1
|
Garrett SR, Mariano G, Dicks J, Palmer T. Homologous recombination between tandem paralogues drives evolution of a subset of type VII secretion system immunity genes in firmicute bacteria. Microb Genom 2022; 8. [PMID: 35960642 PMCID: PMC9484751 DOI: 10.1099/mgen.0.000868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type VII secretion system (T7SS) is found in many Gram-positive firmicutes and secretes protein toxins that mediate bacterial antagonism. Two T7SS toxins have been identified in Staphylococcus aureus, EsaD a nuclease toxin that is counteracted by the EsaG immunity protein, and TspA, which has membrane depolarising activity and is neutralised by TsaI. Both toxins are polymorphic, and strings of non-identical esaG and tsaI immunity genes are encoded in all S. aureus strains. To investigate the evolution of esaG repertoires, we analysed the sequences of the tandem esaG genes and their encoded proteins. We identified three blocks of high sequence similarity shared by all esaG genes and identified evidence of extensive recombination events between esaG paralogues facilitated through these conserved sequence blocks. Recombination between these blocks accounts for loss and expansion of esaG genes in S. aureus genomes and we identified evidence of such events during evolution of strains in clonal complex 8. TipC, an immunity protein for the TelC lipid II phosphatase toxin secreted by the streptococcal T7SS, is also encoded by multiple gene paralogues. Two blocks of high sequence similarity locate to the 5′ and 3′ end of tipC genes, and we found strong evidence for recombination between tipC paralogues encoded by Streptococcus mitis BCC08. By contrast, we found only a single homology block across tsaI genes, and little evidence for intergenic recombination within this gene family. We conclude that homologous recombination is one of the drivers for the evolution of T7SS immunity gene clusters.
Collapse
Affiliation(s)
- Stephen R Garrett
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jo Dicks
- Culture Collections, UK Health Security Agency, 61 Colindale Ave, London, NW9 5EQ, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
2
|
Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567-584. [PMID: 34040228 DOI: 10.1038/s41579-021-00560-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Type VII secretion systems (T7SSs) have a key role in the secretion of effector proteins in non-pathogenic mycobacteria and pathogenic mycobacteria such as Mycobacterium tuberculosis, the main causative agent of tuberculosis. Tuberculosis-causing mycobacteria, still accounting for 1.4 million deaths annually, rely on paralogous T7SSs to survive in the host and efficiently evade its immune response. Although it is still unknown how effector proteins of T7SSs cross the outer membrane of the diderm mycobacterial cell envelope, recent advances in the structural characterization of these secretion systems have revealed the intricate network of interactions of conserved components in the plasma membrane. This structural information, added to recent advances in the molecular biology and regulation of mycobacterial T7SSs as well as progress in our understanding of their secreted effector proteins, is shedding light on the inner working of the T7SS machinery. In this Review, we highlight the implications of these studies and the derived transport models, which provide new scenarios for targeting the deathly human pathogen M. tuberculosis.
Collapse
Affiliation(s)
- Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Nikolaos Famelis
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany.,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sebastian Geibel
- Institute for Molecular Infection Biology, Julius-Maximilian University of Würzburg, Würzburg, Germany. .,Rudolf Virchow Center for Integrative and Translational Biomedicine, Julius-Maximilian University of Würzburg, Würzburg, Germany.
| |
Collapse
|
3
|
Abstract
The type VII protein secretion system (T7SS) of Staphylococcus aureus is encoded at the ess locus. T7 substrate recognition and protein transport are mediated by EssC, a membrane-bound multidomain ATPase. Four EssC sequence variants have been identified across S. aureus strains, each accompanied by a specific suite of substrate proteins. The ess genes are upregulated during persistent infection, and the secretion system contributes to virulence in disease models. It also plays a key role in intraspecies competition, secreting nuclease and membrane-depolarizing toxins that inhibit the growth of strains lacking neutralizing immunity proteins. A genomic survey indicates that the T7SS is widely conserved across staphylococci and is encoded in clusters that contain diverse arrays of toxin and immunity genes. The presence of genomic islands encoding multiple immunity proteins in species such as Staphylococcus warneri that lack the T7SS points to a major role for the secretion system in bacterial antagonism. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Bowman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; ,
| |
Collapse
|
4
|
Lara AC, Corretto E, Kotrbová L, Lorenc F, Petříčková K, Grabic R, Chroňáková A. The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues. Microorganisms 2021; 9:1547. [PMID: 34442631 PMCID: PMC8401907 DOI: 10.3390/microorganisms9081547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022] Open
Abstract
Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.
