1
|
Jia F, Peng X, Yang X, Qiu S, Jia S, Ran T, Wang W, Xu D. PqqF inhibits T6SS secretion by decreasing the pH in Serratia marcescens FS14. FEMS Microbiol Lett 2024; 371:fnae047. [PMID: 38908910 DOI: 10.1093/femsle/fnae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/24/2024] Open
Abstract
Pyrroloquinoline quinone (PQQ) is a redox cofactor with numerous important physiological functions, and the type VI secretion system (T6SS) is commonly found in Gram-negative bacteria and plays important roles in physiological metabolism of the bacteria. In this study, we found that the deletion of pqqF enhanced the secretion of Hcp-1 in Serratia marcesens FS14 in M9 medium. Transcriptional analysis showed that the deletion of pqqF almost had no effect on the expression of T6SS-1. Further study revealed that the increased secretion of Hcp-1 was altered by the pH changes of the culture medium through the reaction catalyzed by the glucose dehydrogenases in FS14. Finally, we demonstrated that decreased pH of culture medium has similar inhibition effects as PQQ induced on the secretion of T6SS-1. This regulation mode on T6SS by pH in FS14 is different from previously reported in other bacteria. Therefore, our results suggest a novel pH regulation mode of T6SS in S. marcesens FS14, and would broaden our knowledge on the regulation of T6SS secretion.
Collapse
Affiliation(s)
- Fengyu Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xuede Peng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xiaomei Yang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shenshen Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shanshan Jia
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Dongqing Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
2
|
Jin J, Xiao L, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Yao W, Shen L, Cui Y, Tan Y, Han Y, Du Z, Cui Y, Yang R, Song K, Song Y. Characterization of an aspartate aminotransferase encoded by YPO0623 with frequent nonsense mutations in Yersinia pestis. Front Cell Infect Microbiol 2023; 13:1288371. [PMID: 38089818 PMCID: PMC10713766 DOI: 10.3389/fcimb.2023.1288371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a genetically monomorphic bacterial pathogen that evolved from Yersinia pseudotuberculosis approximately 7,400 years ago. We observed unusually frequent mutations in Y. pestis YPO0623, mostly resulting in protein translation termination, which implies a strong natural selection. These mutations were found in all phylogenetic lineages of Y. pestis, and there was no apparent pattern in the spatial distribution of the mutant strains. Based on these findings, we aimed to investigate the biological function of YPO0623 and the reasons for its frequent mutation in Y. pestis. Our in vitro and in vivo assays revealed that the deletion of YPO0623 enhanced the growth of Y. pestis in nutrient-rich environments and led to increased tolerance to heat and cold shocks. With RNA-seq analysis, we also discovered that the deletion of YPO0623 resulted in the upregulation of genes associated with the type VI secretion system (T6SS) at 26°C, which probably plays a crucial role in the response of Y. pestis to environment fluctuations. Furthermore, bioinformatic analysis showed that YPO0623 has high homology with a PLP-dependent aspartate aminotransferase in Salmonella enterica, and the enzyme activity assays confirmed its aspartate aminotransferase activity. However, the enzyme activity of YPO0623 was significantly lower than that in other bacteria. These observations provide some insights into the underlying reasons for the high-frequency nonsense mutations in YPO0623, and further investigations are needed to determine the exact mechanism.
Collapse
Affiliation(s)
- Junyan Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Liting Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhulin Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ziyao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanbing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Laboratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Yanting Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenwu Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Microbiology and Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Leiming Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yiming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
4
|
Kolodziejek AM, Hovde CJ, Minnich SA. Contributions of Yersinia pestis outer membrane protein Ail to plague pathogenesis. Curr Opin Infect Dis 2022; 35:188-195. [PMID: 35665712 PMCID: PMC9186061 DOI: 10.1097/qco.0000000000000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Pathogenic Yersinia have been a productive model system for studying bacterial pathogenesis. Hallmark contributions of Yersinia research to medical microbiology are legion and include: (i) the first identification of the role of plasmids in virulence, (ii) the important mechanism of iron acquisition from the host, (iii) the first identification of bacterial surface proteins required for host cell invasion, (iv) the archetypical type III secretion system, and (v) elucidation of the role of genomic reduction in the evolutionary trajectory from a fairly innocuous pathogen to a highly virulent species. RECENT FINDINGS The outer membrane (OM) protein Ail (attachment invasion locus) was identified over 30 years ago as an invasin-like protein. Recent work on Ail continues to provide insights into Gram-negative pathogenesis. This review is a synopsis of the role of Ail in invasion, serum resistance, OM stability, thermosensing, and vaccine development. SUMMARY Ail is shown to be an essential virulence factor with multiple roles in pathogenesis. The recent adaptation of Yersinia pestis to high virulence, which included genomic reduction to eliminate redundant protein functions, is a model to understand the emergence of new bacterial pathogens.
Collapse
Affiliation(s)
- Anna M. Kolodziejek
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J. Hovde
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| | - Scott A. Minnich
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
5
|
Maharajan AD, Hjerde E, Hansen H, Willassen NP. Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Front Vet Sci 2022; 9:799414. [PMID: 35211539 PMCID: PMC8861277 DOI: 10.3389/fvets.2022.799414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
For bacteria to thrive in an environment with competitors, phages and environmental cues, they use different strategies, including Type VI Secretion Systems (T6SSs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to compete for space. Bacteria often use quorum sensing (QS), to coordinate their behavior as the cell density increases. Like other aliivibrios, Aliivibrio wodanis 06/09/139 harbors two QS systems, the main LuxS/LuxPQ system and an N-acyl homoserine lactone (AHL)-mediated AinS/AinR system and a master QS regulator, LitR. To explore the QS and survival strategies, we performed genome analysis and gene expression profiling on A. wodanis and two QS mutants (ΔainS and ΔlitR) at two cell densities (OD600 2.0 and 6.0) and temperatures (6 and 12°C). Genome analysis of A. wodanis revealed two CRISPR systems, one without a cas loci (CRISPR system 1) and a type I-F CRISPR system (CRISPR system 2). Our analysis also identified three main T6SS clusters (T6SS1, T6SS2, and T6SS3) and four auxiliary clusters, as well about 80 potential Type VI secretion effectors (T6SEs). When comparing the wildtype transcriptome data at different cell densities and temperatures, 13-18% of the genes were differentially expressed. The CRISPR system 2 was cell density and temperature-independent, whereas the CRISPR system 1 was temperature-dependent and cell density-independent. The primary and auxiliary clusters of T6SSs were both cell density and temperature-dependent. In the ΔlitR and ΔainS mutants, several CRISPR and T6SS related genes were differentially expressed. Deletion of litR resulted in decreased expression of CRISPR system 1 and increased expression of CRISPR system 2. The T6SS1 and T6SS2 gene clusters were less expressed while the T6SS3 cluster was highly expressed in ΔlitR. Moreover, in ΔlitR, the hcp1 gene was strongly activated at 6°C compared to 12°C. AinS positively affected the csy genes in the CRISPR system 2 but did not affect the CRISPR arrays. Although AinS did not significantly affect the expression of T6SSs, the hallmark genes of T6SS (hcp and vgrG) were AinS-dependent. The work demonstrates that T6SSs and CRISPR systems in A. wodanis are QS dependent and may play an essential role in survival in its natural environment.