of bacillomycin variants of B. subtilis RLID 12.1 could be controlled by temperature and metal ions under static and shaking conditions.
Collapse
Affiliation(s)
- Ramya Ramachandran
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Srinath Ramkumar
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology And Science Pilani KK Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
29
|
Raie DS, Mhatre E, El-Desouki DS, Labena A, El-Ghannam G, Farahat LA, Youssef T, Fritzsche W, Kovács ÁT. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development. MATERIALS 2018; 11:ma11010157. [PMID: 29346268 PMCID: PMC5793655 DOI: 10.3390/ma11010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.
Collapse
Affiliation(s)
- Diana S Raie
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena 07743, Germany.
| | - Doaa S El-Desouki
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Ahmed Labena
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Gamal El-Ghannam
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt.
| | - Laila A Farahat
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Tareq Youssef
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt.
| | - Wolfgang Fritzsche
- Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena 07745, Germany.
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
30
|
Presence of Calcium Lowers the Expansion of Bacillus subtilis Colony Biofilms. Microorganisms 2017; 5:microorganisms5010007. [PMID: 28212310 PMCID: PMC5374384 DOI: 10.3390/microorganisms5010007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
Robust colony formation by Bacillus subtilis is recognized as one of the sessile, multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them together and provide a protective hydrophobic shield. Cells also secrete surfactin with antimicrobial as well as surface tension reducing properties that aid cells to colonize the solid surface. Depending on the environmental conditions, these secreted components of the colony biofilm can also promote the flagellum-independent surface spreading of B. subtilis, called sliding. In this study, we emphasize the influence of Ca2+ in the medium on colony expansion of B. subtilis. Interestingly, the availability of Ca2+ has no major impact on the induction of complex colony morphology. However, in the absence of this divalent ion, peripheral cells of the colony expand radially at later stages of development, causing colony size to increase. We demonstrate that the secreted extracellular compounds, EPS, BslA, and surfactin facilitate colony expansion after biofilm maturation. We propose that Ca2+ hinders biofilm colony expansion by modifying the amphiphilic properties of surfactin.
Collapse
|
31
|
Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. MICROBIOLOGY-SGM 2016; 162:1922-1932. [PMID: 27655338 DOI: 10.1099/mic.0.000371] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacillus subtilis is an intensively studied Gram-positive bacterium that has become one of the models for biofilm development. B. subtilis 168 is a well-known domesticated strain that has been suggested to be deficient in robust biofilm formation. Moreover, the diversity of available B. subtilis laboratory strains and their derivatives have made it difficult to compare independent studies related to biofilm formation. Here, we analysed numerous 168 stocks from multiple laboratories for their ability to develop biofilms in different set-ups and media. We report a wide variation among the biofilm-forming capabilities of diverse stocks of B. subtilis 168, both in architecturally complex colonies and liquid-air interface pellicles, as well as during plant root colonization. Some 168 variants are indeed unable to develop robust biofilm structures, while others do so as efficiently as the non-domesticated NCIB 3610 strain. In all cases studied, the addition of glucose to the medium dramatically improved biofilm development of the laboratory strains. Furthermore, the expression of biofilm matrix component operons, epsA-O and tapA-sipW-tasA, was monitored during colony biofilm formation. We found a lack of direct correlation between the expression of these genes and the complexity of wrinkles in colony biofilms. However, the presence of a single mutation in the exopolysaccharide-related gene epsC correlates with the ability of the stocks tested to form architecturally complex colonies and pellicles, and to colonize plant roots.
Collapse
Affiliation(s)
- Ramses Gallegos-Monterrosa
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|