1
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LEP. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. mBio 2024; 15:e0085224. [PMID: 39162563 PMCID: PMC11389411 DOI: 10.1128/mbio.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it can serve as a carbon source for P. aeruginosa in the diverse settings that it inhabits. In this study, we evaluate the production and use of two redundant P. aeruginosa L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and ɑ-hydroxybutyrate, which, like lactate, are ɑ-hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays reveal that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.IMPORTANCEPseudomonas aeruginosa is a major cause of lung infections in people with cystic fibrosis, of hospital-acquired infections, and of wound infections. It consumes L-lactate, which is found at substantial levels in human blood and tissues. In this study, we investigated the spatial regulation of two redundant enzymes, called LldD and LldA, which enable L-lactate metabolism in P. aeruginosa biofilms. We uncovered mechanisms and identified compounds that control the preference of P. aeruginosa for LldD versus LldA. We also showed that both enzymes contribute to its ability to survive within macrophages, a behavior that is thought to augment the chronicity and recalcitrance of infections. Our findings shed light on a key metabolic strategy used by P. aeruginosa and have the potential to inform the development of therapies targeting bacterial metabolism during infection.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Cao J, Xu A, Gao D, Gong X, Cheng L, Zhou Q, Yang T, Gong F, Liu Z, Liang H. Enhance PD/A biofilm formation via a novel biochar/tourmaline modified-biocarriers to treat low-strength contaminated surface water: Initial adhesion and high-substrate microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121803. [PMID: 39002458 DOI: 10.1016/j.jenvman.2024.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
In this work, a novel polyurethane carrier modified with biochar and tourmaline/zeolite powder at ratio of 1:1 and 1:2 was developed to promote the formation of biofilms and the synergy of overall bacterial activity for Partial Denitrification/Anammox to treat low-nitrogen contaminated surface water. Based on the batch experiment, the modified biocarrier, BTP2 (biochar: tourmaline = 2: 1), exhibited the highest total nitrogen removal efficiency (83.63%) under influent total nitrogen of 15 mg/L and COD/NO3- of 3. The dense biofilm was formed in inner side of biocarrier owing to the increased surface roughness and various functional groups suggested by scanning electron microscopy and Fourier-transform infrared analysis. The EPS content increased from 200.15 to 220.26 mg/g VSS in BTP2 system. Besides, the rapid NH4+ capture and organics release of the modified carrier fueled the growth of anammox and denitrification bacteria, with the activity of 2.13 ± 0.52 mg N/gVSS/h and 6.70 ± 0.52 mg N/gVSS/h (BTP2). High-throughput sequencing unraveled the increased abundances of Candidatus_Competibacter (0.82%), Thauera (0.60%) and Candidatus_Brocadia (0.55%) which was responsible for the synergy of incomplete reduction of NO3- to NO2- and NH4+ oxidation. Overall, this study provided a valid and simple-control guide for biofilm formation towards rapid enrichment and great collaboration of Anammox and denitrification bacteria.
Collapse
Affiliation(s)
- Jiashuo Cao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Tianfu Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Fugeng Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenkun Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
3
|
Florek LC, Lin X, Lin YC, Lin MH, Chakraborty A, Price-Whelan A, Tong L, Rahme L, Dietrich LE. The L-lactate dehydrogenases of Pseudomonas aeruginosa are conditionally regulated but both contribute to survival during macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586142. [PMID: 38562866 PMCID: PMC10983889 DOI: 10.1101/2024.03.21.586142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that thrives in environments associated with human activity, including soil and water altered by agriculture or pollution. Because L-lactate is a significant product of plant and animal metabolism, it is available to serve as a carbon source for P. aeruginosa in the diverse settings it inhabits. Here, we evaluate P. aeruginosa's production and use of its redundant L-lactate dehydrogenases, termed LldD and LldA. We confirm that the protein LldR represses lldD and identify a new transcription factor, called LldS, that activates lldA; these distinct regulators and the genomic contexts of lldD and lldA contribute to their differential expression. We demonstrate that the lldD and lldA genes are conditionally controlled in response to lactate isomers as well as to glycolate and - hydroxybutyrate, which, like lactate, are -hydroxycarboxylates. We also show that lldA is induced when iron availability is low. Our examination of lldD and lldA expression across depth in biofilms indicates a complex pattern that is consistent with the effects of glycolate production, iron availability, and cross-regulation on enzyme preference. Finally, macrophage infection assays revealed that both lldD and lldA contribute to persistence within host cells, underscoring the potential role of L-lactate as a carbon source during P. aeruginosa-eukaryote interactions. Together, these findings help us understand the metabolism of a key resource that may promote P. aeruginosa's success as a resident of contaminated environments and animal hosts.
