1
|
Baker RP, Liu AZ, Casadevall A. Cell wall melanin impedes growth of the Cryptococcus neoformans polysaccharide capsule by sequestering calcium. Proc Natl Acad Sci U S A 2024; 121:e2412534121. [PMID: 39259590 PMCID: PMC11420191 DOI: 10.1073/pnas.2412534121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cryptococcus neoformans has emerged as a frontrunner among deadly fungal pathogens and is particularly life-threatening for many HIV-infected individuals with compromised immunity. Multiple virulence factors contribute to the growth and survival of C. neoformans within the human host, the two most prominent of which are the polysaccharide capsule and melanin. As both of these features are associated with the cell wall, we were interested to explore possible cooperative or competitive interactions between these two virulence factors. Whereas capsule thickness had no effect on the rate at which cells became melanized, build-up of the melanin pigment layer resulted in a concomitant loss of polysaccharide material, leaving melanized cells with significantly thinner capsules than their nonmelanized counterparts. When melanin was provided exogenously to cells in a transwell culture system we observed a similar inhibition of capsule growth and maintenance. Our results show that melanin sequesters calcium thereby limiting its availability to form divalent bridges between polysaccharide subunits required for outer capsule assembly. The decreased ability of melanized cells to incorporate exported polysaccharide into the growing capsule correlated with the amount of shed polysaccharide, which could have profound negative impacts on the host immune response.
Collapse
Affiliation(s)
- Rosanna P. Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Amy Z. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
2
|
Oguni K, Fukushima S, Hagiya H, Kato A, Suyama A, Iwata T, Miyawaki Y, Ono S, Iio K, Otsuka F. Cryptococcal prostatitis in an immunocompromised patient with tocilizumab and glucocorticoid therapy: A case report. J Infect Chemother 2024:S1341-321X(24)00220-4. [PMID: 39152054 DOI: 10.1016/j.jiac.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Cryptococcus prostatitis is an uncommon manifestation of cryptococcal infection that occurs mostly in immunocompromised patients. Tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, has been associated with an increased risk of cryptococcal infections. However, there have been no documented cases of cryptococcal prostatitis in patients receiving tocilizumab therapy. We report a case of cryptococcal prostatitis in a 72-year-old man treated with glucocorticoids and tocilizumab for giant cell arteritis and granulomatosis with polyangiitis. The patient presented dysuria and his serum level of prostate-specific antigen was elevated. Magnetic resonance imaging revealed a prostate mass, and a prostate biopsy was performed, leading to a pathologic diagnosis of cryptococcal prostatitis. Fungal cultures for blood and urine were negative, while the cryptococcal antigen for both serum and urine showed positive results. There were no particular findings in the pulmonary and central nervous systems. The patient was successfully treated with oral fluconazole (400 mg/day) and was discharged. Although cryptococcal prostatitis is a rare entity, clinicians should note that an immunosuppressed patient may develop such a difficult-to-diagnose disease.
Collapse
Affiliation(s)
- Kohei Oguni
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinnosuke Fukushima
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan.
| | - Atsushi Kato
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takehiro Iwata
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sawako Ono
- Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Baker RP, Liu AZ, Casadevall A. Cell wall melanin impedes growth of the Cryptococcus neoformans polysaccharide capsule by sequestering calcium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599928. [PMID: 38948764 PMCID: PMC11212976 DOI: 10.1101/2024.06.20.599928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cryptococcus neoformans has emerged as a frontrunner among deadly fungal pathogens and is particularly life-threatening for many HIV-infected individuals with compromised immunity. Multiple virulence factors contribute to the growth and survival of C. neoformans within the human host, the two most prominent of which are the polysaccharide capsule and melanin. As both of these features are associated with the cell wall, we were interested to explore possible cooperative or competitive interactions between these two virulence factors. Whereas capsule thickness had no effect on the rate at which cells became melanized, build-up of the melanin pigment layer resulted in a concomitant loss of polysaccharide material, leaving melanized cells with significantly thinner capsules than their non-melanized counterparts. When melanin was provided exogenously to cells in a transwell culture system we observed a similar inhibition of capsule growth and maintenance. Our results show that melanin sequesters calcium thereby limiting its availability to form divalent bridges between polysaccharide subunits required for outer capsule assembly. The decreased ability of melanized cells to incorporate exported polysaccharide into the growing capsule correlated with the amount of shed polysaccharide, which could have profound negative impacts on the host immune response. Significance Statement Cryptococcus neoformans is an opportunistic fungal pathogen that presents a significant health risk for immunocompromised individuals. We report an interaction between the two major cryptococcal virulence factors, the polysaccharide capsule and melanin. Melanin impacted the growth and maintenance of the polysaccharide capsule, resulting in loss of capsular material during melanization. Our results suggest that melanin can act as a sink for calcium, thereby limiting its availability to form ionic bridges between polysaccharide chains on the growing surface of the outer capsule. As polysaccharide is continuously exported to support capsule growth, failure of melanized cells to incorporate this material results in a higher concentration of shed polysaccharide in the extracellular milieu, which is expected to interfere with host immunity.
