1
|
Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar Drugs 2022; 20:md20060360. [PMID: 35736163 PMCID: PMC9230918 DOI: 10.3390/md20060360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades (covering 1972 to 2022), astounding progress has been made in the elucidation of structures, bioactivities and biosynthesis of polyene macrolactams (PMLs), but they have only been partially summarized. PMLs possess a wide range of biological activities, particularly distinctive fungal inhibitory abilities, which render them a promising drug candidate. Moreover, the unique biosynthetic pathways including β-amino acid initiation and pericyclic reactions were presented in PMLs, leading to more attention from inside and outside the natural products community. According to current summation, in this review, the chem- and bio-diversity of PMLs from marine and terrestrial sources are considerably rich. A systematic, critical and comprehensive overview is in great need. This review described the PMLs’ general structural features, production strategies, biosynthetic pathways and the mechanisms of bioactivities. The challenges and opportunities for the research of PMLs are also discussed.
Collapse
|
2
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
3
|
The natural product biosynthesis potential of the microbiomes of Earth – Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput Struct Biotechnol J 2022; 20:343-352. [PMID: 35035787 PMCID: PMC8733032 DOI: 10.1016/j.csbj.2021.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches. In this mini review we discuss how sequence-based analyses have exposed an unprecedented wealth of potential for secondary metabolite production in soil, marine, and host-associated microbiomes, with a focus on the biosynthesis of non-ribosomal peptides and polyketides. Furthermore, we discuss how the complexity of natural microbiomes and the lack of standardized methodology has complicated comparisons across biomes. Yet, as even the most commonly sampled microbiomes hold promise of providing novel classes of natural products, we lastly discuss the development of approaches applied in the translation of the immense biosynthetic diversity of natural microbiomes to the procurement of novel antibiotics.
Collapse
|
4
|
Chen J, Lv S, Liu J, Yu Y, Wang H, Zhang H. An Overview of Bioactive 1,3-Oxazole-Containing Alkaloids from Marine Organisms. Pharmaceuticals (Basel) 2021; 14:ph14121274. [PMID: 34959674 PMCID: PMC8706051 DOI: 10.3390/ph14121274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.
Collapse
Affiliation(s)
- Jinyun Chen
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Sunyan Lv
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Jia Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Yanlei Yu
- Collaborative Innovation Center of Green Pharmaceutics of Delta Yangzi Region, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (J.C.); (S.L.); (J.L.); (H.W.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
5
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
6
|
Wuisan ZG, Kresna IDM, Böhringer N, Lewis K, Schäberle TF. Optimization of heterologous Darobactin A expression and identification of the minimal biosynthetic gene cluster. Metab Eng 2021; 66:123-136. [PMID: 33872780 DOI: 10.1016/j.ymben.2021.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
Darobactin A (DAR) is a ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotic, which was initially identified from bacteria belonging to the genus Photorhabdus. In addition, the corresponding biosynthetic gene cluster (BGC) was identified and subsequently detected in several bacteria genera. DAR represents a highly promising lead structure for the development of novel antibacterial therapeutic agents. It targets the outer membrane protein BamA and is therefore specific for Gram-negative bacteria. This, together with the convincing in vivo activities in mouse infection models, makes it a particular promising candidate for further research. To improve compound supply for further investigation of DAR and to enable production of novel derivatives, establishment of an efficient and versatile microbial production platform for these class of RiPP antibiotics is highly desirable. Here we describe design and construction of a heterologous production and engineering platform for DAR, which will ensure production yield and facilitates structure modification approaches. The known Gram-negative workhorses Escherichia coli and Vibrio natriegens were tested as heterologous hosts. In addition to that, DAR producer strains were generated and optimization of the expression constructs yielded production titers of DAR showing around 10-fold increase and 5-fold decrease in fermentation time compared to the original product description. We also report the identification of the minimal DAR BGC, since only two genes were necessary for heterologous production of the RiPP.