Collapse
Affiliation(s)
- Lindsey C. Florek
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Xi Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan 112
| | - Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Laurence Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
4
|
Zhang F, Peng Y, Wang Z, Jiang H, Ren S, Qiu J. Achieving synergetic treatment of sludge supernatant, waste activated sludge and secondary effluent for wastewater treatment plants (WWTPs) sustainable development. BIORESOURCE TECHNOLOGY 2021; 337:125416. [PMID: 34320732 DOI: 10.1016/j.biortech.2021.125416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A novel process that combines partial nitrification, fermentation and Anammox-partial denitrification (NFAD) was proposed to co-treat ammonia rich sludge supernatant (NH4+-N = 1194.1 mg/L), external WAS (MLSS = 22092.6 mg/L) and WWTP secondary effluent (NO3--N = 58.6 mg/L). Three separated reactors were used for partial nitrification (PN-SBR), integrated fermentation and denitrification (IFD-SBR) and combined Anammox-partial denitrification (AD-UASB), respectively. The process resulted in excellent nitrogen removal efficiency (NRE) of 98.7%, external sludge reduction efficiency (SRE) of 44.6% and external sludge reduction rate of 4.1 kg/m3 after 200 days of continuous operation. IFD-SBR and AD-UASB contributed towards 89.4% and 9.2% nitrogen removal, respectively. In AD-UASB, cooperation between Anammox bacteria (4.1% Candidatus Brocadia) and partial denitrifying bacteria (3.2% Thauera) resulted in significant stability of Anammox pathway, which contributed up to 84.1% nitrogen removal in the combined Anammox-partial denitrification process. NFAD saved up to 100% organic resource demand and 25% of aeration consumption compared with the traditional nitrification-denitrification process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
Zhang F, Peng Y, Wang Z, Jiang H, Ren S, Qiu J. New insights into co-treatment of mature landfill leachate with municipal sewage via integrated partial nitrification, Anammox and denitratation. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125506. [PMID: 33765565 DOI: 10.1016/j.jhazmat.2021.125506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
As a low consumption and high efficiency process, Partial Nitrification-Anammox/denitratation (PNAD) was applied to co-treat mature landfill leachate with municipal sewage for 300 days. Specifically, ammonia (670.2 ± 63.7 mg N/L) contained in mature landfill leachate was firstly oxidized to nitrite (611.5 ± 28.1 mg N/L) in sequence batch reactor (SBRPN); meanwhile, organic matter in municipal sewage was partially removed in another reactor (SBROMR); finally, nitrite produced (611.5 ± 28.1 mg N/L) in SBRPN and ammonia (53.1 ± 6.4 mg N/L) residing in pretreated municipal sewage were simultaneously degraded through combined Anammox-denitratation process in an up-flow anaerobic sludge bed (UASBAD). A satisfactory effluent quality of 10.3 mg/L TN was obtained after long-term operation, with Anammox and denitrification contributing to 86.2% and 5.8% nitrogen removal efficiency, respectively. Mass balance confirmed 67.2% nitrate generated from Anammox could be reduced to nitrite and in-situ reused. Anammox bacteria genes and nitrate reductase/nitrite reductase ratio were highly detected, accelerating combined Anammox-denitratation. Further, Ca. Brocadia triumph among various Anammox bacteria groups, increasing from 1.2% (day 120) to 3.6% (day 280).
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Zhong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
6
|
Cui B, Yang Q, Liu X, Wu W, Liu Z, Gu P. Achieving partial denitrification-anammox in biofilter for advanced wastewater treatment. ENVIRONMENT INTERNATIONAL 2020; 138:105612. [PMID: 32155511 DOI: 10.1016/j.envint.2020.105612] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 02/25/2020] [Indexed: 05/14/2023]
Abstract
Recently, partial denitrification (PDN) - anaerobic ammonium oxidation (anammox) process has been widely studied in activated sludge for nitrate wastewater treatment. However, achieving PDN-Anammox in biofilter for domestic wastewater treatment was never reported. In this study, two lab-scale PDN biofilter and Anammox biofilter were built up to treat simulated domestic wastewater. The results showed that stable nitrogen removal performance was kept with averaged effluent nitrogen of 10.2 mg/L. Stable nitrite accumulation performance was achieved with low abundance of nitrite reductase gene, while influent composition influenced nitrogen transformation pathway in PDN biofilter. When treating domestic wastewater, nitrification and partial denitrification led to the higher nitrite accumulation ratio of 75.4%. The percentage contribution of anammox biofilter was 74.6% for nitrogen removal, and Candidatus Brocadia was dominant genus. After long-term operation, limited substrate concentration caused interspecific competition among various anammox bacteria, leading to an increasing proportion of Candidatus Brocadia fulgida. PDN-Anammox biofilter is a feasible process to advanced wastewater treatment, which could save aeration consumption and carbon source addition, and reduce sludge production.
