1
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Escherichia coli possessing the dihydroxyacetone phosphate shunt utilize 5'-deoxynucleosides for growth. Microbiol Spectr 2024; 12:e0308623. [PMID: 38441472 PMCID: PMC10986504 DOI: 10.1128/spectrum.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024] Open
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work in other organisms has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Rather, the DHAP shunt in Escherichia coli ATCC 25922, when introduced into E. coli K-12, enables the use of 5dAdo and MTA as a carbon source for growth. When MTA is the substrate, the sulfur component is not significantly recycled back to methionine but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. The DHAP shunt in ATCC 25922 is active under oxic and anoxic conditions. Growth using 5-deoxy-d-ribose was observed during aerobic respiration and anaerobic respiration with Trimethylamine N-oxide (TMAO), but not during fermentation or respiration with nitrate. This suggests the DHAP shunt may only be relevant for extraintestinal pathogenic E. coli lineages with the DHAP shunt that inhabit oxic or TMAO-rich extraintestinal environments. This reveals a heretofore overlooked role of the DHAP shunt in carbon and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt. IMPORTANCE The acquisition and utilization of organic compounds that serve as growth substrates are essential for Escherichia coli to grow and multiply. Ubiquitous enzymatic reactions involving S-adenosyl-l-methionine as a co-substrate by all organisms result in the formation of the 5'-deoxy-nucleoside byproducts, 5'-methylthioadenosine and 5'-deoxyadenosine. All E. coli possess a conserved nucleosidase that cleaves these 5'-deoxy-nucleosides into 5-deoxy-pentose sugars for adenine salvage. The DHAP shunt pathway is found in some extraintestinal pathogenic E. coli, but its function in E. coli possessing it has remained unknown. This study reveals that the DHAP shunt enables the utilization of 5'-deoxy-nucleosides and 5-deoxy-pentose sugars as growth substrates in E. coli strains with the pathway during aerobic respiration and anaerobic respiration with TMAO, but not fermentative growth. This provides an insight into the diversity of sugar compounds accessible by E. coli with the DHAP shunt and suggests that the DHAP shunt is primarily relevant in oxic or TMAO-rich extraintestinal environments.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Müller V, Nyblom M, Johnning A, Wrande M, Dvirnas A, KK S, Giske CG, Ambjörnsson T, Sandegren L, Kristiansson E, Westerlund F. Cultivation-Free Typing of Bacteria Using Optical DNA Mapping. ACS Infect Dis 2020; 6:1076-1084. [PMID: 32294378 PMCID: PMC7304876 DOI: 10.1021/acsinfecdis.9b00464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/06/2023]
Abstract
A variety of pathogenic bacteria can infect humans, and rapid species identification is crucial for the correct treatment. However, the identification process can often be time-consuming and depend on the cultivation of the bacterial pathogen(s). Here, we present a stand-alone, enzyme-free, optical DNA mapping assay capable of species identification by matching the intensity profiles of large DNA molecules to a database of fully assembled bacterial genomes (>10 000). The assay includes a new data analysis strategy as well as a general DNA extraction protocol for both Gram-negative and Gram-positive bacteria. We demonstrate that the assay is capable of identifying bacteria directly from uncultured clinical urine samples, as well as in mixtures, with the potential to be discriminative even at the subspecies level. We foresee that the assay has applications both within research laboratories and in clinical settings, where the time-consuming step of cultivation can be minimized or even completely avoided.