Collapse
Affiliation(s)
- Zerlina G Wuisan
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - I Dewa M Kresna
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Kim Lewis
- Antimicrobial Discovery Center, Northeastern University, Department of Biology, Boston, MA, USA, 02115
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392, Giessen, Germany; Branch for Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, 35394, Giessen, Germany; German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany.
| |
Collapse
|
7
|
Panter F, Bader CD, Müller R. Synergizing the potential of bacterial genomics and metabolomics to find novel antibiotics. Chem Sci 2021; 12:5994-6010. [PMID: 33995996 PMCID: PMC8098685 DOI: 10.1039/d0sc06919a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic development based on natural products has faced a long lasting decline since the 1970s, while both the speed and the extent of antimicrobial resistance (AMR) development have been severely underestimated. The discovery of antimicrobial natural products of bacterial and fungal origin featuring new chemistry and previously unknown mode of actions is increasingly challenged by rediscovery issues. Natural products that are abundantly produced by the corresponding wild type organisms often featuring strong UV signals have been extensively characterized, especially the ones produced by extensively screened microbial genera such as streptomycetes. Purely synthetic chemistry approaches aiming to replace the declining supply from natural products as starting materials to develop novel antibiotics largely failed to provide significant numbers of antibiotic drug leads. To cope with this fundamental issue, microbial natural products science is being transformed from a 'grind-and-find' study to an integrated approach based on bacterial genomics and metabolomics. Novel technologies in instrumental analytics are increasingly employed to lower detection limits and expand the space of detectable substance classes, while broadening the scope of accessible and potentially bioactive natural products. Furthermore, the almost exponential increase in publicly available bacterial genome data has shown that the biosynthetic potential of the investigated strains by far exceeds the amount of detected metabolites. This can be judged by the discrepancy between the number of biosynthetic gene clusters (BGC) encoded in the genome of each microbial strain and the number of secondary metabolites actually detected, even when considering the increased sensitivity provided by novel analytical instrumentation. In silico annotation tools for biosynthetic gene cluster classification and analysis allow fast prioritization in BGC-to-compound workflows, which is highly important to be able to process the enormous underlying data volumes. BGC prioritization is currently accompanied by novel molecular biology-based approaches to access the so-called orphan BGCs not yet correlated with a secondary metabolite. Integration of metabolomics, in silico genomics and molecular biology approaches into the mainstream of natural product research will critically influence future success and impact the natural product field in pharmaceutical, nutritional and agrochemical applications and especially in anti-infective research.
Collapse
Affiliation(s)
- Fabian Panter
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| | - Chantal D Bader
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University Campus E8 1 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig Germany
- Helmholtz International Lab for Anti-infectives Campus E8 1 66123 Saarbrücken Germany
| |
Collapse
|
8
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
9
|
Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 12:828-844. [PMID: 30834674 PMCID: PMC6680616 DOI: 10.1111/1751-7915.13398] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
For over seven decades, bacteria served as a valuable source of bioactive natural products some of which were eventually developed into drugs to treat infections, cancer and immune system-related diseases. Traditionally, novel compounds produced by bacteria were discovered via conventional bioprospecting based on isolation of potential producers and screening their extracts in a variety of bioassays. Over time, most of the natural products identifiable by this approach were discovered, and the pipeline for new drugs based on bacterially produced metabolites started to run dry. This mini-review highlights recent developments in bacterial bioprospecting for novel compounds that are based on several out-of-the-box approaches, including the following: (i) targeting bacterial species previously unknown to produce any bioactive natural products, (ii) exploring non-traditional environmental niches and methods for isolation of bacteria and (iii) various types of 'genome mining' aimed at unravelling genetic potential of bacteria to produce secondary metabolites. All these approaches have already yielded a number of novel bioactive compounds and, if used wisely, will soon revitalize drug discovery pipeline based on bacterial natural products.
Collapse
Affiliation(s)
- Olga N. Sekurova
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Olha Schneider
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sergey B. Zotchev
- Department of PharmacognosyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
10
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019. [DOI: 10.1039/c8np00091c [epub ahead of print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
12
|
Huo L, Hug JJ, Fu C, Bian X, Zhang Y, Müller R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 2019; 36:1412-1436. [DOI: 10.1039/c8np00091c] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review highlights the 2013–2018 literature on the heterologous expression of bacterial natural product biosynthetic pathways and emphasises new techniques, heterologous hosts, and novel chemistry.