Collapse
Affiliation(s)
- Bin Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Qing Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiuhong Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Wenjun Wu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Zhibin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Pengchao Gu
- Beijing Drainage Grp Co. Ltd BDG, Beijing 100022, PR China
| |
Collapse
|
7
|
Sanchez I, Hernandez-Guerrero R, Mendez-Monroy PE, Martinez-Nuñez MA, Ibarra JA, Pérez-Rueda E. Evaluation of the Abundance of DNA-Binding Transcription Factors in Prokaryotes. Genes (Basel) 2020; 11:genes11010052. [PMID: 31947717 PMCID: PMC7017128 DOI: 10.3390/genes11010052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 02/03/2023] Open
Abstract
The ability of bacteria and archaea to modulate metabolic process, defensive response, and pathogenic capabilities depend on their repertoire of genes and capacity to regulate the expression of them. Transcription factors (TFs) have fundamental roles in controlling these processes. TFs are proteins dedicated to favor and/or impede the activity of the RNA polymerase. In prokaryotes these proteins have been grouped into families that can be found in most of the different taxonomic divisions. In this work, the association between the expansion patterns of 111 protein regulatory families was systematically evaluated in 1351 non-redundant prokaryotic genomes. This analysis provides insights into the functional and evolutionary constraints imposed on different classes of regulatory factors in bacterial and archaeal organisms. Based on their distribution, we found a relationship between the contents of some TF families and genome size. For example, nine TF families that represent 43.7% of the complete collection of TFs are closely associated with genome size; i.e., in large genomes, members of these families are also abundant, but when a genome is small, such TF family sizes are decreased. In contrast, almost 102 families (56.3% of the collection) do not exhibit or show only a low correlation with the genome size, suggesting that a large proportion of duplication or gene loss events occur independently of the genome size and that various yet-unexplored questions about the evolution of these TF families remain. In addition, we identified a group of families that have a similar distribution pattern across Bacteria and Archaea, suggesting common functional and probable coevolution processes, and a group of families universally distributed among all the genomes. Finally, a specific association between the TF families and their additional domains was identified, suggesting that the families sense specific signals or make specific protein-protein contacts to achieve the regulatory roles.
Collapse
Affiliation(s)
- Israel Sanchez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Paul Erick Mendez-Monroy
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
| | - Mario Alberto Martinez-Nuñez
- Unidad Académica de Ciencias y Tecnología de Yucatán, UMDI-Sisal. Facultad de Ciencias, UNAM, Mérida C.P. 97302, Yucatán, Mexico;
| | - Jose Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México C.P. 11340, Mexico;
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida.C.P. 97302, Yucatán, Mexico; (I.S.); (R.H.-G.); (P.E.M.-M.)
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago C.P. 7500000, Chile
- Correspondence: ; Tel.: +52-9994060003 (ext. 7610)
| |
Collapse
|
8
|
Zhao Y, Feng Y, Chen L, Niu Z, Liu S. Genome-centered omics insight into the competition and niche differentiation of Ca. Jettenia and Ca. Brocadia affiliated to anammox bacteria. Appl Microbiol Biotechnol 2019; 103:8191-8202. [DOI: 10.1007/s00253-019-10040-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
9
|
Wei S, Chelliah R, Park BJ, Kim SH, Forghani F, Cho MS, Park DS, Jin YG, Oh DH. Differentiation of Bacillus thuringiensis From Bacillus cereus Group Using a Unique Marker Based on Real-Time PCR. Front Microbiol 2019; 10:883. [PMID: 31114555 PMCID: PMC6503103 DOI: 10.3389/fmicb.2019.00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/05/2019] [Indexed: 11/13/2022] Open
Abstract
The efficiency of a novel biomarker (the transcriptional regulator, XRE) was tested and evaluated in differentiating Bacillus thuringiensis from Bacillus cereus group species in environmental and spiked samples based on PCR and real-time PCR. Totally 120 strains, representing two bacterial groups, B. cereus group and non-Bacillus sp., were used to evaluate the performance of XRE and crystal protein (cry2, an existing biomarker). Further, three diverse samples (kimbap, lettuce, and spinach) were inoculated with B. thuringiensis and prominent biomarkers XRE and cry2 were used as targets. Direct analysis of the detection results for the pure cultures of B. cereus group wild-types, references and type strains revealed an accuracy rate of 97.5% targeting XRE, and 83.3% targeting cry2. The real-time PCR was constructed with a R 2-value of 0.993. For the artificially contaminated samples, a concentration of 103 CFU/g of B. thuringiensis in spiked food samples could be detected using real-time PCR targeting XRE. A good performance was obtained with XRE in discriminating B. thuringiensis from B. cereus groups, as well as detecting B. thuringiensis in spiked food samples with PCR or real-time PCR. Therefore, this real-time PCR targeting XRE can be used as a dependable and promising tool to identify B. thuringiensis in foods.