Collapse
Affiliation(s)
- Ana Catalina Lara
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Lucie Kotrbová
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - František Lorenc
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 12800 Prague 2, Czech Republic;
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 37005 České Budějovice, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925 Vodňany, Czech Republic;
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| |
Collapse
|
5
|
Bunduc CM, Bitter W, Houben E. Structure and Function of the Mycobacterial Type VII Secretion Systems. Annu Rev Microbiol 2020; 74:315-335. [DOI: 10.1146/annurev-micro-012420-081657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria have evolved intricate secretion machineries for the successful delivery of large molecules across their cell envelopes. Such specialized secretion systems allow a variety of bacteria to thrive in specific host environments. In mycobacteria, type VII secretion systems (T7SSs) are dedicated protein transport machineries that fulfill diverse and crucial roles, ranging from metabolite uptake to immune evasion and subversion to conjugation. Since the discovery of mycobacterial T7SSs about 15 y ago, genetic, structural, and functional studies have provided insight into the roles and functioning of these secretion machineries. Here, we focus on recent advances in the elucidation of the structure and mechanism of mycobacterial T7SSs in protein secretion. As many of these systems are essential for mycobacterial growth or virulence, they provide opportunities for the development of novel therapies to combat a number of relevant mycobacterial diseases.
Collapse
Affiliation(s)
- Catalin M. Bunduc
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - W. Bitter
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, 1007 MB Amsterdam, The Netherlands
| | - E.N.G. Houben
- Section of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
We lack fundamental understanding of how phage infection influences bacterial gene expression and, consequently, how bacterial responses to phage infection affect the assembly of polymicrobial communities. Using parallel genomic approaches, we have discovered novel transcriptional regulators and metabolic genes that influence phage infection. The integration of whole-genome transcriptomic profiling during phage infection has revealed the differential regulation of genes important for group behaviors and polymicrobial interactions. Our work suggests that therapeutic phages could more broadly influence bacterial community composition outside their intended host targets. Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls the expression of enterococcal polysaccharide antigen (epa) genes that are involved in phage infection and bacterial fitness. In addition, we discovered that DNA mismatch repair mutants rapidly evolve phage adsorption deficiencies, underpinning a molecular basis for epa mutation during phage infection. Transcriptomic profiling of phage-infected E. faecalis revealed broad transcriptional changes influencing viral replication and progeny burst size. We also demonstrate that phage infection alters the expression of bacterial genes associated with intra- and interbacterial interactions, including genes involved in quorum sensing and polymicrobial competition. Together, our results suggest that phage predation has the potential to influence complex microbial behavior and may dictate how bacteria respond to external environmental stimuli. These responses could have collateral effects (positive or negative) on microbial communities, such as the host microbiota, during phage therapy.
Collapse
|
7
|
Jiang J, Lin C, Zhang J, Wang Y, Shen L, Yang K, Xiao W, Li Y, Zhang L, Liu J. Transcriptome Changes of Mycobacterium marinum in the Process of Resuscitation From Hypoxia-Induced Dormancy. Front Genet 2020; 10:1359. [PMID: 32117415 PMCID: PMC7025489 DOI: 10.3389/fgene.2019.01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022] Open
Abstract
Nearly one-third of the world's population is latently infected with Mycobacterium tuberculosis (M. tb), which represents a huge disease reservoir for reactivation and a major obstacle for effective control of tuberculosis. During latent infection, M. tb is thought to enter nonreplicative dormant states by virtue of its response to hypoxia and nutrient-deprived conditions. Knowledge of the genetic programs used to facilitate entry into and exit from the nonreplicative dormant states remains incomplete. In this study, we examined the transcriptional changes of Mycobacterium marinum (M. marinum), a pathogenic mycobacterial species closely related to M. tb, at different stages of resuscitation from hypoxia-induced dormancy. RNA-seq analyses were performed on M. marinum cultures recovered at multiple time points after resuscitation. Differentially expressed genes (DEGs) at each time period were identified and analyzed. Co-expression networks of transcription factors and DEGs in each period were constructed. In addition, we performed a weighted gene co-expression network analysis (WGCNA) on all genes and obtained 12 distinct gene modules. Collectively, these data provided valuable insight into the transcriptome changes of M. marinum upon resuscitation as well as gene module function of the bacteria during active metabolism and growth.