Collapse
|
4
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of the closely related fungal genera Cryptococcus and Kwoniella reveals karyotype dynamics and suggests evolutionary mechanisms of pathogenesis. PLoS Biol 2024; 22:e3002682. [PMID: 38843310 PMCID: PMC11185503 DOI: 10.1371/journal.pbio.3002682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 05/17/2024] [Indexed: 06/19/2024] Open
Abstract
In exploring the evolutionary trajectories of both pathogenesis and karyotype dynamics in fungi, we conducted a large-scale comparative genomic analysis spanning the Cryptococcus genus, encompassing both global human fungal pathogens and nonpathogenic species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species, covering virtually all known diversity within these genera. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at preadaptive pathogenic potential, our analysis found evidence of gene gain (via horizontal gene transfer) and gene loss in pathogenic Cryptococcus species, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the 2 genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5, or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes showed reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Overall, our findings advance our understanding of genetic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sage McGinley-Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Arman W. Mohammad
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
5
|
Biersack B. The Antifungal Potential of Niclosamide and Structurally Related Salicylanilides. Int J Mol Sci 2024; 25:5977. [PMID: 38892165 PMCID: PMC11172841 DOI: 10.3390/ijms25115977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Human mycoses cover a diverse field of fungal diseases from skin disorders to systemic invasive infections and pose an increasing global health problem based on ineffective treatment options, the hampered development of new efficient drugs, and the emergence of resistant fungal strains. Niclosamide is currently applied for the treatment of worm infections. Its mechanisms of action, which include the suppression of mitochondrial oxidative phosphorylation (also known as mitochondrial uncoupling), among others, has led to a repurposing of this promising anthelmintic drug for the therapy of further human diseases such as cancer, diabetes, and microbial infections. Given the urgent need to develop new drugs against fungal infections, the considerable antifungal properties of niclosamide are highlighted in this review. Its chemical and pharmacological properties relevant for drug development are also briefly mentioned, and the described mitochondria-targeting mechanisms of action add to the current arsenal of approved antifungal drugs. In addition, the activities of further salicylanilide-based niclosamide analogs against fungal pathogens, including agents applied in veterinary medicine for many years, are described and discussed for their feasibility as new antifungals for humans. Preliminary structure-activity relationships are determined and discussed. Various salicylanilide derivatives with antifungal activities showed increased oral bioavailabilities when compared with niclosamide. The simple synthesis of salicylanilide-based drugs also vouchsafes a broad and cost-effective availability for poorer patient groups. Pertinent literature is covered until 2024.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
Youssef I, Abbas MS, Manafi A, Akhondi H, Youssef D. Disseminated Cryptococcosis Post Eculizumab Therapy: A Case Report and Literature Review. Cureus 2024; 16:e58852. [PMID: 38784297 PMCID: PMC11115998 DOI: 10.7759/cureus.58852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Eculizumab is a biologic medication used for the treatment of complement-related disorders including anti-acetylcholine receptor antibody-positive generalized myasthenia gravis. It targets C5 complement, preventing its cleavage into active terminal components. Thus, vaccination against encapsulated organisms is advised before starting this treatment. C5 also has a critical role against Cryptococcus neoformans infection. Here, we present a case of a 34-year-old man with a history of myasthenia gravis who was treated with prednisone and azathioprine in addition to eculizumab that was added to his regimen about a year ago, and who came to the hospital with headache, and was found to have Cryptococcus meningitis with disseminated cryptococcosis. The patient was negative for human immunodeficiency virus. He was treated with antifungal medications, and his condition improved. Although rarely reported, it is important to have a low threshold for diagnosis of cryptococcosis in patients on eculizumab given its complement inhibition mechanism of action.