Collapse
Affiliation(s)
- Shuai Wei
- Department of Medical Biomaterials Engineering, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Byung-Jae Park
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Se-Hun Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, South Korea
| | - Fereidoun Forghani
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States
| | - Min Seok Cho
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Dong-Suk Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Yong-Guo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
10
|
Chelliah R, Wei S, Park BJ, Rubab M, Banan-Mwine Dalirii E, Barathikannan K, Jin YG, Oh DH. Whole genome sequence of Bacillus thuringiensis ATCC 10792 and improved discrimination of Bacillus thuringiensis from Bacillus cereus group based on novel biomarkers. Microb Pathog 2019; 129:284-297. [DOI: 10.1016/j.micpath.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/17/2022]
|
11
|
Abstract
The extensive use of antibiotics has resulted in a situation where multidrug-resistant pathogens have become a severe menace to human health worldwide. A deeper understanding of the principles used by pathogens to adapt to, respond to, and resist antibiotics would pave the road to the discovery of drugs with novel mechanisms. For bacteria, antibiotics represent clinically relevant stresses that induce protective responses. The recent implication of regulatory RNAs (small RNAs [sRNAs]) in antibiotic response and resistance in several bacterial pathogens suggests that they should be considered innovative drug targets. This minireview discusses sRNA-mediated mechanisms exploited by bacterial pathogens to fight against antibiotics. A critical discussion of the newest findings in the field is provided, with emphasis on the implication of sRNAs in major mechanisms leading to antibiotic resistance, including drug uptake, active drug efflux, drug target modifications, biofilms, cell walls, and lipopolysaccharide (LPS) biosynthesis. Of interest is the lack of knowledge about sRNAs implicated in Gram-positive compared to Gram-negative bacterial resistance.
Collapse
|
12
|
Duprey A, Nasser W, Léonard S, Brochier-Armanet C, Reverchon S. Transcriptional start site turnover in the evolution of bacterial paralogous genes - thepelE-pelDvirulence genes inDickeya. FEBS J 2016; 283:4192-4207. [DOI: 10.1111/febs.13921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Alexandre Duprey
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - William Nasser
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Simon Léonard
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Céline Brochier-Armanet
- CNRS, UMR5558; Laboratoire de Biométrie et Biologie Évolutive; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| | - Sylvie Reverchon
- INSA-Lyon; CNRS, UMR5240; Microbiologie, Adaptation et Pathogénie; Université Claude Bernard Lyon 1; University of Lyon; Villeurbanne France
| |
Collapse
|
13
|
Arun PVPS, Miryala SK, Chattopadhyay S, Thiyyagura K, Bawa P, Bhattacharjee M, Yellaboina S. Identification and functional analysis of essential, conserved, housekeeping and duplicated genes. FEBS Lett 2016; 590:1428-37. [PMID: 27129600 DOI: 10.1002/1873-3468.12192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
Abstract
Gene conservation, duplication and constitutive expression are intricately linked and strong predictors of essentiality. Here, we introduce metrics based on diversity indices to measure gene conservation, duplication and constitutive expression and validate them by measuring their performance in prediction of essential genes. Conservation and duplication were measured using the diversity indices on the bit score profile of Escherichia coli K12 orthologues, across the genomes, and paralogues, within the genome respectively. Constitutive expression was measured using expression diversity of E. coli K12 genes across different conditions. In addition, we developed a systematic method for enrichment analysis of gene-sets in a given ranked list of genes. The method was used to identify genome-wide functions of essential, conserved, constitutively expressed and duplicated genes. Furthermore, we also ranked various operons, complexes and pathways according to their essentiality, conservation, constitutive expression and duplication.