Collapse
Affiliation(s)
- Vilhelm Müller
- Department of Biology
and Biological Engineering, Chalmers University
of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - My Nyblom
- Department of Biology
and Biological Engineering, Chalmers University
of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Anna Johnning
- Department of Mathematical
Sciences, Chalmers University of Technology
and the University of Gothenburg, 412 96 Gothenburg, Sweden
- Systems and Data Analysis, Fraunhofer-Chalmers
Centre, Chalmers Science
Park, 412 88 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research,
CARe, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Marie Wrande
- Department of Medical
Biochemistry and Microbiology, Uppsala University, Husargatan 3, Box
582, 751 23 Uppsala, Sweden
| | - Albertas Dvirnas
- Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden
| | - Sriram KK
- Department of Biology
and Biological Engineering, Chalmers University
of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Christian G. Giske
- Department of Laboratory Medicine, Karolinska
Institutet, Alfred Nobels
Allé 8, 141 86 Stockholm, Sweden
- Department of Clinical
Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden
| | - Linus Sandegren
- Department of Medical
Biochemistry and Microbiology, Uppsala University, Husargatan 3, Box
582, 751 23 Uppsala, Sweden
| | - Erik Kristiansson
- Department of Mathematical
Sciences, Chalmers University of Technology
and the University of Gothenburg, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research,
CARe, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department of Biology
and Biological Engineering, Chalmers University
of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
3
|
Leung AKY, Jin N, Yip KY, Chan TF. OMTools: a software package for visualizing and processing optical mapping data. Bioinformatics 2018; 33:2933-2935. [PMID: 28505226 PMCID: PMC5870549 DOI: 10.1093/bioinformatics/btx317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Summary Optical mapping is a molecular technique capturing specific patterns of fluorescent labels along DNA molecules. It has been widely applied in assisted-scaffolding in sequence assemblies, microbial strain typing and detection of structural variations. Various computational methods have been developed to analyze optical mapping data. However, existing tools for processing and visualizing optical map data still have many shortcomings. Here, we present OMTools, an efficient and intuitive data processing and visualization suite to handle and explore large-scale optical mapping profiles. OMTools includes modules for visualization (OMView), data processing and simulation. These modules together form an accessible and convenient pipeline for optical mapping analyses. Availability and implementation OMTools is implemented in Java 1.8 and released under a GPL license. OMTools can be downloaded from https://github.com/aldenleung/OMTools and run on any standard desktop computer equipped with a Java virtual machine. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alden King-Yung Leung
- School of Life Sciences.,Centre for Soybean Research, State Key Laboratory of Agrobiotechnology
| | - Nana Jin
- School of Life Sciences.,Centre for Soybean Research, State Key Laboratory of Agrobiotechnology
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences.,Centre for Soybean Research, State Key Laboratory of Agrobiotechnology
| |
Collapse
|
4
|
Abstract
In optical DNA mapping technologies sequence-specific intensity variations (DNA barcodes) along stretched and stained DNA molecules are produced. These “fingerprints” of the underlying DNA sequence have a resolution of the order one kilobasepairs and the stretching of the DNA molecules are performed by surface adsorption or nano-channel setups. A post-processing challenge for nano-channel based methods, due to local and global random movement of the DNA molecule during imaging, is how to align different time frames in order to produce reproducible time-averaged DNA barcodes. The current solutions to this challenge are computationally rather slow. With high-throughput applications in mind, we here introduce a parameter-free method for filtering a single time frame noisy barcode (snap-shot optical map), measured in a fraction of a second. By using only a single time frame barcode we circumvent the need for post-processing alignment. We demonstrate that our method is successful at providing filtered barcodes which are less noisy and more similar to time averaged barcodes. The method is based on the application of a low-pass filter on a single noisy barcode using the width of the Point Spread Function of the system as a unique, and known, filtering parameter. We find that after applying our method, the Pearson correlation coefficient (a real number in the range from -1 to 1) between the single time-frame barcode and the time average of the aligned kymograph increases significantly, roughly by 0.2 on average. By comparing to a database of more than 3000 theoretical plasmid barcodes we show that the capabilities to identify plasmids is improved by filtering single time-frame barcodes compared to the unfiltered analogues. Since snap-shot experiments and computational time using our method both are less than a second, this study opens up for high throughput optical DNA mapping with improved reproducibility.
Collapse
|
5
|
Abstract
Optical mapping (OM) has been used in microbiology for the past 20 years, initially as a technique to facilitate DNA sequence-based studies; however, with decreases in DNA sequencing costs and increases in sequence output from automated sequencing platforms, OM has grown into an important auxiliary tool for genome assembly and comparison. Currently, there are a number of new and exciting applications for OM in the field of microbiology, including investigation of disease outbreaks, identification of specific genes of clinical and/or epidemiological relevance, and the possibility of single-cell analysis when combined with cell-sorting approaches. In addition, designing lab-on-a-chip systems based on OM is now feasible and will allow the integrated and automated microbiological analysis of biological fluids. Here, we review the basic technology of OM, detail the current state of the art of the field, and look ahead to possible future developments in OM technology for microbiological applications.