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Deletion of Yersinia pestis ail causes temperature sensitive pleiotropic effects including cell lysis that are suppressed by carbon source, cations, or loss of phospholipase A activity. J Bacteriol 2021; 203:e0036121. [PMID: 34398663 PMCID: PMC8508112 DOI: 10.1128/jb.00361-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of phospholipid (PL) and lipopoly- or lipooligo-saccharide (LPS or LOS) asymmetry in the outer membrane (OM) of Gram-negative bacteria is essential but poorly understood. The Yersinia pestis OM Ail protein was required to maintain lipid homeostasis and cell integrity at elevated temperature (37° C). Loss of this protein had pleiotropic effects. A Y. pestis Δail mutant and KIM6+ wild- type were systematically compared for (i) growth requirements at 37° C, (ii) cell structure, (iii) antibiotic and detergent sensitivity, (iv) proteins released into supernates, (v) induction of the heat shock response, and (vi) physiological and genetic suppressors that restored the wild- type phenotype. The Δail mutant grew normally at 28° C but lysed at 37° C when it entered stationary phase as shown by cell count, SDS-PAGE of cell supernatants, and electron microscopy. Immuno-fluorescent microscopy showed that the Δail mutant did not assemble Caf1 capsule. Expression of heat shock promoters rpoE or rpoH fused to a lux operon reporter were not induced when the Δail mutant was shifted from the 28° C to 37° C (p<0.001 and p<0.01 respectively). Mutant lysis was suppressed by addition of 11 mM glucose, 22 or 44 mM glycerol, 2.5 mM Ca2+, or 2.5 mM Mg2+ to the growth medium, or by a mutation in the phospholipase A gene (pldA::miniTn5, ΔpldA, or PldAS164A). A model, accounting for the temperature-sensitive lysis of the Δail mutant and the Ail-dependent stabilization of the OM tetraacylated LOS at 37°C is presented. IMPORTANCE The Gram-negative pathogen, Yersinia pestis, transitions between a flea vector (ambient temperature) and a mammalian host (37° C). In response to 37° C, Y. pestis modifies its outer membrane (OM) by reducing the fatty acid content in lipid A, changing the outer leaflet from being predominantly hexaacylated to being predominantly tetraacylated. It also increases the Ail concentration, so it becomes the most prominent OM protein. Both measures are needed for Y. pestis to evade the host innate immune response. Deletion of ail destabilizes the OM at 37° C causing the cells to lyse. These results show that a protein is essential for maintaining lipid asymmetry and lipid homeostasis in the bacterial OM.
Collapse
|
7
|
Cao S, Chen Y, Yan Y, Zhu S, Tan Y, Wang T, Song Y, Deng H, Yang R, Du Z. Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Mol Cell Proteomics 2021; 20:100066. [PMID: 33631294 PMCID: PMC7994543 DOI: 10.1016/j.mcpro.2021.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
8
|
Kubiczek D, Raber H, Bodenberger N, Oswald T, Sahan M, Mayer D, Wiese S, Stenger S, Weil T, Rosenau F. The Diversity of a Polyclonal FluCell-SELEX Library Outperforms Individual Aptamers as Emerging Diagnostic Tools for the Identification of Carbapenem Resistant Pseudomonas aeruginosa. Chemistry 2020; 26:14536-14545. [PMID: 32515842 PMCID: PMC7756519 DOI: 10.1002/chem.202000213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 11/06/2022]
Abstract
Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.
Collapse
Affiliation(s)
- Dennis Kubiczek
- Institute of pharmaceutical biotechnologyUlm University89081UlmGermany
| | - Heinz Raber
- Institute of pharmaceutical biotechnologyUlm University89081UlmGermany
| | | | - Thomas Oswald
- Institute of pharmaceutical biotechnologyUlm University89081UlmGermany
| | - Melis Sahan
- Institute of pharmaceutical biotechnologyUlm University89081UlmGermany
| | - Daniel Mayer
- Institute for Medical Microbiology and HygieneUniversity Hospital Ulm89081UlmGermany
| | | | - Steffen Stenger
- Institute for Medical Microbiology and HygieneUniversity Hospital Ulm89081UlmGermany
| | - Tanja Weil
- Department Synthesis of MacromoleculesMax-Planck-Institute for Polymer Research Mainz55128MainzGermany
| | - Frank Rosenau
- Institute of pharmaceutical biotechnologyUlm University89081UlmGermany
- Department Synthesis of MacromoleculesMax-Planck-Institute for Polymer Research Mainz55128MainzGermany
| |
Collapse
|
9
|
Knittel V, Sadana P, Seekircher S, Stolle AS, Körner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathog 2020; 16:e1008552. [PMID: 32966346 PMCID: PMC7535981 DOI: 10.1371/journal.ppat.1008552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 08/01/2020] [Indexed: 12/05/2022] Open
Abstract
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Seekircher
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne-Sophie Stolle
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Britta Körner
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
- German Center for Infection Research, Baunschweig, Germany
| |
Collapse
|
10
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
11
|
Hu YY, Liu CX, Liu P, Wu ZY, Zhang YD, Xiong XS, Li XY. Regulation of gene expression of hcp, a core gene of the type VI secretion system in Acinetobacter baumannii causing respiratory tract infection. J Med Microbiol 2019; 67:945-951. [PMID: 29771233 DOI: 10.1099/jmm.0.000753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose. The objective of the current study was to investigate whether hcp plays a role in the process of Acinetobacter baumannii infection and to examine clinically relevant factors that may affect hcp expression.Methodology. Seventy-seven A. baumannii isolates from patients with a respiratory infection at the Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University (Wenzhou, China) were included in this study. PCR was performed to screen for the presence of hcp. Quantitative real time polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hcp.Results. A total of 77.9 % (60 of 77) of the A. baumannii clinical isolates possessed the hcp gene. Expression of hcp was found to be strain-specific and associated with the infection status. Higher gene expression of hcp was found for invasive A. baumannii isolates causing an infection relative to the colonization group, and for the same strain at a post-infection status compared with that prior to infection. Acid environment was also found to be a trigger of hcp gene expression.Conclusion. The type VI secretion system and hcp predominate in A. baumannii causing respiratory infections. Expression of hcp is regulated by the infection status and acid environment, and might play a role in the process of triggering infection by the colonizer.