Collapse
Affiliation(s)
| | | | - Amir Manafi
- Internal Medicine, Valley Health System, Las Vegas, USA
| | | | - Dima Youssef
- Infectious Disease, Valley Health System, Las Vegas, USA
| |
Collapse
|
7
|
Akazawa H, Hagiya H, Koyama T, Otsuka F. Trends in the Incidence of Disseminated Cryptococcosis in Japan: A Nationwide Observational Study, 2015-2021. Mycopathologia 2024; 189:8. [PMID: 38231420 PMCID: PMC10794261 DOI: 10.1007/s11046-023-00814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Cryptococcus species can cause severe disseminated infections in immunocompromised hosts. This study investigated the epidemiological features and trends in disseminated cryptococcosis in Japan. METHODS We used publicly available Infectious Diseases Weekly Reports to obtain data on the incidence of disseminated cryptococcosis in Japan from 2015 to 2021. Patient information, including age, sex, and regional and seasonal data, were extracted. The Joinpoint regression program was used to determine the age-adjusted incidence rate (AAR) per 100,000 population, annual percentage change (APC), and average APC (AAPC). RESULTS A total of 1047 cases of disseminated cryptococcosis were reported, of which those aged ≥ 70 years accounted for 68.8%. The AAR in men was significantly higher than that in women (median: 0.13 vs. 0.09: p = 0.0024). APC for the overall cases increased by 9.9% (95% confidence interval [95% CI] - 5.4-27.7) from 2015 to 2018 and then decreased by 3.3% (95% CI - 15.5-10.7) from 2018 to 2021. AAPC for the entire study period was 3.1% (95% CI - 1.5-8.0), indicating a possible increase in its number, although not statistically significant. In terms of regional distribution, the average AAR was highest in Shikoku District (0.17) and lowest in Hokkaido District (0.04). Northern Japan exhibited a significantly lower median AAR (median [interquartile range]: 0.06 [0.05, 0.08]) than the Eastern (0.12 [0.12, 0.13]), Western (0.11 [0.10, 0.13]), and Southern (0.14 [0.12, 0.15]) regions. No seasonal variation in incidence was observed. CONCLUSION The prevalence of disseminated cryptococcosis has not increased in Japan. Geographically, the incidence is lower in Northern Japan. Further investigations that incorporate detailed clinical data are required.
Collapse
Affiliation(s)
- Hidemasa Akazawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, 2-5-1 Shikata-Cho, Kitaku, Okayama, 700-8558, Japan.
| | - Toshihiro Koyama
- Department of Health Data Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
8
|
Coelho MA, David-Palma M, Shea T, Bowers K, McGinley-Smith S, Mohammad AW, Gnirke A, Yurkov AM, Nowrousian M, Sun S, Cuomo CA, Heitman J. Comparative genomics of Cryptococcus and Kwoniella reveals pathogenesis evolution and contrasting karyotype dynamics via intercentromeric recombination or chromosome fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.27.573464. [PMID: 38234769 PMCID: PMC10793447 DOI: 10.1101/2023.12.27.573464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A large-scale comparative genomic analysis was conducted for the global human fungal pathogens within the Cryptococcus genus, compared to non-pathogenic Cryptococcus species, and related species from the sister genus Kwoniella. Chromosome-level genome assemblies were generated for multiple species of both genera, resulting in a dataset encompassing virtually all of their known diversity. Although Cryptococcus and Kwoniella have comparable genome sizes (about 19.2 and 22.9 Mb) and similar gene content, hinting at pre-adaptive pathogenic potential, our analysis found evidence in pathogenic Cryptococcus species of specific examples of gene gain (via horizontal gene transfer) and gene loss, which might represent evolutionary signatures of pathogenic development. Genome analysis also revealed a significant variation in chromosome number and structure between the two genera. By combining synteny analysis and experimental centromere validation, we found that most Cryptococcus species have 14 chromosomes, whereas most Kwoniella species have fewer (11, 8, 5 or even as few as 3). Reduced chromosome number in Kwoniella is associated with formation of giant chromosomes (up to 18 Mb) through repeated chromosome fusion events, each marked by a pericentric inversion and centromere loss. While similar chromosome inversion-fusion patterns were observed in all Kwoniella species with fewer than 14 chromosomes, no such pattern was detected in Cryptococcus. Instead, Cryptococcus species with less than 14 chromosomes, underwent chromosome reductions primarily through rearrangements associated with the loss of repeat-rich centromeres. Additionally, Cryptococcus genomes exhibited frequent interchromosomal translocations, including intercentromeric recombination facilitated by transposons shared between centromeres. Taken together, our findings advance our understanding of genomic changes possibly associated with pathogenicity in Cryptococcus and provide a foundation to elucidate mechanisms of centromere loss and chromosome fusion driving distinct karyotypes in closely related fungal species, including prominent global human pathogens.