Collapse
Affiliation(s)
- Liujie Huo
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Joachim J. Hug
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Chengzhang Fu
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| | - Xiaoying Bian
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Youming Zhang
- Helmholtz International Laboratory
- State Key Laboratory of Microbial Technology
- Shandong University
- Qingdao 266237
- P. R. China
| | - Rolf Müller
- Helmholtz International Laboratory
- Department of Microbial Natural Products (MINS)
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)
- Helmholtz Centre for Infection Research (HZI)
- 66123 Saarbrücken
| |
Collapse
|
13
|
Nepal KK, Wang G. Streptomycetes: Surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol Adv 2019; 37:1-20. [PMID: 30312648 PMCID: PMC6343487 DOI: 10.1016/j.biotechadv.2018.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/04/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Abstract
Due to the worldwide prevalence of multidrug-resistant pathogens and high incidence of diseases such as cancer, there is an urgent need for the discovery and development of new drugs. Nearly half of the FDA-approved drugs are derived from natural products that are produced by living organisms, mainly bacteria, fungi, and plants. Commercial development is often limited by the low yield of the desired compounds expressed by the native producers. In addition, recent advances in whole genome sequencing and bioinformatics have revealed an abundance of cryptic biosynthetic gene clusters within microbial genomes. Genetic manipulation of clusters in the native host is commonly used to awaken poorly expressed or silent gene clusters, however, the lack of feasible genetic manipulation systems in many strains often hinders our ability to engineer the native producers. The transfer of gene clusters into heterologous hosts for expression of partial or entire biosynthetic pathways is an approach that can be used to overcome this limitation. Heterologous expression also facilitates the chimeric fusion of different biosynthetic pathways, leading to the generation of "unnatural" natural products. The genus Streptomyces is especially known to be a prolific source of drugs/antibiotics, its members are often used as heterologous expression hosts. In this review, we summarize recent applications of Streptomyces species, S. coelicolor, S. lividans, S. albus, S. venezuelae and S. avermitilis, as heterologous expression systems.
Collapse
Affiliation(s)
- Keshav K Nepal
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. 1 North, Fort Pierce, FL 34946, USA.
| |
Collapse
|
14
|
Linares-Otoya L, Linares-Otoya V, Armas-Mantilla L, Blanco-Olano C, Crüsemann M, Ganoza-Yupanqui ML, Campos-Florian J, König GM, Schäberle TF. Diversity and Antimicrobial Potential of Predatory Bacteria from the Peruvian Coastline. Mar Drugs 2017; 15:md15100308. [PMID: 29023396 PMCID: PMC5666416 DOI: 10.3390/md15100308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
The microbiome of three different sites at the Peruvian Pacific coast was analyzed, revealing a lower bacterial biodiversity at Isla Foca than at Paracas and Manglares, with 89 bacterial genera identified, as compared to 195 and 173 genera, respectively. Only 47 of the bacterial genera identified were common to all three sites. In order to obtain promising strains for the putative production of novel antimicrobials, predatory bacteria were isolated from these sampling sites, using two different bait organisms. Even though the proportion of predatory bacteria was only around 0.5% in the here investigated environmental microbiomes, by this approach in total 138 bacterial strains were isolated as axenic culture. 25% of strains showed antibacterial activity, thereby nine revealed activity against clinically relevant methicillin resistant Staphylococcus aureus (MRSA) and three against enterohemorrhagic Escherichia coli (EHEC) strains. Phylogeny and physiological characteristics of the active strains were investigated. First insights into the chemical basis of the antibacterial activity indicated the biosynthetic production of the known compounds ariakemicin, kocurin, naphthyridinomycin, pumilacidins, resistomycin, and surfactin. However, most compounds remained elusive until now. Hence, the obtained results implicate that the microbiome present at the various habitats at the Peruvian coastline is a promising source for heterotrophic bacterial strains showing high potential for the biotechnological production of antibiotics.
Collapse
Affiliation(s)
- Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, 5392 Giessen, Germany.
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- Research Centre for Sustainable Development Uku Pacha, 13011 Uku Pacha, Peru.
| | - Virginia Linares-Otoya
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
- Research Centre for Sustainable Development Uku Pacha, 13011 Uku Pacha, Peru.
| | - Lizbeth Armas-Mantilla
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Cyntia Blanco-Olano
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
| | - Mayar L Ganoza-Yupanqui
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Julio Campos-Florian
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru.
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- German Centre for Infection Research (DZIF) Partner Site Bonn/Cologne, Bonn 53115, Germany.
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, 5392 Giessen, Germany.
- Institute for Pharmaceutical Biology, University of Bonn, 3115 Bonn, Germany.
- German Centre for Infection Research (DZIF) Partner Site Bonn/Cologne, Bonn 53115, Germany.
| |
Collapse
|