Collapse
Affiliation(s)
- Yin-Yin Hu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Cai-Xia Liu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Peng Liu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Zhuo-Ying Wu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ya-Dong Zhang
- Department of Hepatobiliary Surgery, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, PR China
| | - Xiao-Shun Xiong
- Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiang-Yang Li
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
12
|
Jiang X, Beust A, Sappa PK, Völker U, Dinse T, Herglotz J, Reinhold-Hurek B. Two Functionally Deviating Type 6 Secretion Systems Occur in the Nitrogen-Fixing Endophyte Azoarcus olearius BH72. Front Microbiol 2019; 10:459. [PMID: 30915056 PMCID: PMC6423157 DOI: 10.3389/fmicb.2019.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Type VI protein secretion systems (T6SSs) have been identified in many plant-associated bacteria. However, despite the fact that effector proteins may modulate host responses or interbacterial competition, only a few have been functionally dissected in detail. We dissected the T6SS in Azoarcus olearius strain BH72, a nitrogen-fixing model endophyte of grasses. The genome harbors two gene clusters encoding putative T6SSs, tss-1 and tss-2, of which only T6SS-2 shared genetic organization and functional homology with the H1-T6SS of Pseudomonas aeruginosa. While tss-2 genes were constitutively expressed, tss-1 genes were strongly up-regulated under conditions of nitrogen fixation. A comparative analysis of the wild type and mutants lacking either functional tss-1 or tss-2 allowed to differentiate the functions of both secretion systems. Abundance of Hcp in the culture supernatant as an indication for T6SS activity revealed that only T6SS-2 was active, either under aerobic or nitrogen-fixing conditions. Our data show that T6SS-2 but not T6SS-1 is post-translationally regulated by phosphorylation mediated by TagE/TagG (PpkA/PppA), and by the phosphorylation-independent inhibitory protein TagF, similar to published work in Pseudomonas. Therefore, T6SS-1 appears to be post-translationally regulated by yet unknown mechanisms. Thus, both T6SS systems appear to perform different functions in Azoarcus, one of them specifically adapted to the nitrogen-fixing lifestyle.
Collapse
Affiliation(s)
- Xun Jiang
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Andreas Beust
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Praveen K. Sappa
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Theresa Dinse
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Julia Herglotz
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
13
|
Differential Gene Expression Patterns of Yersinia pestis and Yersinia pseudotuberculosis during Infection and Biofilm Formation in the Flea Digestive Tract. mSystems 2019; 4:mSystems00217-18. [PMID: 30801031 PMCID: PMC6381227 DOI: 10.1128/msystems.00217-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis, the etiologic agent of plague, emerged as a fleaborne pathogen only within the last 6,000 years. Just five simple genetic changes in the Yersinia pseudotuberculosis progenitor, which served to eliminate toxicity to fleas and to enhance survival and biofilm formation in the flea digestive tract, were key to the transition to the arthropodborne transmission route. To gain a deeper understanding of the genetic basis for the development of a transmissible biofilm infection in the flea foregut, we evaluated additional gene differences and performed in vivo transcriptional profiling of Y. pestis, a Y. pseudotuberculosis wild-type strain (unable to form biofilm in the flea foregut), and a Y. pseudotuberculosis mutant strain (able to produce foregut-blocking biofilm in fleas) recovered from fleas 1 day and 14 days after an infectious blood meal. Surprisingly, the Y. pseudotuberculosis mutations that increased c-di-GMP levels and enabled biofilm development in the flea did not change the expression levels of the hms genes responsible for the synthesis and export of the extracellular polysaccharide matrix required for mature biofilm formation. The Y. pseudotuberculosis mutant uniquely expressed much higher levels of Yersinia type VI secretion system 4 (T6SS-4) in the flea, and this locus was required for flea blockage by Y. pseudotuberculosis but not for blockage by Y. pestis. Significant differences between the two species in expression of several metabolism genes, the Psa fimbrial genes, quorum sensing-related genes, transcription regulation genes, and stress response genes were evident during flea infection. IMPORTANCE Y. pestis emerged as a highly virulent, arthropod-transmitted pathogen on the basis of relatively few and discrete genetic changes from Y. pseudotuberculosis. Parallel comparisons of the in vitro and in vivo transcriptomes of Y. pestis and two Y. pseudotuberculosis variants that produce a nontransmissible infection and a transmissible infection of the flea vector, respectively, provided insights into how Y. pestis has adapted to life in its flea vector and point to evolutionary changes in the regulation of metabolic and biofilm development pathways in these two closely related species.
Collapse
|
14
|
Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260. [PMID: 30109217 PMCID: PMC6079546 DOI: 10.3389/fcimb.2018.00260] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
McQuade R, Stock SP. Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond. INSECTS 2018; 9:insects9020068. [PMID: 29921761 PMCID: PMC6023292 DOI: 10.3390/insects9020068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms for secreting such proteins. In this review, we summarize the major protein secretion systems and discuss examples of secreted proteins that contribute to the virulence of a variety of Gram-negative entomopathogenic bacteria, including Photorhabdus, Xenorhabdus, Serratia, Yersinia, and Pseudomonas species. We also briefly summarize two classes of exported protein complexes, the PVC-like elements, and the Tc toxin complexes that were first described in entomopathogenic bacteria.
Collapse
Affiliation(s)
- Rebecca McQuade
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA.
| | - S Patricia Stock
- Department of Entomology and School of Animal and Comparative Biomedical Sciences, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA.
| |
Collapse
|
16
|
Merkley ED, Sego LH, Lin A, Leiser OP, Kaiser BLD, Adkins JN, Keim PS, Wagner DM, Kreuzer HW. Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague. PLoS One 2017; 12:e0183478. [PMID: 28854255 PMCID: PMC5576697 DOI: 10.1371/journal.pone.0183478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 08/05/2017] [Indexed: 11/19/2022] Open
Abstract
The rapid pace of bacterial evolution enables organisms to adapt to the laboratory environment with repeated passage and thus diverge from naturally-occurring environmental ("wild") strains. Distinguishing wild and laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to convergent phenotypes, difficulty in detecting certain types of mutations, or perhaps because some adaptive modifications are epigenetic. Monitoring protein abundance, a molecular measure of phenotype, can overcome some of these difficulties. We have assembled a collection of Yersinia pestis proteomics datasets from our own published and unpublished work, and from a proteomics data archive, and demonstrated that protein abundance data can clearly distinguish laboratory-adapted from wild. We developed a lasso logistic regression classifier that uses binary (presence/absence) or quantitative protein abundance measures to predict whether a sample is laboratory-adapted or wild that proved to be ~98% accurate, as judged by replicated 10-fold cross-validation. Protein features selected by the classifier accord well with our previous study of laboratory adaptation in Y. pestis. The input data was derived from a variety of unrelated experiments and contained significant confounding variables. We show that the classifier is robust with respect to these variables. The methodology is able to discover signatures for laboratory facility and culture medium that are largely independent of the signature of laboratory adaptation. Going beyond our previous laboratory evolution study, this work suggests that proteomic differences between laboratory-adapted and wild Y. pestis are general, potentially pointing to a process that could apply to other species as well. Additionally, we show that proteomics datasets (even archived data collected for different purposes) contain the information necessary to distinguish wild and laboratory samples. This work has clear applications in biomarker detection as well as biodefense.