Collapse
|
6
|
Ferreira AC, Dias R, de Sá MIC, Tenreiro R. Whole-genome mapping reveals a large chromosomal inversion on Iberian Brucella suis biovar 2 strains. Vet Microbiol 2016; 192:220-225. [DOI: 10.1016/j.vetmic.2016.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 11/27/2022]
|
7
|
Nyholm O, Halkilahti J, Wiklund G, Okeke U, Paulin L, Auvinen P, Haukka K, Siitonen A. Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains. PLoS One 2015; 10:e0135936. [PMID: 26313149 PMCID: PMC4551483 DOI: 10.1371/journal.pone.0135936] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.
Collapse
Affiliation(s)
- Outi Nyholm
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- * E-mail:
| | - Jani Halkilahti
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Gudrun Wiklund
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Uche Okeke
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kaisa Haukka
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anja Siitonen
- Bacterial Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
8
|
Anderson KM, Abbott J, Zhao S, Liu E, Himathongkham S. Molecular Subtyping of Shiga Toxin-Producing Escherichia coli Using a Commercial Repetitive Sequence-Based PCR Assay. J Food Prot 2015; 78:902-11. [PMID: 25951383 DOI: 10.4315/0362-028x.jfp-14-430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PCR-based typing methods, such as repetitive sequence-based PCR (rep-PCR), may facilitate the identification of Shiga toxin-producing Escherichia coli (STEC) by serving as screening methods to reduce the number of isolates to be processed for further confirmation. In this study, we used a commercial rep-PCR typing system to generate DNA fingerprint profiles for STEC O157 (n = 60) and non-O157 (n = 91) isolates from human, food, and animal samples and then compared the results with those obtained from pulsed-field gel electrophoresis (PFGE). Fifteen serogroups were analyzed using the Kullback Leibler or extended Jaccard statistical method, and the unweighted pair group method of averages algorithm was used to create dendrograms. Among the 151 STEC isolates tested, all were typeable by rep-PCR. Among the non-O157 isolates, rep-PCR clustered 79 (88.8%) of 89 isolates according to serogroup status, with peak differences ranging from 1 (96.4% similarity) to 12 (58.7% similarity). The genetic relatedness of the non-O157 serogroups mirrored the branching of distinct clonal groups elucidated by other investigators. Although the discriminatory power of rep-PCR (Simpson's index of diversity [SID] = 0.954) for the O157 isolates was less than that of PFGE (SID = 0.993), rep-PCR was able to identify 29 pattern types, suggesting that this method can be used for strain typing, although not to the same level as PFGE. Similar results were obtained from analysis of the non-O157 isolates. With rep-PCR, we assigned non-O157 isolates to 46 pattern types with a SID of 0.977. By PFGE, non-O157 STEC strains were divided into 77 pattern types with a SID of 0.996. Together, these results indicate the ability of the rep-PCR typing system to distinguish between and within O157 and non-O157 STEC groups. Rapid PCR-based typing methods could be invaluable tools for use in outbreak investigations by excluding unrelated STEC isolates within 24 h.
Collapse
Affiliation(s)
- Kimberly M Anderson
- U.S. Food and Drug Administration, Office of Regulatory Affairs, San Francisco District Laboratory, Alameda, California 94502, USA.
