1
|
Basik AA, Gibu N, Kawagiwa Y, Ng SM, Yeo TC, Sudesh K, Kasai D. Genomic insights into Dactylosporangium sp. AC04546, a rubber degrader with three latex clearing proteins. Front Microbiol 2024; 15:1378082. [PMID: 38873160 PMCID: PMC11169899 DOI: 10.3389/fmicb.2024.1378082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
With more than 100 rubber-degrading strains being reported, only 9 Lcp proteins isolated from Nocardia, Gordonia, Streptomyces, Rhodococcus, Actinoplanes, and Solimonas have been purified and biochemically characterized. A new strain, Dactylosporangium sp. AC04546 (strain JCM34239), isolated from soil samples collected in Sarawak Forest, was able to grow and utilize natural or synthetic rubber as the sole carbon source. Complete genome of Strain AC04546 was obtained from the hybrid assembly of PacBio Sequel II and Illumina MiSeq. Strain AC04546 has a large circular genome of 13.08 Mb with a G+C content of 72.1%. The genome contains 11,865 protein-coding sequences with 3 latex clearing protein (lcp) genes located on its chromosome. The genetic organization of the lcp gene cluster is similar to two other reported rubber-degrading strains-Actinoplanes sp. OR16 and Streptomyces sp. CFMR 7. All 3 Lcp from strain AC04546 were expressed in Escherichia coli and exhibited degrading activity against natural rubber. The distinctiveness of strain AC04546, along with other characterized rubber-degrading strains, is reported here.
Collapse
Affiliation(s)
| | - Namiko Gibu
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yukimura Kawagiwa
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Siuk-Mun Ng
- Codon Genomics S/B, Seri Kembangan, Selangor, Malaysia
| | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Daisuke Kasai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
2
|
Basik AA, Trakunjae C, Yeo TC, Sudesh K. Streptomyces sp. AC04842: Genomic Insights and Functional Expression of Its Latex Clearing Protein Genes (lcp1 and lcp2) When Cultivated With Natural and Vulcanized Rubber as the Sole Carbon Source. Front Microbiol 2022; 13:854427. [PMID: 35586859 PMCID: PMC9108482 DOI: 10.3389/fmicb.2022.854427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Rubber-degrading Actinobacteria have been discovered and investigated since 1985. Only recently, through the advancement of genomic sequencing and molecular techniques, genes and pathways involved in rubber degradation are being revealed; however, the complete degradation pathway remains unknown. Streptomyces sp. AC04842 (JCM 34241) was discovered by screening at a Culture Collection Centre in Sarawak for Actinomycetes forming a clear zone on natural rubber latex agar. Streptomyces is a dominant and well-studied soil bacterium playing an important role in soil ecology including carbon recycling and biodegradation. Streptomyces sp. AC04842 draft genome revealed the presence of 2 putative latex clearing protein (lcp) genes on its chromosome and is closely related to Streptomyces cellulosae. Under the Streptomyces genus, there are a total of 64 putative lcp genes deposited in the GenBank and UniProt database. Only 1 lcp gene from Streptomyces sp. K30 has been characterized. Unlike Streptomyces sp. K30 which contained 1 lcp gene on its chromosome, Streptomyces sp. AC04842 contained 2 lcp genes on its chromosome. Streptomyces sp. AC04842 lcp1 and lcp2 amino acid sequences showed 46.13 and 69.11%, respectively, similarity to lcp sequences of Streptomyces sp. K30. Most rubber degrading strains were known to harbor only 1 lcp gene, and only recently, 2–3 lcp homologs have been reported. Several studies have shown that lcp-homolog expression increased in the presence of rubber. To study the expression of lcp1 and lcp2 genes for Streptomyces sp. AC04842, the strain was incubated in different types of rubber as the sole carbon source. In general, the lcp1 gene was highly expressed, while the lcp2 gene expression was upregulated in the presence of vulcanized rubber. Mixtures of natural and vulcanized rubber did not further increase the expression of both lcp genes compared with the presence of a specific rubber type. In this study, we paved the way to the exploration of lcp homologs and their function in degrading different types of rubber.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Sarawak Biodiversity Centre, Kuching, Malaysia
| | - Chanaporn Trakunjae