Collapse
Affiliation(s)
- Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Márcia David-Palma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Terrance Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Katharine Bowers
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | - Andreas Gnirke
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andrey M. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
9
|
Alanazi AH, Chastain DB, Rudraraju M, Parvathagiri V, Shan S, Lin X, Henao-Martínez AF, Franco-Paredes C, Narayanan SP, Somanath PR. A multi-arm, parallel, preclinical study investigating the potential benefits of acetazolamide, candesartan, and triciribine in combination with fluconazole for the treatment of cryptococcal meningoencephalitis. Eur J Pharmacol 2023; 960:176177. [PMID: 37931839 PMCID: PMC10985624 DOI: 10.1016/j.ejphar.2023.176177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Cryptococcus neoformans, an opportunistic fungal pathogen, primarily infects immunodeficient patients frequently causing cryptococcal meningoencephalitis (CM). Increased intracranial pressure (ICP) is a serious complication responsible for increased morbidity and mortality in CM patients. Non-invasive pharmacological agents that mitigate ICP could be beneficial in treating CM patients. The objective of the study was to investigate the efficacy of acetazolamide (AZA), candesartan (CAN), and triciribine (TCBN), in combination with the antifungal fluconazole, on C. neoformans-induced endothelial, brain, and lung injury in an experimental mouse model of CM. Our study shows that C. neoformans increases the expression of brain endothelial cell (BEC) junction proteins Claudin-5 (Cldn5) and VE-Cadherin to induce pathological cell-barrier remodeling and gap formation associated with increased Akt and p38 MAPK activation. All three agents inhibited C. neoformans-induced endothelial gap formation, only CAN and TCBN significantly reduced C. neoformans-induced Cldn5 expression, and only TCBN was effective in inhibiting Akt and p38MAPK. Interestingly, although C. neoformans did not cause brain or lung edema in mice, it induced lung and brain injuries, which were significantly reversed by AZA, CAN, or TCBN. Our study provides novel insights into the direct effects of C. neoformans on BECs in vitro, and the potential benefits of using AZA, CAN, or TCBN in the management of CM patients.
Collapse
Affiliation(s)
- Abdulaziz H Alanazi
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Daniel B Chastain
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, SWGA Clinical Campus, Phoebe Putney Memorial Hospital, Albany, GA, 31701, USA
| | - Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Varun Parvathagiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
| | - Andrés F Henao-Martínez
- Division of Infectious Diseases, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA; Hospital Infantil de México, Federico Gómez, México City, 06720, Mexico
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, 30907, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, GA, 30901, USA.
| |
Collapse
|
10
|
Chi H, Yang Y, Zhang J, Liu D. A case of hypophysis with HIV negative cryptococcal meningitis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1419-1424. [PMID: 38044654 PMCID: PMC10929872 DOI: 10.11817/j.issn.1672-7347.2023.220441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 12/05/2023]
Abstract
The clinical mortality of cryptococcal meningitis (CM) is high. There is no report of hypopituitarism associated with HIV negative CM so far. The patients with hypopituitarism complicated with CM are easy to be misdiagnosed and mistreated. A patient with hypopituitarism and HIV negative CM was admitted to Weihai Municipal Hospital on August 27, 2021. The patient was treated for 18 years after craniopharyngioma with headache for more than 2 months, nausea and vomiting for 4 days. MRI showed abnormal enhancement of the right basal ganglia, edema of surrounding tissue, and multiple striated enhancement of the bilateral cerebellar hemisphere. The smear of cerebrospinal fluid showed a large number of fungi and Cryptococcus. Culture of cerebrospinal fluid showed positive in Cryptococcus. The patient's HIV and syphilis antibodies were negative. The condition of the patient was improved after active antifungal therapy. The clinician should make a definite diagnosis and give early treatment as soon as possible.