Collapse
Affiliation(s)
- P V Parvati Sai Arun
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Sravan Kumar Miryala
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India.,National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Subhayan Chattopadhyay
- School of Mathematics and Statistics, University of Hyderabad, Hyderabad, Telangana, India
| | - Kranthi Thiyyagura
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Payal Bawa
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| | | | - Sailu Yellaboina
- CR Rao Advanced Institute of Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Martínez-Núñez MA, Pérez-Rueda E. Do lifestyles influence the presence of promiscuous enzymes in bacteria and Archaea metabolism? ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s40508-016-0047-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Abstract
Moonlighting proteins serve one or more novel functions in addition to their canonical roles. Moonlighting functions arise when an adventitious interaction between a protein and a new partner improves fitness of the organism. Selective pressure for improvement in the new function can result in two alternative outcomes. The gene encoding the newly bifunctional protein may duplicate and diverge so as to encode two proteins, each of which serves only one function. Alternatively, genetic changes that minimize adaptive conflict between the two functions and/or improve control over the time and place at which each function is served can lead to a moonlighting protein. Importantly, genetic changes that enhance a moonlighting function can occur in the gene encoding the moonlighting protein itself, in a gene that affects the structure of its new partner or in a gene encoding a transcription factor that controls expression of either partner. The evolutionary history of each moonlighting protein is complex, depending on the stochastic occurrence of genetic changes such as gene duplication and point mutations, and the effects of those changes on fitness. Population effects, particularly loss of promising individuals due to random genetic drift, also play a role in the emergence of a moonlighting protein. The ultimate outcome is not necessarily the 'optimal' solution to the problem of serving two functions, but may be 'good enough' so that fitness becomes limited by some other function.
Collapse
Affiliation(s)
- Shelley D Copley
- *Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80027, U.S.A
| |
Collapse
|
16
|
Grilli J, Romano M, Bassetti F, Cosentino Lagomarsino M. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers. Nucleic Acids Res 2014; 42:6850-60. [PMID: 24829449 PMCID: PMC4066789 DOI: 10.1093/nar/gku378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.
Collapse
Affiliation(s)
- Jacopo Grilli
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Mariacristina Romano
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy
| | - Federico Bassetti
- Università di Pavia, Dipartimento di Matematica, via Ferrata 1, 27100 Pavia, Italy
| | - Marco Cosentino Lagomarsino
- CNRS, UMR 7238, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR 7238 Computational and Quantitative Biology, Genomic Physics Group, 15 rue de l'École de Médecine, Paris, France
| |
Collapse
|
17
|
Puggioni V, Dondi A, Folli C, Shin I, Rhee S, Percudani R. Gene Context Analysis Reveals Functional Divergence between Hypothetically Equivalent Enzymes of the Purine–Ureide Pathway. Biochemistry 2014; 53:735-45. [DOI: 10.1021/bi4010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vincenzo Puggioni
- Laboratory
of Biochemistry, Molecular Biology, and Bioinformatics, Department
of Life Sciences, University of Parma, Italy
| | - Ambra Dondi
- Laboratory
of Biochemistry, Molecular Biology, and Bioinformatics, Department
of Life Sciences, University of Parma, Italy
| | - Claudia Folli
- Department
of Food Science, University of Parma, Italy
| | - Inchul Shin
- Department
of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Sangkee Rhee
- Department
of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Riccardo Percudani
- Laboratory
of Biochemistry, Molecular Biology, and Bioinformatics, Department
of Life Sciences, University of Parma, Italy
| |
Collapse
|
18
|
Freyre-González JA, Manjarrez-Casas AM, Merino E, Martinez-Nuñez M, Perez-Rueda E, Gutiérrez-Ríos RM. Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis. BMC SYSTEMS BIOLOGY 2013; 7:127. [PMID: 24237659 PMCID: PMC4225672 DOI: 10.1186/1752-0509-7-127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/12/2013] [Indexed: 12/27/2022]
Abstract
Background The regulation of gene expression at the transcriptional level is a fundamental process in prokaryotes. Among the different kind of mechanisms modulating gene transcription, the one based on DNA binding transcription factors, is the most extensively studied and the results, for a great number of model organisms, have been compiled making it possible the in silico construction of their corresponding transcriptional regulatory networks and the analysis of the biological relationships of the components of these intricate networks, that allows to elucidate the significant aspects of their organization and evolution. Results We present a thorough review of each regulatory element that constitutes the transcriptional regulatory network of Bacillus subtilis. For facilitating the discussion, we organized the network in topological modules. Our study highlight the importance of σ factors, some of them acting as master regulators which characterize modules by inter- or intra-connecting them and play a key role in the cascades that define relevant cellular processes in this organism. We discussed that some particular functions were distributed in more than one module and that some modules contained more than one related function. We confirm that the presence of paralogous proteins confers advantages to B. subtilis to adapt and select strategies to successfully face the extreme and changing environmental conditions in which it lives. Conclusions The intricate organization is the product of a non-random network evolution that primarily follows a hierarchical organization based on the presence of transcription and σ factor, which is reflected in the connections that exist within and between modules.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Morelos 62250, México.
| | | | | | | | | | | |
Collapse
|
19
|
Martínez-Núñez MA, Poot-Hernandez AC, Rodríguez-Vázquez K, Perez-Rueda E. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes. PLoS One 2013; 8:e69707. [PMID: 23922780 PMCID: PMC3726781 DOI: 10.1371/journal.pone.0069707] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.