Collapse
Affiliation(s)
- Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Landon H. Sego
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Owen P. Leiser
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
17
|
Dutta SK, Yao Y, Marassi FM. Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 2017; 121:7561-7570. [PMID: 28726410 DOI: 10.1021/acs.jpcb.7b03941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yersinia pestis the causative agent of plague, is highly pathogenic and poses very high risk to public health. The outer membrane protein Ail (Adhesion invasion locus) is one of the most highly expressed proteins on the cell surface of Y. pestis, and a major target for the development of medical countermeasures. Ail is essential for microbial virulence and is critical for promoting the survival of Y. pestis in serum. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but the protein's activity is influenced by the detergents in these samples, underscoring the importance of the surrounding environment for structure-activity studies. Here we describe the backbone structure of Ail, determined in lipid bilayer nanodiscs, using solution NMR spectroscopy. We also present solid-state NMR data obtained for Ail in membranes containing lipopolysaccharide (LPS), a major component of the bacterial outer membranes. The protein in lipid bilayers, adopts the same eight-stranded β-barrel fold observed in the crystalline and micellar states. The membrane composition, however, appears to have a marked effect on protein dynamics, with LPS enhancing conformational order and slowing down the 15N transverse relaxation rate. The results provide information about the way in which an outer membrane protein inserts and functions in the bacterial membrane.
Collapse
Affiliation(s)
- Samit Kumar Dutta
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yong Yao
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Francesca M Marassi
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Abstract
Bacterial type VI secretion systems (T6SSs) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the 10 years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. Researchers in the field are beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this article, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria.
Collapse
|
19
|
Huang Y, Du P, Zhao M, Liu W, Du Y, Diao B, Li J, Kan B, Liang W. Functional Characterization and Conditional Regulation of the Type VI Secretion System in Vibrio fluvialis. Front Microbiol 2017; 8:528. [PMID: 28424671 PMCID: PMC5371669 DOI: 10.3389/fmicb.2017.00528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogen of increasing public health concern. The mechanism(s) that contribute to the bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SSs) are known to contribute to bacterial pathogenicity by exerting toxic effects on host cells or competing bacterial species. In this study, we characterized the genetic organization and prevalence of two T6SS gene clusters (VflT6SS1 and VflT6SS2) in V. fluvialis. VflT6SS2 harbors three “orphan” hcp-vgrG modules and was more prevalent than VflT6SS1 in our isolates. We showed that VflT6SS2 is functionally active under low (25°C) and warm (30°C) temperatures by detecting the secretion of a T6SS substrate, Hcp. This finding suggests that VflT6SS2 may play an important role in the survival of the bacterium in the aquatic environment. The secretion of Hcp is growth phase-dependent and occurs in a narrow range of the growth phase (OD600 from 1.0 to 2.0). Osmolarity also regulates the function of VflT6SS2, as evidenced by our finding that increasing salinity (from 170 to 855 mM of NaCl) and exposure to high osmolarity KCl, sucrose, trehalose, or mannitol (equivalent to 340 mM of NaCl) induced significant secretion of Hcp under growth at 30°C. Furthermore, we found that although VflT6SS2 was inactive at a higher temperature (37°C), it became activated at this temperature if higher salinity conditions were present (from 513 to 855 mM of NaCl), indicating that it may be able to function under certain conditions in the infected host. Finally, we showed that the functional expression of VflT6SS2 is associated with anti-bacterial activity. This activity is Hcp-dependent and requires vasH, a transcriptional regulator of T6SS. In sum, our study demonstrates that VflT6SS2 provides V. fluvialis with an enhanced competitive fitness in the marine environment, and its activity is regulated by environmental signals, such as temperature and osmolarity.
Collapse
Affiliation(s)
- Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical UniversityBeijing, China
| | - Meng Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Wei Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Yu Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| |
Collapse
|
20
|
Tao Z, Zhou T, Zhou S, Wang G. Temperature-regulated expression of type VI secretion systems in fish pathogen Pseudomonas plecoglossicida revealed by comparative secretome analysis. FEMS Microbiol Lett 2016; 363:fnw261. [PMID: 27974393 DOI: 10.1093/femsle/fnw261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/10/2016] [Accepted: 11/10/2016] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative fish pathogen. Recent studies showed that P. plecoglossicida infection in fish was associated with temperature. The aim of this study was to compare the secretomes of P. plecoglossicida cultured in vitro at representative temperatures for pathogenic (20°C) and less pathogenic (30°C) phenotypes. Thirteen proteins in the culture supernatants of P. plecoglossicida showed significant difference in abundance at 20 vs. 30°C. Four proteins were strongly increased at 20°C, including two hemolysin co-regulated proteins (Hcp) that are part of the bacterial type VI secretion system (T6SS), flagellin and an unknown protein. Immunoblot analysis verified the induced secretion of Hcps at 20°C. Furthermore, the upregulation of Hcps at 20°C was confirmed at transcriptional level by RT-qPCR analysis, which also demonstrated the induction of expression of other T6SS-related genes at 20°C. Taken together, we demonstrate the presence of two functionally active T6SS proteins in fish pathogenic P. plecoglossicida strains, as evidenced by the secretion of the T6SS substrate Hcp, the production of which were found to be controlled by temperature. Our findings also support efforts to develop vaccines targeting secreted virulence factors as prophylactic strategies for diseases in fish caused by P. plecoglossicida.
Collapse
Affiliation(s)
- Zhen Tao
- School of Marine Science, Ningbo University, 818 Feng-Hua Road, Ningbo, Zhejiang 315211, China
| | - Tao Zhou
- School of Marine Science, Ningbo University, 818 Feng-Hua Road, Ningbo, Zhejiang 315211, China
| | - Suming Zhou
- School of Marine Science, Ningbo University, 818 Feng-Hua Road, Ningbo, Zhejiang 315211, China
| | - Guoliang Wang
- School of Marine Science, Ningbo University, 818 Feng-Hua Road, Ningbo, Zhejiang 315211, China
| |
Collapse
|
21
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Alugubelly N, Hercik K, Kibler P, Nanduri B, Edelmann MJ. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:562-9. [PMID: 26854600 DOI: 10.1016/j.bbapap.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Collapse
Affiliation(s)
- Navatha Alugubelly
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Kamil Hercik
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Peter Kibler
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Nieckarz M, Raczkowska A, Dębski J, Kistowski M, Dadlez M, Heesemann J, Rossier O, Brzostek K. Impact of OmpR on the membrane proteome of Yersinia enterocolitica in different environments: repression of major adhesin YadA and heme receptor HemR. Environ Microbiol 2016; 18:997-1021. [PMID: 26627632 DOI: 10.1111/1462-2920.13165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023]
Abstract
Enteropathogenic Yersinia enterocolitica is able to grow within or outside the mammalian host. Previous transcriptomic studies have indicated that the regulator OmpR plays a role in the expression of hundreds of genes in enterobacteria. Here, we have examined the impact of OmpR on the production of Y. enterocolitica membrane proteins upon changes in temperature, osmolarity and pH. Proteomic analysis indicated that the loss of OmpR affects the production of 120 proteins, a third of which are involved in uptake/transport, including several that participate in iron or heme acquisition. A set of proteins associated with virulence was also affected. The influence of OmpR on the abundance of adhesin YadA and heme receptor HemR was examined in more detail. OmpR was found to repress YadA production and bind to the yadA promoter, suggesting a direct regulatory effect. In contrast, the repression of hemR expression by OmpR appears to be indirect. These findings provide new insights into the role of OmpR in remodelling the cell surface and the adaptation of Y. enterocolitica to different environmental niches, including the host.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Kistowski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Michał Dadlez
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, Warsaw, 02-106, Poland.,Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Jürgen Heesemann
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Ombeline Rossier
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University, Pettenkoferstrasse 9a, Munich, 80336, Germany
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
24
|
Yang R, Motin VL. Yersinia pestis in the Age of Big Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:257-272. [PMID: 27722866 DOI: 10.1007/978-94-024-0890-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
As omics-driven technologies developed rapidly, genomics, transcriptomics, proteomics, metabolomics and other omics-based data have been accumulated in unprecedented speed. Omics-driven big data in biology have changed our way of research. "Big science" has promoted our understanding of biology in a holistic overview that is impossibly achieved by traditional hypothesis-driven research. In this chapter, we gave an overview of omics-driven research on Y. pestis, provided a way of thinking on Yersinia pestis research in the age of big data, and made some suggestions to integrate omics-based data for systems understanding of Y. pestis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, No. Dongdajie, Fengtai, Beijing, 100071, China.