Collapse
Affiliation(s)
- Jun Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Junli Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yuchen Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lifang Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Kunpeng Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Wenxuan Xiao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Santamaría RI, Sevillano L, Martín J, Genilloud O, González I, Díaz M. The XRE-DUF397 Protein Pair, Scr1 and Scr2, Acts as a Strong Positive Regulator of Antibiotic Production in Streptomyces. Front Microbiol 2018; 9:2791. [PMID: 30524403 PMCID: PMC6262351 DOI: 10.3389/fmicb.2018.02791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/30/2018] [Indexed: 12/18/2022] Open
Abstract
The xenobiotic response element (XRE) transcription factors belong to a regulator family frequently found in Streptomyces that are often followed by small proteins with a DUF397 domain. In fact, the pair XRE-DUF397 has been proposed to comprise toxin–antitoxin (TA) type II systems. In this work, we demonstrate that one of these putative TA-systems, encoded by the genes SCO4441 and SCO4442 of Streptomyces coelicolor, and denominated Scr1/Scr2 (which stands for S. coelicolorregulator), does not behave as a toxin–antitoxin system under the conditions used as was originally expected. Instead the pair Scr1/Scr2 acts as a strong positive regulator of endogenous antibiotic production in S. coelicolor. The analysis of the 19 Streptomyces strains tested determined that overexpression of the pair Scr1/Scr2 drastically induces the production of antibiotics not only in S. coelicolor, but also in Streptomyces lividans, Streptomyces peucetius, Streptomyces steffisburgensis and Streptomyces sp. CA-240608. Our work also shows that Scr1 needs Scr2 to exert positive regulation on antibiotic production.
Collapse
Affiliation(s)
- Ramón I Santamaría
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Laura Sevillano
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Ignacio González
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica, Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
10
|
Impacts of horizontal gene transfer on the compact genome of the clavulanic acid-producing Streptomyces strain F613-1. 3 Biotech 2018; 8:472. [PMID: 30456006 DOI: 10.1007/s13205-018-1498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
Mobile genetic elements involved in mediating horizontal transfer events contribute to bacterial evolution, and bacterial genomic plasticity and instability result in variation in functional genetic information in Streptomyces secondary metabolism. In a previous study, we reported the complete genome sequence of the industrial Streptomyces strain F613-1, which produces high yields of clavulanic acid. In this study, we used comparative genomics and bioinformatics to investigate the unique genomic features of this strain. Taken together, comparative genomics were used to systematically investigate secondary metabolism capabilities and indicated that frequent exchange of genetic materials between Streptomyces replicons may shape the remarkable diversities in their secondary metabolite repertoires. Moreover, a 136.9-kb giant region of plasticity (RGP) was found in the F613-1 chromosome, and the chromosome and plasmid pSCL4 are densely packed with an exceptionally large variety of potential secondary metabolic gene clusters, involving several determinants putatively accounting for antibiotic production. In addition, the differences in the architecture and size of plasmid pSCL4 between F613-1 and ATCC 27064 suggest that the pSCL4 plasmid could evolve from pSCL4-like and pSCL2-like extrachromosomal replicons. Furthermore, the genomic analyses revealed that strain F613-1 has developed specific genomic architectures and genetic patterns that are well suited to meet the requirements of industrial innovation processes.