Collapse
Affiliation(s)
- Mario Alberto Martínez-Núñez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
- * E-mail: (MMN); (EPR)
| | - Augusto Cesar Poot-Hernandez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Katya Rodríguez-Vázquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., México
| | - Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail: (MMN); (EPR)
| |
Collapse
|
20
|
Humbert MV, Rasia RM, Checa SK, Soncini FC. Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators. J Biol Chem 2013; 288:20510-9. [PMID: 23733186 DOI: 10.1074/jbc.m113.452797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Two paralog transcriptional regulators of the MerR family, CueR and GolS, are responsible for monovalent metal ion sensing and resistance in Salmonella enterica. Although similar in sequence and also in their target binding sites, these proteins differ in signal detection and in the set of target genes they control. Recently, we demonstrated that selective promoter recognition depends on the presence of specific bases located at positions 3' and 3 within the operators they interact with. Here, we identify the amino acid residues within the N-terminal DNA-binding domain of these sensor proteins that are directly involved in operator discrimination. We demonstrate that a methionine residue at position 16 of GolS, absolutely conserved among GolS-like proteins but absent in all CueR-like xenologs, is the key to selectively recognize operators that harbor the distinctive GolS-operator signature, whereas the residue at position 19 finely tunes the regulator/operator interaction. Furthermore, swapping these residues switches the set of genes recognized by these transcription factors. These results indicate that co-evolution of a regulator and its cognate operators within the bacterial cell provides the conditions to avoid cross-recognition and guarantees the proper response to metal injury.
Collapse
Affiliation(s)
- María V Humbert
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Ocampo y Esmeralda, 2000-Rosario, Argentina
| | | | | | | |
Collapse
|
21
|
Grinev VV, Ramanouskaya TV, Gloushen SV. Multidimensional control of cell structural robustness. Cell Biol Int 2013; 37:1023-37. [PMID: 23686647 DOI: 10.1002/cbin.10128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 04/21/2013] [Indexed: 11/12/2022]
Abstract
Ample adaptive and functional opportunities of a living cell are determined by the complexity of its structural organisation. However, such complexity gives rise to a problem of maintenance of the coherence of inner processes in macroscopic interims and in macroscopic volumes which is necessary to support the structural robustness of a cell. The solution to this problem lies in multidimensional control of the adaptive and functional changes of a cell as well as its self-renewing processes in the context of environmental conditions. Six mechanisms (principles) form the basis of this multidimensional control: regulatory circuits with feedback loops, redundant inner diversity within a cell, multilevel distributed network organisation of a cell, molecular selection within a cell, continuous informational flows and functioning with a reserve of power. In the review we provide detailed analysis of these mechanisms, discuss their specific functions and the role of the superposition of these mechanisms in the maintenance of cell structural robustness in a wide range of environmental conditions.
Collapse
Affiliation(s)
- Vasily V Grinev
- Biology Faculty, Department of Genetics, Belarusian State University, 220030, Minsk, Belarus.
| | | | | |
Collapse
|
22
|
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci U S A 2012; 109:19420-5. [PMID: 23129634 DOI: 10.1073/pnas.1213901109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments.
Collapse
|
23
|
Perez-Rueda E, Martinez-Nuñez MA. The repertoire of DNA-binding transcription factors in prokaryotes: functional and evolutionary lessons. Sci Prog 2012; 95:315-29. [PMID: 23094327 PMCID: PMC10365527 DOI: 10.3184/003685012x13420097673409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The capabilities of organisms to contend with environmental changes depend on their genes and their ability to regulate their expression. DNA-binding transcription factors (TFs) play a central role in this process, because they regulate gene expression positively and/or negatively, depending on the operator context and ligand-binding status. In this review, we summarise recent findings regarding the function and evolution of TFs in prokaryotes. We consider the abundance of TFs in bacteria and archaea, the role of DNA-binding domains and their partner domains, and the effects of duplication events in the evolution of regulatory networks. Finally, a comprehensive picture for how regulatory networks have evolved in prokaryotes is provided.