| | - Vladimir L Motin
- Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
25
|
Leiser OP, Merkley ED, Clowers BH, Deatherage Kaiser BL, Lin A, Hutchison JR, Melville AM, Wagner DM, Keim PS, Foster JT, Kreuzer HW. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS One 2015; 10:e0142997. [PMID: 26599979 PMCID: PMC4658026 DOI: 10.1371/journal.pone.0142997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.
Collapse
Affiliation(s)
- Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99354, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Janine R. Hutchison
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
- * E-mail:
| |
Collapse
|
26
|
Song Y, Xiao X, Li C, Wang T, Zhao R, Zhang W, Zhang L, Wang Y, Shen X. The dual transcriptional regulator RovM regulates the expression of AR3- and T6SS4-dependent acid survival systems in response to nutritional status in Yersinia pseudotuberculosis. Environ Microbiol 2015; 17:4631-45. [PMID: 26234561 DOI: 10.1111/1462-2920.12996] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 12/01/2022]
Abstract
Coordinated regulation of various acid survival systems in response to environmental stimuli is crucial for the adaptation of enteropathogenic bacteria to acidic environments such as the stomach. In this study, we demonstrated that the RovM protein, a central regulator of the CsrABC-RovM-RovA cascade, conversely regulates the expression of two acid survival systems in Yersinia pseudotuberculosis by acting as a dual transcriptional regulator. RovM activated the expression of T6SS4, which is essential for bacterial survival under mild acidic conditions, by binding upstream of the T6SS4 promoter. On the contrary, RovM repressed the expression of a functional arginine-dependent acid resistance system (AR3), which is crucial for bacterial survival under strong acidic conditions, by directly binding to the -35 element in the AR3 promoter. Consistent with previous findings that rovM expression responds to the availability of nutrients, the expression of T6SS4 and AR3 was differentially regulated by nutritional status. Based on these results, a dynamic model whereby RovM coordinately regulates the expression of AR3 and T6SS4 in response to the availability of nutrients in the environment was proposed.
Collapse
Affiliation(s)
- Yunhong Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruoxi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
27
|
Craney A, Romesberg FE. The inhibition of type I bacterial signal peptidase: Biological consequences and therapeutic potential. Bioorg Med Chem Lett 2015; 25:4761-4766. [PMID: 26276537 DOI: 10.1016/j.bmcl.2015.07.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
The general secretory pathway has long been regarded as a potential antibiotic drug target. In particular, bacterial type I signal peptidase (SPase) is emerging as a strong candidate for therapeutic use. In this review, we focus on the information gained from the use of SPase inhibitors as probes of prokaryote biology. A thorough understanding of the consequences of SPase inhibition and the mechanisms of resistance that arise are essential to the success of SPase as an antibiotic target. In addition to the role of SPase in processing secreted proteins, the use of SPase inhibitors has elucidated a previously unknown function for SPase in regulating cleavage events of membrane proteins.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Wong J, Chen Y, Gan YH. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe 2015; 18:38-48. [PMID: 26094804 DOI: 10.1016/j.chom.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
Abstract
Type VI secretion systems (T6SSs) are major virulence mechanisms in many Gram-negative bacteria, but the physiological signals that activate them are not well understood. The T6SS1 of Burkholderia pseudomallei is essential for pathogenesis in mammalian hosts and is only expressed when the bacterium is intracellular. We found that signals for T6SS1 activation reside in the host cytosol. Through site-directed mutagenesis and biochemical studies, we identified low molecular weight thiols, particularly glutathione, as the signal sensed by a periplasmic cysteine residue (C62) on the histidine kinase sensor VirA. Upon glutathione exposure, dimeric VirA is converted to monomers via reduction at C62. When glutathione in the host was depleted, T6SS1 expression was abrogated, and bacteria could no longer induce multinucleate giant cell formation, the hallmark of T6SS1 function. Therefore, intracellular bacteria exploit the abundance of glutathione in host cytosol as a signal for expression of virulence at the appropriate time and place.
Collapse
Affiliation(s)
- Jocelyn Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
29
|
Origins of Yersinia pestis sensitivity to the arylomycin antibiotics and the inhibition of type I signal peptidase. Antimicrob Agents Chemother 2015; 59:3887-98. [PMID: 25896690 DOI: 10.1128/aac.00181-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/10/2015] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis is the etiologic agent of the plague. Reports of Y. pestis strains that are resistant to each of the currently approved first-line and prophylactic treatments point to the urgent need to develop novel antibiotics with activity against the pathogen. We previously reported that Y. pestis strain KIM6+, unlike most Enterobacteriaceae, is susceptible to the arylomycins, a novel class of natural-product lipopeptide antibiotics that inhibit signal peptidase I (SPase). In this study, we show that the arylomycin activity is conserved against a broad range of Y. pestis strains and confirm that it results from the inhibition of SPase. We next investigated the origins of this unique arylomycin sensitivity and found that it does not result from an increased affinity of the Y. pestis SPase for the antibiotic and that alterations to each component of the Y. pestis lipopolysaccharide-O antigen, core, and lipid A-make at most only a small contribution. Instead, the origins of the sensitivity can be traced to an increased dependence on SPase activity that results from high levels of protein secretion under physiological conditions. These results highlight the potential of targeting protein secretion in cases where there is a heavy reliance on this process and also have implications for the development of the arylomycins as an antibiotic with activity against Y. pestis and potentially other Gram-negative pathogens.