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- *Correspondence: Kumar Sudesh,
| |
Collapse
|
3
|
Gibu N, Linh DV, Suzuki N, Thuy Ngan NT, Fukuda M, Anh TK, Huong NL, Kasai D. Identification and transcriptional analysis of poly(cis-1,4-isoprene) degradation gene in Rhodococcus sp. strain RDE2. J Biosci Bioeng 2022; 133:452-458. [PMID: 35216932 DOI: 10.1016/j.jbiosc.2022.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
The microbial degradation of synthetic and natural poly(cis-1,4-isoprene) rubber is expected to become an alternative treatment technique for waste from poly(cis-1,4-isoprene) products, such as scrap tires. A gram-positive rubber-degrading bacterium, Rhodococcus sp. strain RDE2, was isolated from the waste of a rubber-processing factory in Vietnam. This strain grew on natural rubber as a sole source of carbon and energy and produced oligo-isoprenoid metabolites containing aldehyde groups from poly(cis-1,4-isoprene). To identify the genes responsible for poly(cis-1,4-isoprene) degradation, the complete genome sequence of this strain was determined. The complete genome sequence consists of a 5,715,406 bp chromosome and 6 plasmids (GenBank accession numbers AP025186.1 to AP025192.1) with an average GC content of 67.9%. The genome contains 5358 protein-coding sequences and 12 and 68 copies of rRNA and tRNA genes, respectively. Based on genome sequence analysis, the lcp gene (RDE2_08,770), responsible for the initial step of poly(cis-1,4-isoprene) degradation, was identified. The gene product obtained from Escherichia coli depolymerizes poly(cis-1,4-isoprene) to low-molecular-weight oligo-isoprenoids. The transcription of this gene is activated during the utilization of poly(cis-1,4-isoprene) in strain RDE2. The lcpR gene (RDE2_08,760), which encodes a putative transcriptional regulator, is located upstream of lcp. The lcpR gene product recognizes the promoter region of lcp. When the lcpR gene is deleted, the constitutive transcription of lcp is observed. Thus, it is inferred that the LcpR negatively regulates lcp transcription. These results strongly suggest that the lcp and lcpR genes are involved in poly(cis-1,4-isoprene) utilization in strain RDE2.
Collapse
Affiliation(s)
- Namiko Gibu
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Dao Viet Linh
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan; School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Natsuhei Suzuki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Nguyen Thi Thuy Ngan
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan; School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - To Kim Anh
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Nguyen Lan Huong
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
4
|
Basik AA, Nanthini J, Yeo TC, Sudesh K. Rubber Degrading Strains: Microtetraspora and Dactylosporangium. Polymers (Basel) 2021; 13:3524. [PMID: 34685283 PMCID: PMC8538451 DOI: 10.3390/polym13203524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Rubber composed of highly unsaturated hydrocarbons, modified through addition of chemicals and vulcanization are widely used to date. However, the usage of rubber, faces many obstacles. These elastomeric materials are difficult to be re-used and recovered, leading to high post-consumer waste and vast environmental problems. Tyres, the major rubber waste source can take up to 80 years to naturally degrade. Experiments show that the latex clearing proteins (Lcp) found in Actinobacteria were reportedly critical for the initial oxidative cleavage of poly(cis-1,4-isoprene), the major polymeric unit of rubber. Although, more than 100 rubber degrading strains have been reported, only 8 Lcp proteins isolated from Nocardia (3), Gordonia (2), Streptomyces (1), Rhodococcus (1), and Solimonas (1) have been purified and biochemically characterized. Previous studies on rubber degrading strains and Lcp enzymes, implied that they are distinct. Following this, we aim to discover additional rubber degrading strains by randomly screening 940 Actinobacterial strains isolated from various locations in Sarawak on natural rubber (NR) latex agar. A total of 18 strains from 5 genera produced clearing zones on NR latex agar, and genes encoding Lcp were identified. We report here lcp genes from Microtetraspora sp. AC03309 (lcp1 and lcp2) and Dactylosporangium sp. AC04546 (lcp1, lcp2, lcp3), together with the predicted