Collapse
Affiliation(s)
- Haiyan Chi
- PhD Candidate, Class of 2022, Shandong University of Traditional Chinese Medicine, Jinan 250012.
- Department of Endocrinology, Weihai Municipal Hospital, Affiliated Hospital of Shandong University, Weihai Shandong 264200.
| | - Yachao Yang
- Department of Endocrinology, Weihai Municipal Hospital, Affiliated Hospital of Shandong University, Weihai Shandong 264200.
| | - Jinbiao Zhang
- Department of Endocrinology, Weihai Municipal Hospital, Affiliated Hospital of Shandong University, Weihai Shandong 264200
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan 250012, China.
| |
Collapse
|
11
|
A case of orbital cryptococcosis. Am J Ophthalmol Case Rep 2023; 30:101821. [PMID: 36852304 PMCID: PMC9958422 DOI: 10.1016/j.ajoc.2023.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose This report describes a case of Cryptococcus neoformans found in an unlikely location, the orbit, in an apparently immunocompetent host. Observations A coordinated, multi-disciplinary approach between the ophthalmology, neurosurgery, pathology, and infectious disease departments was integral to saving both vision and life. Conclusions and Importance This is the first case of primary orbital cryptococcosis described in the medical literature, to the authors' knowledge. The case draws attention to the possibility that Cryptococcus neoformans can indeed invade the orbit and should be considered part of the differential diagnosis for patients presenting with orbital masses of uncertain etiology.
Collapse
|
12
|
Seyer Cagatan A, Taiwo Mustapha M, Bagkur C, Sanlidag T, Ozsahin DU. An Alternative Diagnostic Method for C. neoformans: Preliminary Results of Deep-Learning Based Detection Model. Diagnostics (Basel) 2022; 13:diagnostics13010081. [PMID: 36611373 PMCID: PMC9818640 DOI: 10.3390/diagnostics13010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen with significant medical importance, especially in immunosuppressed patients. It is the causative agent of cryptococcosis. An estimated 220,000 annual cases of cryptococcal meningitis (CM) occur among people with HIV/AIDS globally, resulting in nearly 181,000 deaths. The gold standards for the diagnosis are either direct microscopic identification or fungal cultures. However, these diagnostic methods need special types of equipment and clinical expertise, and relatively low sensitivities have also been reported. This study aims to produce and implement a deep-learning approach to detect C. neoformans in patient samples. Therefore, we adopted the state-of-the-art VGG16 model, which determines the output information from a single image. Images that contain C. neoformans are designated positive, while others are designated negative throughout this section. Model training, validation, testing, and evaluation were conducted using frameworks and libraries. The state-of-the-art VGG16 model produced an accuracy and loss of 86.88% and 0.36203, respectively. Results prove that the deep learning framework VGG16 can be helpful as an alternative diagnostic method for the rapid and accurate identification of the C. neoformans, leading to early diagnosis and subsequent treatment. Further studies should include more and higher quality images to eliminate the limitations of the adopted deep learning model.
Collapse
Affiliation(s)
- Ayse Seyer Cagatan
- Department of Medical and Clinical Microbiology, Faculty of Medicine, Cyprus International University, TRNC Mersin 10, Nicosia 99010, Turkey
| | - Mubarak Taiwo Mustapha
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Cemile Bagkur
- DESAM Research Institute, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
| | - Dilber Uzun Ozsahin
- Operational Research Center in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey
- Medical Diagnostic Imaging Department, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
13
|
Wappler-Guzzetta EA, Gray AL, Dagostino J, Kerstetter JC. Diffuse Adrenal Gland and Pancreas Necrosis in a Patient with Disseminated Cryptococcosis-Case Report. Life (Basel) 2022; 12:1667. [PMID: 36295101 PMCID: PMC9605411 DOI: 10.3390/life12101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
(1) Background: Cryptococcus neoformans is mostly known for causing meningitis, with or without disseminated disease. (2) Case presentation: An immunocompromised 75-year-old gentleman presented post renal transplant with generalized weakness, altered mental status, hypoxemia, and hyponatremia, and was found to have disseminated cryptococcal infection. After an initial improvement, the patient became suddenly hypotensive, and passed away soon after. The autopsy revealed widespread cryptococcal involvement, with the most severely affected organs being the brain, lungs, pancreas, adrenal glands, and spleen. The pancreas and one of the adrenal glands revealed diffuse granulomatous cryptococcal infection, with large areas of necrosis. The spleen also showed a large area of cryptococcal necrosis. In addition, the patient had chylous ascites, without histologically identifiable organisms. (3) Conclusions: This is a rare case of disseminated cryptococcal infection with severe necrotizing adrenalitis and pancreatitis, in addition to significant spleen, lung, and central nervous system involvement. The early recognition and treatment of the adrenal gland and pancreas cryptococcosis with surgical interventions may lead to better outcomes in affected patients. Furthermore, steroid treatment and diabetes mellitus may be risk factors for adrenal gland involvement. Additionally, clinicians should keep cryptococcal infection in their differential diagnosis for isolated adrenal gland and pancreas lesions.