Collapse
Affiliation(s)
- Ernesto Perez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62100, Mexico.
| | | |
Collapse
|
24
|
Abstract
Podocytes are highly differentiated and polarized epithelial cells located on the visceral side of the glomerulus. They form an indispensable component of the glomerular filter, the slit diaphragm, formed by several transmembrane proteins and adaptor molecules. Disruption of the slit diaphragm can lead to massive proteinuria and nephrotic syndrome in mice and humans. CD2AP is an adaptor protein that is important for the maintenance of the slit diaphragm. Together with its paralogue, CIN85, CD2AP belongs to a family of adaptor proteins that are primarily described as being involved in endocytosis and downregulation of receptor tyrosine kinase activity. We have shown that full-length CIN85 is upregulated in podocytes in the absence of CD2AP, whereas in wild-type cells, full-length CIN85 is not detectable. In this study, we show that full-length CIN85 is postranslationally modified by SUMOylation in wild-type podocytes. We can demonstrate that CIN85 is SUMOylated by SUMO-1, -2, and -3 and that SUMOylation is enhanced in the presence of CD2AP. Conversion of lysine 598 to arginine completely abolishes SUMOylation and leads to increased binding of CIN85 to nephrin. Our results indicate a novel role for CD2AP in regulating posttranslational modification of CIN85.
Collapse
|
25
|
Domenzain C, Camarena L, Osorio A, Dreyfus G, Poggio S. Evolutionary origin of the Rhodobacter sphaeroides specialized RpoN sigma factors. FEMS Microbiol Lett 2011; 327:93-102. [PMID: 22093079 DOI: 10.1111/j.1574-6968.2011.02459.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 11/29/2022] Open
Abstract
Gene duplication and horizontal gene transfer (HGT) are two events that enable the generation of new genes. Rhodobacter sphaeroides (WS8 and 2.4.1 strains) has four copies of the rpoN gene that are not functionally interchangeable. Until now, this is the only example of specialization of this sigma factor. In this work, we aimed to determine whether the multiple copies of this gene originated from HGT or through gene duplication. Our results suggest a multiplication origin of the different rpoN copies that occurred after the Rhodobacter clade separated. Functional tests indicate that the specialization of the rpoN genes is not restricted to R. sphaeroides. We propose that the rpoN copy involved in nitrogen fixation is the ancestral gene and that the other rpoN genes have acquired new specificities.
Collapse
Affiliation(s)
- Clelia Domenzain
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | |
Collapse
|
26
|
Functions of the duplicated hik31 operons in central metabolism and responses to light, dark, and carbon sources in Synechocystis sp. strain PCC 6803. J Bacteriol 2011; 194:448-59. [PMID: 22081400 DOI: 10.1128/jb.06207-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are two closely related hik31 operons involved in signal transduction on the chromosome and the pSYSX plasmid in the cyanobacterium Synechocystis sp. strain PCC 6803. We studied the growth, cell morphology, and gene expression in operon and hik mutants for both copies, under different growth conditions, to examine whether the duplicated copies have the same or different functions and gene targets and whether they are similarly regulated. Phenotype analysis suggested that both operons regulated common and separate targets in the light and the dark. The chromosomal operon was involved in the negative control of autotrophic events, whereas the plasmid operon was involved in the positive control of heterotrophic events. Both the plasmid and double operon mutant cells were larger and had division defects. The growth data also showed a regulatory role for the chromosomal hik gene under high-CO(2) conditions and the plasmid operon under low-O(2) conditions. Metal stress experiments indicated a role for the chromosomal hik gene and operon in mediating Zn and Cd tolerance, the plasmid operon in Co tolerance, and the chromosomal operon and plasmid hik gene in Ni tolerance. We conclude that both operons are differentially and temporally regulated. We suggest that the chromosomal operon is the primarily expressed copy and the plasmid operon acts as a backup to maintain appropriate gene dosages. Both operons share an integrated regulatory relationship and are induced in high light, in glucose, and in active cell growth. Additionally, the plasmid operon is induced in the dark with or without glucose.
Collapse
|
27
|
Wang L, Wang FF, Qian W. Evolutionary rewiring and reprogramming of bacterial transcription regulation. J Genet Genomics 2011; 38:279-88. [DOI: 10.1016/j.jgg.2011.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/26/2022]
|
28
|
Rivera-Gómez N, Segovia L, Pérez-Rueda E. Diversity and distribution of transcription factors: their partner domains play an important role in regulatory plasticity in bacteria. MICROBIOLOGY-SGM 2011; 157:2308-2318. [PMID: 21636649 DOI: 10.1099/mic.0.050617-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of bacteria to deal with diverse environmental changes depends on their repertoire of genes and their ability to regulate their expression. In this process, DNA-binding transcription factors (TFs) have a fundamental role because they affect gene expression positively and/or negatively depending on operator context and ligand-binding status. Here, we show an exhaustive analysis of winged helix-turn-helix domains (wHTHs), a class of DNA-binding TFs. These proteins were identified in high proportions and widely distributed in bacteria, representing around half of the total TFs identified so far. In addition, we evaluated the repertoire of wHTHs in terms of their partner domains (PaDos), identifying a similar trend, as with TFs, i.e. they are abundant and widely distributed in bacteria. Based on the PaDos, we defined three main groups of families: (i) monolithic, those families with little PaDo diversity, such as LysR; (ii) promiscuous, those families with a high PaDo diversity; and (iii) monodomain, with families of small sizes, such as MarR. These findings suggest that PaDos have a very important role in the diversification of regulatory responses in bacteria, probably contributing to their regulatory complexity. Thus, the TFs discriminate over longer regions on the DNA through their diverse DNA-binding domains. On the other hand, the PaDos would allow a great flexibility for transcriptional regulation due to their ability to sense diverse stimuli through a variety of ligand-binding compounds.