genes related to rubber degradation. In silico analysis suggested that Microtetraspora sp. AC03309 is a distinct species closely related to Microtetraspora glauca while Dactylosporangium sp. AC04546 is a species closely related to Dactylosporangium sucinum. Genome-based characterization allowed the establishment of the strains taxonomic position and provided insights into their metabolic potential especially in biodegradation of rubber. Morphological changes and the spectrophotometric detection of aldehyde and keto groups indicated the degradation of the original material in rubber samples incubated with the strains. This confirms the strains' ability to utilize different rubber materials (fresh latex, NR product and vulcanized rubber) as the sole carbon source. Both strains exhibited different levels of biodegradation ability. Findings on tyre utilization capability by Dactylosporangium sp. AC04546 is of interest. The final aim is to find sustainable rubber treatment methods to treat rubber wastes.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Kuching 93250, Malaysia;
| | - Jayaram Nanthini
- Faculty of Arts & Science, School of Science & Psychology, International University of Malaya-Wales, Kuala Lumpur 50480, Malaysia;
| | - Tiong Chia Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Kuching 93250, Malaysia;
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;
| |
Collapse
|
5
|
Global Regulator of Rubber Degradation in Gordonia polyisoprenivorans VH2: Identification and Involvement in the Regulation Network. Appl Environ Microbiol 2020; 86:AEM.00774-20. [PMID: 32444473 DOI: 10.1128/aem.00774-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/17/2020] [Indexed: 12/29/2022] Open
Abstract
A cAMP receptor protein (CRPVH2) was detected as a global regulator in Gordonia polyisoprenivorans VH2 and was proposed to participate in the network regulating poly(cis-1,4-isoprene) degradation as a novel key regulator. CRPVH2 shares a sequence identity of 79% with GlxR, a well-studied global regulator of Corynebacterium glutamicum Furthermore, CRPVH2 and GlxR have a common oligomerization state and similar binding motifs, and thus most likely have similar functions as global regulators. Size exclusion chromatography of purified CRPVH2 confirmed the existence as a homodimer with a native molecular weight of 44.1 kDa in the presence of cAMP. CRPVH2 bound to the TGTGAN6TCACT motif within the 131-bp intergenic region of divergently oriented lcp1 VH2 and lcpR VH2, encoding a latex clearing protein and its putative repressor, respectively. DNase I footprinting assays revealed the exact operator size of CRPVH2 in the intergenic region (25 bp), which partly overlapped with the proposed promoters of lcpR VH2 and lcp1 VH2 Our findings indicate that CRPVH2 represses the expression of lcpR VH2 while simultaneously directly or indirectly activating the expression of lcp1 VH2 by binding the competing promoter regions. Furthermore, binding of CRPVH2 to upstream regions of additional putative enzymes of poly(cis-1,4-isoprene) degradation was verified in vitro. In silico analyses predicted 206 CRPVH2 binding sites comprising 244 genes associated with several functional categories, including carbon and peptide metabolism, stress response, etc. The gene expression regulation of several subordinated regulators substantiated the function of CRPVH2 as a global regulator. Moreover, we anticipate that the novel lcpR regulation mechanism by CRPs is widespread in other rubber-degrading actinomycetes.IMPORTANCE In order to develop efficient microbial recycling strategies for rubber waste materials, it is required that we understand the degradation pathway of the polymer and how it is regulated. However, only little is known about the transcriptional regulation of the rubber degradation pathway, which seems to be upregulated in the presence of the polymer. We identified a novel key regulator of rubber degradation (CRPVH2) that regulates several parts of the pathway in the potent rubber-degrader G. polyisoprenivorans VH2. Furthermore, we provide evidence for a widespread involvement of CRP regulators in the degradation of rubber in various other rubber-degrading actinomycetes. Thus, these novel insights into the regulation of rubber degradation are essential for developing efficient microbial degradation strategies for rubber waste materials by this group of actinomycetes.