Collapse
Affiliation(s)
| | - Austin L. Gray
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Jessika Dagostino
- Pathologists’ Assistant Program, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA or
- Hoag Memorial Presbyterian Hospital, Newport Beach, CA 92663, USA
| | - Justin C. Kerstetter
- Department of Pathology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
14
|
Guerreiro MA, Ahrendt S, Pangilinan J, Chen C, Yan M, Lipzen A, Barry K, Grigoriev IV, Begerow D, Nowrousian M. Draft genome sequences of strains CBS6241 and CBS6242 of the basidiomycetous yeast Filobasidium floriforme. G3-GENES GENOMES GENETICS 2021; 12:6428540. [PMID: 34791213 PMCID: PMC9210288 DOI: 10.1093/g3journal/jkab398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/03/2022]
Abstract
The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales, and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. In addition, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.
Collapse
Affiliation(s)
| | - Steven Ahrendt
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Dominik Begerow
- Lehrstuhl für Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
15
|
Thomas GH. Microbial Musings – June 2021. Microbiology (Reading) 2021; 167. [DOI: 10.1099/mic.0.001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Boekhout T, Aime MC, Begerow D, Gabaldón T, Heitman J, Kemler M, Khayhan K, Lachance MA, Louis EJ, Sun S, Vu D, Yurkov A. The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. FUNGAL DIVERS 2021; 109:27-55. [PMID: 34720775 PMCID: PMC8550739 DOI: 10.1007/s13225-021-00475-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Here we review how evolving species concepts have been applied to understand yeast diversity. Initially, a phenotypic species concept was utilized taking into consideration morphological aspects of colonies and cells, and growth profiles. Later the biological species concept was added, which applied data from mating experiments. Biophysical measurements of DNA similarity between isolates were an early measure that became more broadly applied with the advent of sequencing technology, leading to a sequence-based species concept using comparisons of parts of the ribosomal DNA. At present phylogenetic species concepts that employ sequence data of rDNA and other genes are universally applied in fungal taxonomy, including yeasts, because various studies revealed a relatively good correlation between the biological species concept and sequence divergence. The application of genome information is becoming increasingly common, and we strongly recommend the use of complete, rather than draft genomes to improve our understanding of species and their genome and genetic dynamics. Complete genomes allow in-depth comparisons on the evolvability of genomes and, consequently, of the species to which they belong. Hybridization seems a relatively common phenomenon and has been observed in all major fungal lineages that contain yeasts. Note that hybrids may greatly differ in their post-hybridization development. Future in-depth studies, initially using some model species or complexes may shift the traditional species concept as isolated clusters of genetically compatible isolates to a cohesive speciation network in which such clusters are interconnected by genetic processes, such as hybridization.
Collapse
Affiliation(s)
- Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - M. Catherine Aime
- Dept Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Dominik Begerow
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC–CNS), Jordi Girona, 29, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Martin Kemler
- Evolution of Plants and Fungi, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kantarawee Khayhan
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, University of Phayao, Phayao, 56000 Thailand
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7 Canada
| | - Edward J. Louis
- Department of Genetics and Genome Biology, Genetic Architecture of Complex Traits, University of Leicester, Leicester, LE1 7RH UK
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey Yurkov
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ, Brunswick, Germany
| |
Collapse
|
17
|
Thomas GH. Microbial Musings - November 2020. MICROBIOLOGY (READING, ENGLAND) 2020; 166:1004-1006. [PMID: 33252324 PMCID: PMC7723258 DOI: 10.1099/mic.0.001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Gavin H Thomas
- Department of Biology, University of York, PO Box 373, York, UK
| |
Collapse
|