Collapse
|
11
|
Protein Secretion in Gram-Positive Bacteria: From Multiple Pathways to Biotechnology. Curr Top Microbiol Immunol 2017; 404:267-308. [PMID: 27885530 DOI: 10.1007/82_2016_49] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of Gram-positive bacteria are important players in industry as producers of a diverse array of economically interesting metabolites and proteins. As discussed in this overview, several Gram-positive bacteria are valuable hosts for the production of heterologous proteins. In contrast to Gram-negative bacteria, proteins secreted by Gram-positive bacteria are released into the culture medium where conditions for correct folding are more appropriate, thus facilitating the isolation and purification of active proteins. Although seven different protein secretion pathways have been identified in Gram-positive bacteria, the majority of heterologous proteins are produced via the general secretion or Sec pathway. Not all proteins are equally well secreted, because heterologous protein production often faces bottlenecks including hampered secretion, susceptibility to proteases, secretion stress, and metabolic burden. These bottlenecks are associated with reduced yields leading to non-marketable products. In this chapter, besides a general overview of the different protein secretion pathways, possible hurdles that may hinder efficient protein secretion are described and attempts to improve yield are discussed including modification of components of the Sec pathway. Attention is also paid to omics-based approaches that may offer a more rational approach to optimize production of heterologous proteins.
Collapse
|
12
|
Li X, Wang J, Shi M, Wang W, Corre C, Yang K. Evidence for the formation of ScbR/ScbR2 heterodimers and identification of one of the regulatory targets in Streptomyces coelicolor. Appl Microbiol Biotechnol 2017; 101:5333-5340. [PMID: 28439624 DOI: 10.1007/s00253-017-8275-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The homologous transcriptional regulators ScbR and ScbR2 have previously been identified as γ-butyrolactone (GBL) and antibiotic receptors, respectively. They regulate diverse physiological processes in Streptomyces coelicolor in response to GBL and antibiotic signals. In this study, ScbR and ScbR2 proteins were shown to interact using a bacterial two-hybrid system where adenylate cyclase activity was reconstituted in Escherichia coli BTH101. These ScbR/ScbR2 interactions in S. coelicolor were then demonstrated by co-immunoprecipitation. The ScbR/ScbR2 heterodimer was shown to co-exist with their ScbR and ScbR2 respective homodimers. When potential operator targets in S. coelicolor were investigated, the heterodimer was found to bind in the promoter region of sco5158, which however was not a target for ScbR or ScbR2 homodimers. These results revealed a new mechanism of regulation by ScbR and ScbR2 in S. coelicolor.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mingxin Shi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Christophe Corre
- Department of Chemistry and School of Life Sciences, University of Warwick, Coventry, UK
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol 2017; 25:192-204. [DOI: 10.1016/j.tim.2016.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023]
|
14
|
Abstract
Type VII secretion (T7S) systems of mycobacteria secrete substrates over the unusual diderm cell envelope. Furthermore, T7S gene clusters are present throughout the phylum Actinobacteria, and functional T7S-like systems have been identified in Firmicutes. Most of the T7S substrates can be divided into two families: the Esx proteins, which are found in both Firmicutes and Actinobacteria, and the PE and PPE proteins, which are more mycobacterium-specific. Members of both families have been shown to be secreted as folded heterodimers, suggesting that this is a conserved feature of T7S substrates. Most knowledge of the mechanism of T7S and the roles of T7S systems in virulence comes from studies of pathogenic mycobacteria. These bacteria can contain up to five T7S systems, called ESX-1 to ESX-5, each having its own role in bacterial physiology and virulence. In this article, we discuss the general composition of T7S systems and the role of the individual components in secretion. These conserved components include two membrane proteins with (predicted) enzymatic activities: a predicted ATPase (EccC), likely to be required for energy provision of T7S, and a subtilisin-like protease (MycP) involved in processing of specific substrates. Additionally, we describe the role of a conserved intracellular chaperone in T7S substrate recognition, based on recently published crystal structures and molecular analysis. Finally, we discuss system-specific features of the different T7S systems in mycobacteria and their role in pathogenesis and provide an overview of the role of T7S in virulence of other pathogenic bacteria.