Collapse
Affiliation(s)
- Nancy Rivera-Gómez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lorenzo Segovia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
29
|
Treangen TJ, Rocha EPC. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 2011; 7:e1001284. [PMID: 21298028 PMCID: PMC3029252 DOI: 10.1371/journal.pgen.1001284] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 12/20/2010] [Indexed: 01/09/2023] Open
Abstract
Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.
Collapse
Affiliation(s)
- Todd J Treangen
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France.
| | | |
Collapse
|
30
|
Leroy Q, Lebrigand K, Armougom F, Barbry P, Thiéry R, Raoult D. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PLoS One 2010; 5:e15321. [PMID: 21203564 PMCID: PMC3006202 DOI: 10.1371/journal.pone.0015321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q
fever, is mainly transmitted to humans through an aerosol route. A spore-like
form allows C. burnetii to resist different environmental
conditions. Because of this, analysis of the survival strategies used by this
bacterium to adapt to new environmental conditions is critical for our
understanding of C. burnetii pathogenicity. Here, we report the
early transcriptional response of C. burnetii under temperature
stresses. Our data show that C. burnetii exhibited minor
changes in gene regulation under short exposure to heat or cold shock. While
small differences were observed, C. burnetii seemed to respond
similarly to cold and heat shock. The expression profiles obtained using
microarrays produced in-house were confirmed by quantitative RT-PCR. Under
temperature stresses, 190 genes were differentially expressed in at least one
condition, with a fold change of up to 4. Globally, the differentially expressed
genes in C. burnetii were associated with bacterial division,
(p)ppGpp synthesis, wall and membrane biogenesis and, especially,
lipopolysaccharide and peptidoglycan synthesis. These findings could be
associated with growth arrest and witnessed transformation of the bacteria to a
spore-like form. Unexpectedly, clusters of neighboring genes were differentially
expressed. These clusters do not belong to operons or genetic networks; they
have no evident associated functions and are not under the control of the same
promoters. We also found undescribed but comparable clusters of regulation in
previously reported transcriptomic analyses of intracellular bacteria, including
Rickettsia sp. and Listeria monocytogenes.
The transcriptomic patterns of C. burnetii observed under
temperature stresses permits the recognition of unpredicted clusters of
regulation for which the trigger mechanism remains unidentified but which may be
the result of a new mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Quentin Leroy
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Fabrice Armougom
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Richard Thiéry
- Unité de Pathologie des Ruminants, Agence Française de
Sécurité Sanitaire des Aliments (AFSSA) Sophia Antipolis,
France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
- * E-mail:
| |
Collapse
|
31
|
Pérez Audero ME, Podoroska BM, Ibáñez MM, Cauerhff A, Checa SK, Soncini FC. Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 2010; 78:853-65. [PMID: 20807206 DOI: 10.1111/j.1365-2958.2010.07370.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The evolution of bacterial regulatory circuits often involves duplication of genes encoding transcription factors that may suffer both modifications in their detected signals, as well as, rewiring of their target operators. This, and subsequent horizontal gene transfer events contribute to generate a diverse array of regulatory pathways. In Salmonella, two homologous transcription factors CueR and GolS are responsible for Cu and Au sensing and resistance respectively. They share similarities not only in their sequence but also in their target binding sites, although they cluster separately among MerR-monovalent metal sensors. Here, we demonstrate that CueR and GolS can selectively distinguish their target binding sites by recognizing bases at positions 3' and 3 of their cognate operators. Swap of these bases results in switching regulator dependency. The differences in promoter architecture plus the environmentally controlled regulator's cytoplasmic availability warrant intra-regulon regulator-operator selectivity, and the proper response to metal injury. Furthermore, the presence of the distinctive operators' bases is widely extended among the two groups of MerR-monovalent metal sensors, providing evidence of the co-evolution of these factors and their target operators. This approach allows the prediction of regulator's dependency and the identification of transcription modules among groups of homologous transcription factors.
Collapse
Affiliation(s)
- María E Pérez Audero
- Instituto de Biología Molecular, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK-Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Schröder J, Tauch A. Transcriptional regulation of gene expression inCorynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol Rev 2010; 34:685-737. [DOI: 10.1111/j.1574-6976.2010.00228.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|