| | - Jason Abbott
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland 20708, USA
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, Maryland 20708, USA
| | - Eileen Liu
- U.S. Food and Drug Administration, Office of Regulatory Affairs, San Francisco District Laboratory, Alameda, California 94502, USA
| | - Sunee Himathongkham
- U.S. Food and Drug Administration, Office of Regulatory Affairs, Office of Regulatory Science, Rockville, Maryland 20857, USA
| |
Collapse
|
9
|
Whole-genome optical mapping and finished genome sequence of Sphingobacterium deserti sp. nov., a new species isolated from the Western Desert of China. PLoS One 2015; 10:e0122254. [PMID: 25830331 PMCID: PMC4382152 DOI: 10.1371/journal.pone.0122254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
A novel Gram-negative bacterium, designated ZWT, was isolated from a soil sample of the Western Desert of China, and its phenotypic properties and phylogenetic position were investigated using a polyphasic approach. Growth occurred on TGY medium at 5-42°C with an optimum of 30°C, and at pH 7.0-11.0 with an optimum of pH 9.0. The predominant cellular fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c or C16:1ω6c/C16:1ω7c) (39.22%), iso-C15:0 (27.91%), iso-C17:0 3OH (15.21%), C16:0 (4.98%), iso-C15:0 3OH (3.03%), C16:0 3OH (5.39%) and C14:0 (1.74%). The major polar lipid of strain ZWT is phosphatidylethanolamine. The only menaquinone observed was MK-7. The GC content of the DNA of strain ZWT is 44.9 mol%. rDNA phylogeny, genome relatedness and chemotaxonomic characteristics all indicate that strain ZWT represents a novel species of the genus Sphingobacterium. We propose the name S. deserti sp. nov., with ZWT (= KCTC 32092T = ACCC 05744T) as the type strain. Whole genome optical mapping and next-generation sequencing was used to derive a finished genome sequence for strain ZWT, consisting of a circular chromosome of 4,615,818 bp in size. The genome of strain ZWT features 3,391 protein-encoding and 48 tRNA-encoding genes. Comparison of the predicted proteome of ZWT with those of other sphingobacteria identified 925 species-unique proteins that may contribute to the adaptation of ZWT to its native, extremely arid and inhospitable environment. As the first finished genome sequence for any Sphingobacterium, our work will serve as a useful reference for subsequent sequencing and mapping efforts for additional strains and species within this genus.
Collapse
|
10
|
Chapman C, Henry M, Bishop-Lilly KA, Awosika J, Briska A, Ptashkin RN, Wagner T, Rajanna C, Tsang H, Johnson SL, Mokashi VP, Chain PSG, Sozhamannan S. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity. PLoS One 2015; 10:e0120311. [PMID: 25794000 PMCID: PMC4368569 DOI: 10.1371/journal.pone.0120311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.
Collapse
Affiliation(s)
- Carol Chapman
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Matthew Henry
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Kimberly A. Bishop-Lilly
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Joy Awosika
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Adam Briska
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | | | - Trevor Wagner
- OpGen, Inc., Gaithersburg, Maryland, United States of America
| | - Chythanya Rajanna
- University of Florida, Gainesville, Florida, United States of America
| | - Hsinyi Tsang
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Shannon L. Johnson
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Vishwesh P. Mokashi
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
| | - Patrick S. G. Chain
- Genome Science, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shanmuga Sozhamannan
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
- Naval Medical Research Center—Frederick, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Enhanced de novo assembly of high throughput pyrosequencing data using whole genome mapping. PLoS One 2013; 8:e61762. [PMID: 23613926 PMCID: PMC3629165 DOI: 10.1371/journal.pone.0061762] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/11/2013] [Indexed: 01/20/2023] Open
Abstract
Despite major advances in next-generation sequencing, assembly of sequencing data, especially data from novel microorganisms or re-emerging pathogens, remains constrained by the lack of suitable reference sequences. De novo assembly is the best approach to achieve an accurate finished sequence, but multiple sequencing platforms or paired-end libraries are often required to achieve full genome coverage. In this study, we demonstrated a method to assemble complete bacterial genome sequences by integrating shotgun Roche 454 pyrosequencing with optical whole genome mapping (WGM). The whole genome restriction map (WGRM) was used as the reference to scaffold de novo assembled sequence contigs through a stepwise process. Large de novo contigs were placed in the correct order and orientation through alignment to the WGRM. De novo contigs that were not aligned to WGRM were merged into scaffolds using contig branching structure information. These extended scaffolds were then aligned to the WGRM to identify the overlaps to be eliminated and the gaps and mismatches to be resolved with unused contigs. The process was repeated until a sequence with full coverage and alignment with the whole genome map was achieved. Using this method we were able to achieved 100% WGRM coverage without a paired-end library. We assembled complete sequences for three distinct genetic components of a clinical isolate of Providencia stuartii: a bacterial chromosome, a novel bla NDM-1 plasmid, and a novel bacteriophage, without separately purifying them to homogeneity.