Collapse
|
15
|
Das C, Ghosh TS, Mande SS. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization. J Biosci 2016; 41:133-43. [PMID: 26949095 DOI: 10.1007/s12038-016-9599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.
Collapse
Affiliation(s)
- Chandrani Das
- Bio-Sciences R and D Division, TCS Innovation Labs, Tata Research Development and Design Centre, Tata Consultancy Service Ltd., Pune 411 013, India
| | | | | |
Collapse
|
16
|
Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2016; 2:16183. [PMID: 27723728 PMCID: PMC5325307 DOI: 10.1038/nmicrobiol.2016.183] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022]
Abstract
The type VII protein secretion system (T7SS) plays a critical role in the virulence of human pathogens including Mycobacterium tuberculosis and Staphylococcus aureus. Here, we report that the S. aureus T7SS secretes a large nuclease toxin, EsaD. The toxic activity of EsaD is neutralized during its biosynthesis through complex formation with an antitoxin, EsaG, which binds to its C-terminal nuclease domain. The secretion of EsaD is dependent on a further accessory protein, EsaE, that does not interact with the nuclease domain, but instead binds to the EsaD N-terminal region. EsaE has a dual cytoplasmic/membrane localization, and membrane-bound EsaE interacts with the T7SS secretion ATPase, EssC, implicating EsaE in targeting the EsaDG complex to the secretion apparatus. EsaD and EsaE are co-secreted, whereas EsaG is found only in the cytoplasm and may be stripped off during the secretion process. Strain variants of S. aureus that lack esaD encode at least two copies of EsaG-like proteins, most probably to protect themselves from the toxic activity of EsaD secreted by esaD+ strains. In support of this, a strain overproducing EsaD elicits significant growth inhibition against a sensitive strain. We conclude that the T7SS may play unexpected and key roles in bacterial competitiveness.
Collapse
Affiliation(s)
- Zhenping Cao
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - M Guillermina Casabona
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Holger Kneuper
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James D Chalmers
- Division of Cardiovascular &Diabetes Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L, Carvalho F, Pucciarelli MG, García-Del Portillo F, Sousa S, Cabanes D. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 2016; 8:993-1004. [PMID: 27723420 DOI: 10.1080/21505594.2016.1244589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Bacterial pathogenicity deeply depends on the ability to secrete virulence factors that bind specific targets on host cells and manipulate host responses. The Gram-positive bacterium Listeria monocytogenes is a human foodborne pathogen that remains a serious public health concern. To transport proteins across its cell envelope, this facultative intracellular pathogen engages a set of specialized secretion systems. Here we show that L. monocytogenes EGDe uses a specialized secretion system, named ESX-1, to secrete EsxA, a homolog of the virulence determinants ESAT-6 and EsxA of Mycobacterium tuberculosis and Staphylococcus aureus, respectively. Our data show that the L. monocytogenes ESX-1 secretion system and its substrates are dispensable for bacterial invasion and intracellular multiplication in eukaryotic cell lines. Surprisingly, we found that the EssC-dependent secretion of EsxA has a detrimental effect on L. monocytogenes in vivo infection.
Collapse
Affiliation(s)
- Jorge Pinheiro
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Olga Reis
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Ana Vieira
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Ines M Moura
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Luisa Zanolli Moreno
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,d Laboratório de Saúde Pública , Faculdade de Saúde Pública, Universidade de São Paulo , São Paulo , Brazil
| | - Filipe Carvalho
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal.,c Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - M Graciela Pucciarelli
- e Centro Nacional de Biotecnología-CSIC (CNB-CSIC) , Madrid , Spain.,f Departamento de Biología Molecular , Universidad Autónoma de Madrid, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC) , Madrid , Spain
| | | | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto , Porto , Portugal.,b Group of Molecular Microbiology , Instituto de Biologia Molecular e Celular - IBMC , Porto , Portugal
| |
Collapse
|
18
|
Schrempf H, Merling P. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity. Microb Biotechnol 2015; 8:644-58. [PMID: 25851532 PMCID: PMC4476819 DOI: 10.1111/1751-7915.12274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 11/27/2022] Open
Abstract
We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential.