Collapse
|
6
|
Gibu N, Arata T, Kuboki S, Linh DV, Fukuda M, Steinbüchel A, Kasai D. Characterization of the genes responsible for rubber degradation in Actinoplanes sp. strain OR16. Appl Microbiol Biotechnol 2020; 104:7367-7376. [PMID: 32681242 PMCID: PMC7413915 DOI: 10.1007/s00253-020-10700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 10/25/2022]
Abstract
A Gram-positive rubber-degrading bacterium, Actinoplanes sp. strain OR16 (strain NBRC 114529), is able to grow on agar plates containing natural and synthetic rubber as the sole sources of carbon and energy. When this strain was grown on natural rubber latex overlay agar plates, translucent halos around the cells were observed. To identify the natural rubber degradation genes and other features of its metabolism, its complete genome sequence was determined. The genome of OR16 consists of 9,293,892 bp and comprises one circular chromosome (GenBank accession number AP019371.1) with a G + C content of 70.3%. The genome contains 8238 protein-coding and 18 rRNA genes. A homology search of the genome sequence revealed that three genes (lcp1, lcp2, and lcp3) are homologous to an extracellular latex-clearing protein (Lcp) of Streptomyces sp. K30. RT-PCR analysis revealed that lcp1 and lcp2 seem to constitute an operon. Purified lcp gene products have oxygen consumption activity toward natural rubber latex, suggesting that all these genes encode rubber-degrading enzymes in OR16. Quantitative reverse transcription-PCR analysis indicated that the transcription of these genes is induced during the growth of OR16 on natural rubber. The genes located adjacent to lcp1 and lcp3, which code for a TetR/AcrR-type transcriptional regulator, can bind to the promoter regions of these lcp genes. It is suggested that the putative regulators play a role in regulating the transcription of the lcp genes. These results strongly suggested that three lcp genes are required for the utilization of natural rubber in strain OR16. Key Points • The complete genome sequence of Actinoplanes sp. strain OR16 was determined. • Three lcp genes which are involved in the natural rubber degradation in OR16 were identified. • Transcription of these lcp genes is induced during utilization of rubber in OR16. • Two regulators, which bind to the promoter regions of lcp, were determined.
Collapse
Affiliation(s)
- Namiko Gibu
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Tomoka Arata
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Saya Kuboki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Dao Viet Linh
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biological Chemistry, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
7
|
Gibson L, Larke-Mejía NL, Murrell JC. Complete Genome of Isoprene Degrading Nocardioides sp. WS12. Microorganisms 2020; 8:microorganisms8060889. [PMID: 32545487 PMCID: PMC7355492 DOI: 10.3390/microorganisms8060889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023] Open
Abstract
Isoprene is a climate-active gas whose wide-spread global production stems mostly from terrestrial plant emissions. The biodegradation of isoprene is carried out by a number of different bacteria from a wide range of environments. This study investigates the genome of a novel isoprene degrading bacterium Nocardioides sp. WS12, isolated from soil associated with Salix alba (Willow), a tree known to produce high amounts of isoprene. The Nocardioides sp. WS12 genome was fully sequenced, revealing the presence of a complete isoprene monooxygenase gene cluster, along with associated isoprene degradation pathway genes. Genes associated with rubber degradation were also present, suggesting that Nocardioides sp. WS12 may also have the capacity to degrade poly-cis-1,4-isoprene.