Collapse
|
30
|
Proteotyping: Proteomic characterization, classification and identification of microorganisms--A prospectus. Syst Appl Microbiol 2015; 38:246-57. [PMID: 25933927 DOI: 10.1016/j.syapm.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
Modern microbial systematics requires a range of methodologies for the comprehensive characterization, classification and identification of microorganisms. While whole-genome sequences provide the ultimate reference for defining microbial phylogeny and taxonomy, selected biomarker-based strategies continue to provide the means for the bulk of microbial systematic studies. Proteomics, the study of the expression of genes, as well as the structure and function of the resulting proteins, offers indirect measures of genome sequence data. Recent developments in applications of proteomics for analyzing microorganisms have paralleled the growing microbial genome sequence database, as well as the evolution of mass spectrometry (MS) instrumentation and bioinformatics. MALDI-TOF MS, which generates proteomic mass patterns for 'fingerprint'-based characterizations, has provided a marked breakthrough for microbial identification. However, MALDI-TOF MS is limited in the number of targets that can be detected for strain characterization. Advanced methods of tandem mass spectrometry, in which proteins and peptides generated from proteins, are characterized and identified, using LC-MS/MS, provide the ability to detect hundreds or thousands of expressed microbial strain markers for high-resolution characterizations and identifications. Model studies demonstrate the application of proteomics-based analyses for bacterial species- and strain-level detection and identification and for characterization of environmentally relevant, metabolically diverse bacteria. Proteomics-based approaches represent an emerging complement to traditional methods of characterizing microorganisms, enabling the elucidation of the expressed biomarkers of genome sequence information, which can be applied to 'proteotyping' applications of microorganisms at all taxonomic levels.
Collapse
|
31
|
Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element. Proc Natl Acad Sci U S A 2015; 112:4104-9. [PMID: 25787256 DOI: 10.1073/pnas.1501574112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Symbiosis islands are integrative and conjugative mobile genetic elements that convert nonsymbiotic rhizobia into nitrogen-fixing symbionts of leguminous plants. Excision of the Mesorhizobium loti symbiosis island ICEMlSym(R7A) is indirectly activated by quorum sensing through TraR-dependent activation of the excisionase gene rdfS. Here we show that a +1 programmed ribosomal frameshift (PRF) fuses the coding sequences of two TraR-activated genes, msi172 and msi171, producing an activator of rdfS expression named Frameshifted excision activator (FseA). Mass-spectrometry and mutational analyses indicated that the PRF occurred through +1 slippage of the tRNA(phe) from UUU to UUC within a conserved msi172-encoded motif. FseA activated rdfS expression in the absence of ICEMlSym(R7A), suggesting that it directly activated rdfS transcription, despite being unrelated to any characterized DNA-binding proteins. Bacterial two-hybrid and gene-reporter assays demonstrated that FseA was also bound and inhibited by the ICEMlSym(R7A)-encoded quorum-sensing antiactivator QseM. Thus, activation of ICEMlSym(R7A) excision is counteracted by TraR antiactivation, ribosomal frameshifting, and FseA antiactivation. This robust suppression likely dampens the inherent biological noise present in the quorum-sensing autoinduction circuit and ensures that ICEMlSym(R7A) transfer only occurs in a subpopulation of cells in which both qseM expression is repressed and FseA is translated. The architecture of the ICEMlSym(R7A) transfer regulatory system provides an example of how a set of modular components have assembled through evolution to form a robust genetic toggle that regulates gene transcription and translation at both single-cell and cell-population levels.
Collapse
|
32
|
Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 2015; 83:1318-38. [PMID: 25605764 DOI: 10.1128/iai.02778-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.
Collapse
|
33
|
Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One 2014; 9:e107002. [PMID: 25198697 PMCID: PMC4157834 DOI: 10.1371/journal.pone.0107002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022] Open
Abstract
Many Gram-negative bacteria produce outer membrane vesicles (OMVs) during cell growth and division, and some bacterial pathogens deliver virulence factors to the host via the release of OMVs during infection. Here we show that Yersinia pestis, the causative agent of the disease plague, produces and releases native OMVs under physiological conditions. These OMVs, approximately 100 nm in diameter, contain multiple virulence-associated outer membrane proteins including the adhesin Ail, the F1 outer fimbrial antigen, and the protease Pla. We found that OMVs released by Y. pestis contain catalytically active Pla that is competent for plasminogen activation and α2-antiplasmin degradation. The abundance of OMV-associated proteins released by Y. pestis is significantly elevated at 37°C compared to 26°C and is increased in response to membrane stress and mutations in RseA, Hfq, and the major Braun lipoprotein (Lpp). In addition, we show that Y. pestis OMVs are able to bind to components of the extracellular matrix such as fibronectin and laminin. These data suggest that Y. pestis may produce OMVs during mammalian infection and we propose that dispersal of Pla via OMV release may influence the outcome of infection through interactions with Pla substrates such as plasminogen and Fas ligand.
Collapse
|
34
|
Salomon D, Klimko JA, Orth K. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. MICROBIOLOGY-SGM 2014; 160:1867-1873. [PMID: 24987102 DOI: 10.1099/mic.0.080028-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The marine bacterium Vibrio parahaemolyticus, a major cause of food-borne gastroenteritis, employs a type VI secretion system 1 (T6SS1), a recently discovered protein secretion system, to combat competing bacteria. Environmental signals such as temperature, salinity, cell density and surface sensing, as well as the quorum-sensing master regulator OpaR, were previously reported to regulate T6SS1 activity and expression. In this work, we set out to identify additional transcription regulators that control the tightly regulated T6SS1 activity. To this end, we determined the effect of deletions in several known virulence regulators and in two regulators encoded within the T6SS1 gene cluster on expression and secretion of the core T6SS component Hcp1 and on T6SS1-mediated anti-bacterial activity. We report that VP1391 and VP1407, transcriptional regulators encoded within the T6SS1 gene cluster, are essential for T6SS1 activity. Moreover, we found that H-NS, a bacterial histone-like nucleoid structuring protein, which mediates transcription silencing of horizontally acquired genes, serves as a repressor of T6SS1. We also show that activation of surface sensing and high salt conditions alleviate the H-NS-mediated repression. Our results shed light on the complex network of environmental signals and transcription regulators that govern the tight regulation over T6SS1 activity.
Collapse
Affiliation(s)
- Dor Salomon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - John A Klimko
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| |
Collapse
|
35
|
Ho DK, Skurnik M, Blom AM, Meri S. Yersinia pestis Ail recruitment of C4b-binding protein leads to factor I-mediated inactivation of covalently and noncovalently bound C4b. Eur J Immunol 2014; 44:742-51. [PMID: 24760758 DOI: 10.1002/eji.201343552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 10/10/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
The outer membrane protein Ail of Yersinia pestis mediates several virulence functions, including serum resistance. Here, we demonstrate that Ail binds C4b-binding protein (C4BP), the primary fluid-phase regulator of the classical and lectin pathways. Non-covalent binding of C4 and C4b to Ail was also observed. C4BP bound to Ail can act as a cofactor to the serine protease factor I (fI) in the cleavage of fluid-phase C4b. Employing a panel of C4BP alpha-chain mutants, we observed that the absence of complement control protein domain 6 and 8 reduced binding to Ail. Immunoblot analysis of normal human serum (NHS)-treated bacteria revealed minimal C4b alpha'-chain complexes with bacterial outer membrane targets. Addition of the anti-C4BP monoclonal antibody MK104 to NHS restored C4b-alpha' chain target complexes, suggesting that C4b binds covalently to targets on the Y. pestis surface. C4b bound to Ail noncovalently was also cleaved in a C4BP and fI-dependent manner, leaving the C4c fragment bound to Ail. MK104 also prevented the cleavage of noncovalently bound C4b. Collectively, these data suggest that when C4BP is bound to Ail, fI can cleave and inactivate C4b that has bound covalently to bacterial surface structures as well as C4b bound noncovalently to Ail.