Collapse
|
12
|
Abstract
Strain-typing technology in support of outbreak identification and resolution has evolved from phenotypic analysis, such as serology and biotypes, to much-more-robust molecular genetic approaches, such as pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. Whole-genome mapping (WGM) has been recently applied to subtyping analysis, and it bridges the gap between PFGE (∼20 bands sorted by size) and whole-genome sequencing. WGM utilizes restriction site analysis but arranges 200 to 500 bands in the order they appear on the chromosome. WGM is able to quickly and cost-effectively generate high-resolution, ordered whole-genome maps of bacteria.
Collapse
|
13
|
Comparative whole-genome mapping to determine Staphylococcus aureus genome size, virulence motifs, and clonality. J Clin Microbiol 2012; 50:3526-33. [PMID: 22915603 DOI: 10.1128/jcm.01168-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being a clonal pathogen, Staphylococcus aureus continues to acquire virulence and antibiotic-resistant genes located on mobile genetic elements such as genomic islands, prophages, pathogenicity islands, and the staphylococcal chromosomal cassette mec (SCCmec) by horizontal gene transfer from other staphylococci. The potential virulence of a S. aureus strain is often determined by comparing its pulsed-field gel electrophoresis (PFGE) or multilocus sequence typing profiles to that of known epidemic or virulent clones and by PCR of the toxin genes. Whole-genome mapping (formerly optical mapping), which is a high-resolution ordered restriction mapping of a bacterial genome, is a relatively new genomic tool that allows comparative analysis across entire bacterial genomes to identify regions of genomic similarities and dissimilarities, including small and large insertions and deletions. We explored whether whole-genome maps (WGMs) of methicillin-resistant S. aureus (MRSA) could be used to predict the presence of methicillin resistance, SCCmec type, and Panton-Valentine leukocidin (PVL)-producing genes on an S. aureus genome. We determined the WGMs of 47 diverse clinical isolates of S. aureus, including well-characterized reference MRSA strains, and annotated the signature restriction pattern in SCCmec types, arginine catabolic mobile element (ACME), and PVL-carrying prophage, PhiSa2 or PhiSa2-like regions on the genome. WGMs of these isolates accurately characterized them as MRSA or methicillin-sensitive S. aureus based on the presence or absence of the SCCmec motif, ACME and the unique signature pattern for the prophage insertion that harbored the PVL genes. Susceptibility to methicillin resistance and the presence of mecA, SCCmec types, and PVL genes were confirmed by PCR. A WGM clustering approach was further able to discriminate isolates within the same PFGE clonal group. These results showed that WGMs could be used not only to genotype S. aureus but also to identify genetic motifs in MRSA that may predict virulence.
Collapse
|
14
|
Assessment of whole-genome mapping in a well-defined outbreak of Salmonella enterica serotype Saintpaul. J Clin Microbiol 2012; 50:3063-5. [PMID: 22718933 DOI: 10.1128/jcm.01320-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the use of whole-genome mapping and pulsed-field gel electrophoresis (PFGE) with isolates from an outbreak of Salmonella enterica serotype Saintpaul. PFGE and whole-genome mapping were concordant with 22 of 23 isolates. Whole-genome mapping is a viable alternative tool for the epidemiological analysis of Salmonella food-borne disease investigations.