Collapse
Affiliation(s)
- Hildgund Schrempf
- FB Biology/Chemistry, Applied Genetics of Microorganisms, University Osnabrück, Barbarastr. 13, D-49069, Osnabrück, Germany
| | - Philipp Merling
- FB Biology/Chemistry, Applied Genetics of Microorganisms, University Osnabrück, Barbarastr. 13, D-49069, Osnabrück, Germany
| |
Collapse
|
19
|
Abstract
Bacterial secretion systems are sophisticated molecular machines that fulfil a wide range of important functions, which reach from export/secretion of essential proteins or virulence factors to the implication in conjugation processes. In contrast to the widely distributed Sec and Twin Arginine Translocation (TAT) systems, the recently identified ESX/type VII systems show a more restricted distribution and are typical for mycobacteria and other high-GC Actinobacteria. Similarly, type VII-like secretion systems have been described in low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the most complex organization of type VII secretion systems currently known is found in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like systems in Firmicutes. In this chapter, we describe common and divergent features of type VII- and type VII-like secretion pathways and also comment on their biological key roles, many of which are related to species-/genus-specific host-pathogen interactions and/or virulence mechanisms.
Collapse
|
20
|
Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci U S A 2014; 111:14758-63. [PMID: 25275011 DOI: 10.1073/pnas.1409345111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly 10% of the coding capacity of the Mycobacterium tuberculosis genome is devoted to two highly expanded and enigmatic protein families called PE and PPE, some of which are important virulence/immunogenicity factors and are secreted during infection via a unique alternative secretory system termed "type VII." How PE-PPE proteins function during infection and how they are translocated to the bacterial surface through the five distinct type VII secretion systems [ESAT-6 secretion system (ESX)] of M. tuberculosis is poorly understood. Here, we report the crystal structure of a PE-PPE heterodimer bound to ESX secretion-associated protein G (EspG), which adopts a novel fold. This PE-PPE-EspG complex, along with structures of two additional EspGs, suggests that EspG acts as an adaptor that recognizes specific PE-PPE protein complexes via extensive interactions with PPE domains, and delivers them to ESX machinery for secretion. Surprisingly, secretion of most PE-PPE proteins in M. tuberculosis is likely mediated by EspG from the ESX-5 system, underscoring the importance of ESX-5 in mycobacterial pathogenesis. Moreover, our results indicate that PE-PPE domains function as cis-acting targeting sequences that are read out by EspGs, revealing the molecular specificity for secretion through distinct ESX pathways.
Collapse
|
21
|
Champion MM, Williams EA, Pinapati RS, Champion PAD. Correlation of phenotypic profiles using targeted proteomics identifies mycobacterial esx-1 substrates. J Proteome Res 2014; 13:5151-64. [PMID: 25106450 PMCID: PMC4227905 DOI: 10.1021/pr500484w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The
Esx/WXG-100 (ESAT-6/Wss) exporters are multiprotein complexes
that promote protein translocation across the cytoplasmic membrane
in a diverse range of pathogenic and nonpathogenic bacterial species.
The Esx-1 (ESAT-6 System-1) system mediates virulence factor translocation
in mycobacterial pathogens, including the human pathogen Mycobacterium
tuberculosis. Although several genes have been associated
with Esx-1-mediated transport and virulence, the contribution of individual
Esx-1 genes to export is largely undefined. A unique aspect of Esx-1
export is that several substrates require each other for export/stability.
We exploited substrate “codependency” to identify Esx-1
substrates. We simultaneously quantified changes in the levels of
13 Esx-1 proteins from both secreted and cytosolic protein fractions
generated from 16 Esx-1-deficient Mycobacterium marinum strains in a single experiment using MRM/SRM targeted mass spectrometry.