Collapse
|
8
|
Kasai D. Poly( cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Biosci Biotechnol Biochem 2020; 84:1089-1097. [PMID: 32114907 DOI: 10.1080/09168451.2020.1733927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Natural rubber and synthetic poly(cis-1,4-isoprene) are used industrially in the world. Microbial utilization for the isoprene rubbers has been reported in gram-positive and gram-negative bacteria. Poly(cis-1,4-isoprene)-cleavage enzymes that are secreted by rubber-utilizing bacteria cleave the poly(cis-1,4-isoprene) chain to generate low-molecular-weight oligo(cis-1,4-isoprene) derivatives containing aldehyde and ketone groups. The resulting products are converted to the compounds including carboxyl groups, which could then be further catabolized through β-oxidation pathway. One of poly(cis-1,4-isoprene)-cleavage enzymes is latex-clearing protein (Lcp) that was found in gram-positive rubber degraders including Streptomyces, Gordonia, Rhodococcus, and Nocardia species. The other one is rubber oxygenase A and B (RoxA/RoxB) which have been identified from gram-negative rubber degraders such as Steroidobacter cummioxidans and Rhizobacter gummiphilus. Recently, the transcriptional regulation mechanisms for Lcp-coding genes in gram-positive bacteria have been characterized. Here, the current knowledge of genes and enzymes for the isoprene rubber catabolism were summarized.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
9
|
Sulfate Ester Detergent Degradation in Pseudomonas aeruginosa Is Subject to both Positive and Negative Regulation. Appl Environ Microbiol 2019; 85:AEM.01352-19. [PMID: 31540990 DOI: 10.1128/aem.01352-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/14/2019] [Indexed: 12/25/2022] Open
Abstract
Bacteria using toxic chemicals, such as detergents, as growth substrates face the challenge of exposing themselves to cell-damaging effects that require protection mechanisms, which demand energy delivered from catabolism of the toxic compound. Thus, adaptations are necessary for ensuring the rapid onset of substrate degradation and the integrity of the cells. Pseudomonas aeruginosa strain PAO1 can use the toxic detergent sodium dodecyl sulfate (SDS) as a growth substrate and employs, among others, cell aggregation as a protection mechanism. The degradation itself is also a protection mechanism and has to be rapidly induced upon contact to SDS. In this study, gene regulation of the enzymes initiating SDS degradation in strain PAO1 was studied. The gene and an atypical DNA-binding site of the LysR-type regulator SdsB1 were identified and shown to activate expression of the alkylsulfatase SdsA1 initiating SDS degradation. Further degradation of the resulting 1-dodecanol is catalyzed by enzymes encoded by laoCBA, which were shown to form an operon. Expression of this operon is regulated by the TetR-type repressor LaoR. Studies with purified LaoR identified its DNA-binding site and 1-dodecanoyl coenzyme A as the ligand causing detachment of LaoR from the DNA. Transcriptional studies revealed that the sulfate ester detergent sodium lauryl ether sulfate (SLES) induced expression of sdsA1 and the lao operon. Growth experiments revealed an essential involvement of the alkylsulfatase SdsA1 for SLES degradation. This study revealed that the genes for the enzymes initiating the degradation of toxic sulfate-ester detergents are induced stepwise by a positive and a negative regulator in P. aeruginosa strain PAO1.IMPORTANCE Bacterial degradation of toxic compounds is important not only for bioremediation but also for the colonization of hostile anthropogenic environments in which biocides are being used. This study with Pseudomonas aeruginosa expands our knowledge of gene regulation of the enzymes initiating degradation of sulfate ester detergents, which occurs in many hygiene and household products and, consequently, also in wastewater. As an opportunistic pathogen, P. aeruginosa causes severe hygienic problems because of its pronounced biocide resistance and its metabolic versatility, often combined with its pronounced biofilm formation. Knowledge about the regulation of detergent degradation, especially regarding the ligands of DNA-binding regulators, may lead to the rational development of specific inhibitors for restricting growth and biofilm formation of P. aeruginosa in hygienic settings. In addition, it may also contribute to optimizing bioremediation strategies not only for detergents but also for alkanes, which when degraded merge with sulfate ester degradation at the level of long-chain alcohols.