Collapse
Affiliation(s)
- Derek K Ho
- Immunobiology Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
36
|
Abstract
The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tao G Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Silverman JM, Agnello DM, Zheng H, Andrews BT, Li M, Catalano CE, Gonen T, Mougous JD. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol Cell 2013; 51:584-93. [PMID: 23954347 DOI: 10.1016/j.molcel.2013.07.025] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Secretion systems require high-fidelity mechanisms to discriminate substrates among the vast cytoplasmic pool of proteins. Factors mediating substrate recognition by the type VI secretion system (T6SS) of Gram-negative bacteria, a widespread pathway that translocates effector proteins into target bacterial cells, have not been defined. We report that haemolysin coregulated protein (Hcp), a ring-shaped hexamer secreted by all characterized T6SSs, binds specifically to cognate effector molecules. Electron microscopy analysis of an Hcp-effector complex from Pseudomonas aeruginosa revealed the effector bound to the inner surface of Hcp. Further studies demonstrated that interaction with the Hcp pore is a general requirement for secretion of diverse effectors encompassing several enzymatic classes. Though previous models depict Hcp as a static conduit, our data indicate it is a chaperone and receptor of substrates. These unique functions of a secreted protein highlight fundamental differences between the export mechanism of T6 and other characterized secretory pathways.
Collapse
Affiliation(s)
- Julie M Silverman
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Expression of a Yersinia pseudotuberculosis Type VI Secretion System Is Responsive to Envelope Stresses through the OmpR Transcriptional Activator. PLoS One 2013; 8:e66615. [PMID: 23840509 PMCID: PMC3686713 DOI: 10.1371/journal.pone.0066615] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/07/2013] [Indexed: 01/06/2023] Open
Abstract
The Type VI secretion system (T6SS) is a macromolecular complex widespread in Gram-negative bacteria. Although several T6SS are required for virulence towards host models, most are necessary to eliminate competitor bacteria. Other functions, such as resistance to amoeba predation, biofilm formation or adaptation to environmental conditions have also been reported. This multitude of functions is reflected by the large repertoire of regulatory mechanisms shown to control T6SS expression, production or activation. Here, we demonstrate that one T6SS gene cluster encoded within the Yersinia pseudotuberculosis genome, T6SS-4, is regulated by OmpR, the response regulator of the two-component system EnvZ-OmpR. We first identified OmpR in a transposon mutagenesis screen. OmpR does not control the expression of the four other Y. pseudotuberculosis T6SS gene clusters and of an isolated vgrG gene, and responds to osmotic stresses to bind to and activate the T6SS-4 promoter. Finally, we show that T6SS-4 promotes Y. pseudotuberculosis survival in high osmolarity conditions and resistance to deoxycholate.
Collapse
|
39
|
Larson MA, Ding SJ, Slater SR, Hanway A, Bartling AM, Fey PD, Lockridge O, Francesconi SC, Hinrichs SH. Application of chromosomal DNA and protein targeting for the identification ofYersinia pestis. Proteomics Clin Appl 2013; 7:416-23. [DOI: 10.1002/prca.201200092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/12/2012] [Accepted: 12/01/2012] [Indexed: 01/05/2023]
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shi-Jian Ding
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Shawn R. Slater
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Anna Hanway
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Amanda M. Bartling
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Paul D. Fey
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| | - Oksana Lockridge
- Eppley Institute; University of Nebraska Medical Center; Omaha; NE; USA
| | | | - Steven H. Hinrichs
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha; NE; USA
| |
Collapse
|
40
|
Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013; 62:663-676. [PMID: 23429693 DOI: 10.1099/jmm.0.053983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.
Collapse
Affiliation(s)
- Sarah T Miyata
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
41
|
The type VI secretion system encoded in Salmonella pathogenicity island 19 is required for Salmonella enterica serotype Gallinarum survival within infected macrophages. Infect Immun 2013; 81:1207-20. [PMID: 23357385 DOI: 10.1128/iai.01165-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells.
Collapse
|
42
|
Abstract
Synthesis of Escherichia coli LpxL, which transfers a secondary laurate chain to the 2' position of lipid A, in Yersinia pestis produced bisphosphoryl hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Our previous observations also indicated that strain χ10015(pCD1Ap) (ΔlpxP32::P(lpxL) lpxL) stimulated a strong inflammatory reaction but sickened mice before recovery and retained virulence via intranasal (i.n.) infection. The development of live, attenuated Y. pestis vaccines may be facilitated by detoxification of its lipopolysaccharide (LPS). Heterologous expression of the lipid A 1-phosphatase, LpxE, from Francisella tularensis in Y. pestis yields predominantly 1-dephosphorylated lipid A, as confirmed by mass spectrometry. Results indicated that expression of LpxE on top of LpxL provided no significant reduction in virulence of Y. pestis in mice when it was administered i.n. but actually reduced the 50% lethal dose (LD(50)) by 3 orders of magnitude when the strain was administered subcutaneously (s.c.). Additionally, LpxE synthesis in wild-type Y. pestis KIM6+(pCD1Ap) led to slight attenuation by s.c. inoculation but no virulence change by i.n. inoculation in mice. In contrast to Salmonella enterica, expression of LpxE does not attenuate the virulence of Y. pestis.
Collapse
|
43
|
Alavi P, Starcher MR, Zachow C, Müller H, Berg G. Root-microbe systems: the effect and mode of interaction of Stress Protecting Agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). FRONTIERS IN PLANT SCIENCE 2013; 4:141. [PMID: 23717321 PMCID: PMC3653106 DOI: 10.3389/fpls.2013.00141] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/25/2013] [Indexed: 05/08/2023]
Abstract
Stenotrophomonas rhizophila has great potential for applications in biotechnology and biological control due to its ability to both promote plant growth and protect roots against biotic and a-biotic stresses, yet little is known about the mode of interactions in the root-environment system. We studied mechanisms associated with osmotic stress using transcriptomic and microscopic approaches. In response to salt or root extracts, the transcriptome of S. rhizophila DSM14405(T) changed drastically. We found a notably similar response for several functional gene groups responsible for general stress protection, energy production, and cell motility. However, unique changes in the transcriptome were also observed: the negative regulation of flagella-coding genes together with the up-regulation of the genes responsible for biofilm formation and alginate biosynthesis were identified as a single mechanism of S. rhizophila DSM14405(T) against salt shock. However, production and excretion of glucosylglycerol (GG) were found as a remarkable mechanism for the stress protection of this Stenotrophomonas strain. For S. rhizophila treated with root exudates, the shift from the planktonic lifestyle to a sessile one was measured as expressed in the down-regulation of flagellar-driven motility. These findings fit well with the observed positive regulation of host colonization genes and microscopic images that show different colonization patterns of oilseed rape roots. Spermidine, described as a plant growth regulator, was also newly identified as a protector against stress. Overall, we identified mechanisms of Stenotrophomonas to protect roots against osmotic stress in the environment. In addition to both the changes in life style and energy metabolism, phytohormons, and osmoprotectants were also found to play a key role in stress protection.