This expansion of measurable Esx-1 proteins allowed us to define statistical
rules for assigning novel substrates using phenotypic profiles of
known Esx-1 substrates. Using this approach, we identified three additional
Esx-1 substrates encoded by the esx-1 region. Our
studies begin to address how disruption of specific genes affects
several proteins in the Esx-1 complex. Overall, our findings illuminate
relationships between Esx-1 proteins and create a framework for the
identification of secreted substrates applicable to other protein
exporters and pathways.
Collapse
Affiliation(s)
- Matthew M Champion
- Department of Chemistry and Biochemistry, ‡Department of Biological Sciences, §Eck Institute for Global Health, and ∥Center for Rare and Neglected Diseases, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | |
Collapse
|
22
|
Homeostasis of N-α-terminal acetylation of EsxA correlates with virulence in Mycobacterium marinum. Infect Immun 2014; 82:4572-86. [PMID: 25135684 DOI: 10.1128/iai.02153-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mycobacterial Esx-1 (ESAT-6 system 1) exporter translocates virulence factors across the cytoplasmic membrane to the cell wall, cell surface, and the bacteriological medium in vitro. The mechanisms underlying substrate targeting to distinct locations are unknown. Several Esx-1 substrates are N-α-terminally acetylated. The role of this rare modification in bacteria is unclear. We sought to identify genes required for Esx-1 substrate modification, transport, and localization. Pathogenic mycobacteria lyse Acanthamoeba castellanii in an Esx-1-dependent manner. We conducted a genetic screen to identify Mycobacterium marinum strains which failed to lyse amoebae. We identified a noncytotoxic M. marinum strain with a transposon insertion in a predicted N-α-terminal acetyltransferase not previously linked to mycobacterial pathogenesis. Disruption of this gene led to attenuation of virulence, failure to induce a type I interferon response during macrophage infection, and loss of hemolytic activity. The major Esx-1 substrates, EsxA and EsxB, were exported to the cell surface, but only low levels were released into the bacteriological medium. The balance of EsxA N-α-terminal acetylation was disrupted, resulting in a mycobacterial strain in which surface-associated EsxA was hyperacetylated. Genetic complementation completely restored Esx-1 function and the levels of N-α-terminally acetylated EsxA on the surface but restored only low levels of Esx-1 substrates in the bacteriological medium. Our results reveal a novel gene required for mycobacterial Esx-1 export. Our findings indicate that maintaining the homeostasis of Esx-1 substrate N-α-terminal acetylation is essential for Esx-1-mediated virulence. We propose an inverse correlation between EsxA acetylation and virulence.
Collapse
|
23
|
Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jäger F, Cargill JS, Chalmers J, van der Kooi-Pol MM, van Dijl JM, Ryan RP, Hunter WN, Palmer T. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 2014; 93:928-43. [PMID: 25040609 PMCID: PMC4285178 DOI: 10.1111/mmi.12707] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions.
Collapse
Affiliation(s)
- Holger Kneuper
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM, Burton BM. Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. J Mol Biol 2014; 427:1119-32. [PMID: 24979678 DOI: 10.1016/j.jmb.2014.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
Among protein secretion systems, there are specialized ATPases that serve different functions such as substrate recognition, substrate unfolding, and assembly of the secretory machinery. ESX (early secretory antigen target 6 kDa secretion) protein secretion systems require FtsK/SpoIIIE family ATPases but the specific function of these ATPases is poorly understood. The ATPases of ESX secretion systems have a unique domain architecture among proteins of the FtsK/SpoIIIE family. All well-studied FtsK family ATPases to date have one ATPase domain and oligomerize to form a functional molecular machine, most commonly a hexameric ring. In contrast, the ESX ATPases have three ATPase domains, encoded either by a single gene or by two operonic genes. It is currently unknown which of the ATPase domains is catalytically functional and whether each domain plays the same or a different function. Here we focus on the ATPases of two ESX systems, the ESX-1 system of Mycobacterium tuberculosis and the yuk system of Bacillus subtilis. We show that ATP hydrolysis by the ESX ATPase is required for secretion, suggesting that this enzyme at least partly fuels protein translocation. We further show that individual ATPase domains play distinct roles in substrate translocation and complex formation. Comparing the single-chain and split ESX ATPases, we reveal differences in the requirements of these unique secretory ATPases.