Collapse
|
10
|
Birke J, Jendrossek D. Solimonas fluminis has an active latex-clearing protein. Appl Microbiol Biotechnol 2019; 103:8229-8239. [PMID: 31485689 DOI: 10.1007/s00253-019-10085-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
The utilization of rubber (poly (cis-1,4-isoprene)) by rubber-degrading bacteria depends on the synthesis of rubber oxygenases that cleave the polymer extracellularly to low molecular weight products that can be taken up and used as a carbon source. All so far described Gram-negative rubber-degrading species use two related ≈ 70 kDa rubber oxygenases (RoxA and RoxB) for the primary attack of rubber while all described Gram-positive rubber-degrading strains use RoxA/RoxB-unrelated latex-clearing proteins (Lcps, ≈ 40 kDa) as rubber oxygenase(s). In this study, we identified an lcp orthologue in a Gram-negative species (Solimonas fluminis). We cloned and heterologously expressed the lcp gene of S. fluminis HR-BB, purified the corresponding Lcp protein (LcpHR-BB) from recombinant Escherichia coli, and biochemically characterised the LcpHR-BB activity. LcpHR-BB cleaved polyisoprene to a mixture of C20 and higher oligoisoprenoids at a specific activity of 1.5 U/mg. Furthermore, spectroscopic investigation identified LcpHR-BB as a b-haem-containing protein with an oxidised, fivefold coordinated (open) haem centre. To the best of our knowledge, this is the first report that Gram-negative bacteria can have an active rubber oxygenase of the Lcp type.
Collapse
Affiliation(s)
- Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
11
|
Coenen A, Oetermann S, Steinbüchel A. Identification of LcpRB A3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:5715-5726. [PMID: 31119350 DOI: 10.1007/s00253-019-09896-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Streptomyces coelicolor A3(2) is a rubber-degrading actinomycete that harbors one gene coding for a latex clearing protein (lcpA3(2)). Within the genome of S. coelicolor A3(2), we identified a gene coding for a novel protein of the TetR family (LcpRBA3(2)) downstream of lcpA3(2) and demonstrated its binding upstream of lcpA3(2). This indicates a role of LcpRBA3(2) in the regulation of lcp expression. LcpRBA3(2) shows no homology to LcpRVH2, a putative regulator of lcp expression in Gordonia polyisoprenivorans VH2. Additionally, LcpRVH2 homologs did not occur in the genome of S. coelicolor A3(2). Reverse transcriptase (RT) experiments showed that the expression of lcpA3(2) and lcpRBA3(2) is induced with poly(cis-1,4-isoprene) as sole carbon source. For further experiments, we heterologously expressed lcpRBA3(2) in Escherichia coli, purified the protein, and subsequently verified a binding of LcpRBA3(2) upstream of lcpA3(2). The operator site was examined by a DNase I footprinting assay: it comprises 31 bp and exhibits an inverted repeat of nine bases for the putative binding region. Interestingly, two N-terminal DNA-binding HTH domains of the TetR-type (PF00440) were identified within the sequence of LcpRBA3(2). The native molecular weight of LcpRBA3(2) was determined as 44 kDa by size exclusion chromatography which correlates to the molecular weight of a monomer. Normally, proteins of the TetR family occur as dimers so that the monomeric state is a novelty. Furthermore, LcpRBA3(2) homologs were identified in silico in several Lcp-containing actinomycetes, suspecting a conserved regulation mechanism. Apparently, the expression of lcps is regulated either by an LcpRB or by an LcpR.
Collapse
Affiliation(s)
- Anna Coenen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sylvia Oetermann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|