Collapse
|
15
|
Lavigne JP, Vergunst AC, Goret L, Sotto A, Combescure C, Blanco J, O'Callaghan D, Nicolas-Chanoine MH. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One 2012; 7:e34294. [PMID: 22457832 PMCID: PMC3311635 DOI: 10.1371/journal.pone.0034294] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR Médecine, Université Montpellier 1, Nîmes, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Optical mapping and sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and multiple tandem copies of the Zymomonas mobilis pdc and adhB genes. J Ind Microbiol Biotechnol 2011; 39:629-39. [PMID: 22075923 DOI: 10.1007/s10295-011-1052-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/19/2011] [Indexed: 01/14/2023]
Abstract
Escherichia coli KO11 (ATCC 55124) was engineered in 1990 to produce ethanol by chromosomal insertion of the Zymomonas mobilis pdc and adhB genes into E. coli W (ATCC 9637). KO11FL, our current laboratory version of KO11, and its parent E. coli W were sequenced, and contigs assembled into genomic sequences using optical NcoI restriction maps as templates. E. coli W contained plasmids pRK1 (102.5 kb) and pRK2 (5.4 kb), but KO11FL only contained pRK2. KO11FL optical maps made with AflII and with BamHI showed a tandem repeat region, consisting of at least 20 copies of a 10-kb unit. The repeat region was located at the insertion site for the pdc, adhB, and chloramphenicol-resistance genes. Sequence coverage of these genes was about 25-fold higher than average, consistent with amplification of the foreign genes that were inserted as circularized DNA. Selection for higher levels of chloramphenicol resistance originally produced strains with higher pdc and adhB expression, and hence improved fermentation performance, by increasing the gene copy number. Sequence data for an earlier version of KO11, ATCC 55124, indicated that multiple copies of pdc adhB were present. Comparison of the W and KO11FL genomes showed large inversions and deletions in KO11FL, mostly enabled by IS10, which is absent from W but present at 30 sites in KO11FL. The early KO11 strain ATCC 55124 had no rearrangements, contained only one IS10, and lacked most accumulated single nucleotide polymorphisms (SNPs) present in KO11FL. Despite rearrangements and SNPs in KO11FL, fermentation performance was equal to that of ATCC 55124.
Collapse
|
17
|
Sharma U, Schwan WR, Agger WA. Escherichia coli pyomyositis in an immunocompromised host. WMJ : OFFICIAL PUBLICATION OF THE STATE MEDICAL SOCIETY OF WISCONSIN 2011; 110:182-184. [PMID: 22413629 PMCID: PMC4441203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pyomyositis due to Escherichia coli (E. coil) is rarely reported in immunocompromised patients with hematological malignancy. CASE REPORT We present a case report of a 34-year-old man who developed E. coli pyomyositis as a complication of acute myelogenous leukemia (AML). Magnetic resonance imaging (MRI) of the right hip suggested myofascial infection of the gluteal muscles, and a needle muscle aspiration grew E. coli phylogenetic group B2. The patient responded to intravenous piperacillin/tazobactam followed by prolonged oral levofloxacin. CONCLUSION Pyomyositis should be suspected in all immunocompromised patients complaining of muscle pain and may exhibit signs of localized muscle infection. Appropriate antibiotic therapy targeting fluoroquinolone-resistant E. coli should be considered for initial empiric therapy of pyomyositis in immunocompromised patients.
Collapse
Affiliation(s)
- Umesh Sharma
- Hospital Medicine, Mayo Clinic Health System, 700 West Ave S, La Crosse, WI 54601, USA.
| | | | | |
Collapse
|
18
|
Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 2011; 6:e22751. [PMID: 21799941 PMCID: PMC3140518 DOI: 10.1371/journal.pone.0022751] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 12/13/2022] Open
Abstract
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.
Collapse
Affiliation(s)
| | - Dag Harmsen
- Department of Periodontology, University Münster, Münster, Germany
| | - Craig A. Cummings
- Life Technologies, Foster City, California, United States of America
| | | | | | | | - Karola Prior
- Department of Periodontology, University Münster, Münster, Germany
| | | | - Yongmei Ji
- Life Technologies, Foster City, California, United States of America
| | - Wenlan Zhang
- Institute of Hygiene, University Münster, Münster, Germany
| | | | | | | | | | - Rita Prager
- Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany
| | - Pius M. Brzoska
- Life Technologies, Foster City, California, United States of America
| | | | | | - Jonathan M. Rothberg
- Ion Torrent by Life Technologies, Guilford, Connecticut, United States of America
| | - Helge Karch
- Institute of Hygiene, University Münster, Münster, Germany
| |
Collapse
|
19
|
Smith A, van Rooyen JP, Argo E, Cash P. Proteomic analysis of Escherichia coli associated with urinary tract infections. Proteomics 2011; 11:2283-93. [DOI: 10.1002/pmic.201000626] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/27/2011] [Accepted: 03/07/2011] [Indexed: 11/09/2022]
|