Collapse
Affiliation(s)
- Peyman Alavi
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Margaret R. Starcher
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | | | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
- *Correspondence: Gabriele Berg, Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria. e-mail:
| |
Collapse
|
44
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang W, Wang Y, Song Y, Wang T, Xu S, Peng Z, Lin X, Zhang L, Shen X. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 2012; 15:557-69. [PMID: 23094603 DOI: 10.1111/1462-2920.12005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 09/23/2012] [Indexed: 12/22/2022]
Abstract
Type VI secretion systems (T6SSs) which widely distributed in Gram-negative bacteria have been primarily studied in the context of cell interactions with eukaryotic hosts or other bacteria. We have recently identified a thermoregulated T6SS4 in the enteric pathogen Yersinia pseudotuberculosis. Here we report that OmpR directly binds to the promoter of T6SS4 operon and regulates its expression. Further, we observed that the OmpR-regulated T6SS4 is essential for bacterial survival under acidic conditions and that its expression is induced by low pH. Moreover, we showed that T6SS4 plays a role in pumping H(+) out of the cell to maintain intracellular pH homeostasis. The acid tolerance phenotype of T6SS4 is dependent on the ATPase activity of ClpV4, one of the components of T6SS4. These results not only uncover a novel strategy utilized by Y. pseudotuberculosis for acid resistance, but also reveal that T6SS, a bacteria secretion system known to be functional in protein transportation has an unexpected function in H(+) extrusion under acid conditions.
Collapse
Affiliation(s)
- Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kolodziejek AM, Hovde CJ, Minnich SA. Yersinia pestis Ail: multiple roles of a single protein. Front Cell Infect Microbiol 2012; 2:103. [PMID: 22919692 PMCID: PMC3417512 DOI: 10.3389/fcimb.2012.00103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/14/2012] [Indexed: 01/03/2023] Open
Abstract
Yersinia pestis is one of the most virulent bacteria identified. It is the causative agent of plague—a systemic disease that has claimed millions of human lives throughout history. Y. pestis survival in insect and mammalian host species requires fine-tuning to sense and respond to varying environmental cues. Multiple Y. pestis attributes participate in this process and contribute to its pathogenicity and highly efficient transmission between hosts. These include factors inherited from its enteric predecessors; Y. enterocolitica and Y. pseudotuberculosis, as well as phenotypes acquired or lost during Y. pestis speciation. Representatives of a large Enterobacteriaceae Ail/OmpX/PagC/Lom family of outer membrane proteins (OMPs) are found in the genomes of all pathogenic Yersiniae. This review describes the current knowledge regarding the role of Ail in Y. pestis pathogenesis and virulence. The pronounced role of Ail in the following areas are discussed (1) inhibition of the bactericidal properties of complement, (2) attachment and Yersinia outer proteins (Yop) delivery to host tissue, (3) prevention of PMNL recruitment to the lymph nodes, and (4) inhibition of the inflammatory response. Finally, Ail homologs in Y. enterocolitica and Y. pseudotuberculosis are compared to illustrate differences that may have contributed to the drastic bacterial lifestyle change that shifted Y. pestis from an enteric to a vector-born systemic pathogen.
Collapse
Affiliation(s)
- Anna M Kolodziejek
- School of Food Science, University of Idaho Moscow, ID, USA. akolodziejek@ vandals.uidaho.edu
| | | | | |
Collapse
|
47
|
Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT. Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012; 8:e1002784. [PMID: 22792073 PMCID: PMC3390384 DOI: 10.1371/journal.pgen.1002784] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022] Open
Abstract
We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45–52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire. We sequenced the genomes of seven strains of the Pseudomonas fluorescens group that colonize plant surfaces and function as biological control agents, protecting plants from disease. In this study, we demonstrated the genomic diversity of the group by comparing these strains to each other and to three other strains that were sequenced previously. Only about half of the genes in each strain are present in all of the other strains, and each strain has hundreds of unique genes that are not present in the other genomes. We mapped the genes that contribute to biological control in each genome and found that most of the biological control genes are in the variable regions of the genome, which are not shared by all of the other strains. This finding is consistent with our knowledge of the distinctive biology of each strain. Finally, we looked for new genes that are likely to confer antimicrobial traits needed to suppress plant pathogens, but have not been identified previously. In each genome, we discovered many of these new genes, which provide avenues for future discovery of new traits with the potential to manage plant diseases in agriculture or natural ecosystems.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, Corvallis, Oregon, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 2012; 19:1672-82. [PMID: 22078566 DOI: 10.1016/j.str.2011.08.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 12/24/2022]
Abstract
Ail is an outer membrane protein from Yersinia pestis that is highly expressed in a rodent model of bubonic plague, making it a good candidate for vaccine development. Ail is important for attaching to host cells and evading host immune responses, facilitating rapid progression of a plague infection. Binding to host cells is important for injection of cytotoxic Yersinia outer proteins. To learn more about how Ail mediates adhesion, we solved two high-resolution crystal structures of Ail, with no ligand bound and in complex with a heparin analog called sucrose octasulfate. We identified multiple adhesion targets, including laminin and heparin, and showed that a 40 kDa domain of laminin called LG4-5 specifically binds to Ail. We also evaluated the contribution of laminin to delivery of Yops to HEp-2 cells. This work constitutes a structural description of how a bacterial outer membrane protein uses a multivalent approach to bind host cells.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-8030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol 2011; 194:379-90. [DOI: 10.1007/s00203-011-0780-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/03/2011] [Indexed: 11/25/2022]
|
50
|
Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 2011; 80:575-84. [PMID: 22083711 DOI: 10.1128/iai.05510-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The most recently discovered secretion pathway in gram-negative bacteria, the type VI secretion system (T6SS), is present in many species and is considered important for the survival of non-O1 non-O139 Vibrio cholerae in aquatic environments. Until now, it was not known whether there is a functionally active T6SS in wild-type V. cholerae O1 strains, the cause of cholera disease in humans. Here, we demonstrate the presence of a functionally active T6SS in wild-type V. cholerae O1 strains, as evidenced by the secretion of the T6SS substrate Hcp, which required several gene products encoded within the putative vas gene cluster. Our analyses showed that the T6SS of wild-type V. cholerae O1 strain A1552 was functionally activated when the bacteria were grown under high-osmolarity conditions. The T6SS was also active when the bacteria were grown under low temperature (23°C), suggesting that the system may be important for the survival of the bacterium in the environment. A test of the interbacterial virulence of V. cholerae strain A1552 against an Escherichia coli K-12 strain showed that it was strongly enhanced under high osmolarity and that it depended on the hcp genes. Interestingly, we found that the newly recognized osmoregulatory protein OscR plays a role in the regulation of T6SS gene expression and secretion of Hcp from V. cholerae O1 strains.
Collapse
|