Collapse
Affiliation(s)
- Talia L Ramsdell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Laura A Huppert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tatyana A Sysoeva
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | - Briana M Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc Natl Acad Sci U S A 2014; 111:7653-8. [PMID: 24828531 DOI: 10.1073/pnas.1322200111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein secretion typically involves translocation of unfolded polypeptides or transport of monomeric folded proteins. Here we provide, to our knowledge, the first experimental evidence for secretion of an intact multimeric complex requiring a signal formed by both members of the complex. Using systematic mutagenesis of a substrate involved in early secretory antigen 6 kDa (ESX) secretion in Bacillus subtilis, we demonstrate that export of the substrate requires two independent motifs. Using mixed dimers, we show that these motifs must form a composite secretion signal in which one motif is contributed by each subunit of the dimer. Finally, through targeted crosslinking we show that the dimer formed in the cell is likely secreted as a single unit. We discuss implications of this substrate recognition mechanism for the biogenesis and quality control of secretion substrates and describe its likely conservation across ESX systems.
Collapse
|
26
|
Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM, Burton BM. The ESX system in Bacillus subtilis mediates protein secretion. PLoS One 2014; 9:e96267. [PMID: 24798022 PMCID: PMC4010439 DOI: 10.1371/journal.pone.0096267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/07/2014] [Indexed: 11/18/2022] Open
Abstract
Esat-6 protein secretion systems (ESX or Ess) are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.
Collapse
Affiliation(s)
- Laura A. Huppert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Talia L. Ramsdell
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - David A. Sarracino
- Thermo Fisher Scientific, BRIMS Unit, Cambridge, Massachusetts, United States of America
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Briana M. Burton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Licona-Cassani C, Lim S, Marcellin E, Nielsen LK. Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome. Mol Cell Proteomics 2014; 13:1219-30. [PMID: 24615062 DOI: 10.1074/mcp.m113.033951] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Actinomycetes undergo a dramatic reorganization of metabolic and cellular machinery during a brief period of growth arrest ("metabolic switch") preceding mycelia differentiation and the onset of secondary metabolite biosynthesis. This study explores the role of phosphorylation in coordinating the metabolic switch in the industrial actinomycete Saccharopolyspora erythraea. A total of 109 phosphopeptides from 88 proteins were detected across a 150-h fermentation using open-profile two-dimensional LC-MS proteomics and TiO(2) enrichment. Quantitative analysis of the phosphopeptides and their unphosphorylated cognates was possible for 20 pairs that also displayed constant total protein expression. Enzymes from central carbon metabolism such as putative acetyl-coenzyme A carboxylase, isocitrate lyase, and 2-oxoglutarate dehydrogenase changed dramatically in the degree of phosphorylation during the stationary phase, suggesting metabolic rearrangement for the reutilization of substrates and the production of polyketide precursors. In addition, an enzyme involved in cellular response to environmental stress, trypsin-like serine protease (SACE_6340/NC_009142_6216), decreased in phosphorylation during the growth arrest stage. More important, enzymes related to the regulation of protein synthesis underwent rapid phosphorylation changes during this stage. Whereas the degree of phosphorylation of ribonuclease Rne/Rng (SACE_1406/NC_009142_1388) increased during the metabolic switch, that of two ribosomal proteins, S6 (SACE_7351/NC_009142_7233) and S32 (SACE_6101/NC_009142_5981), dramatically decreased during this stage of the fermentation, supporting the hypothesis that ribosome subpopulations differentially regulate translation before and after the metabolic switch. Overall, we show the great potential of phosphoproteomic studies to explain microbial physiology and specifically provide evidence of dynamic protein phosphorylation events across the developmental cycle of actinomycetes.
Collapse
Affiliation(s)
- Cuauhtemoc Licona-Cassani
- §Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
28
|
A novel ESX-1 locus reveals that surface-associated ESX-1 substrates mediate virulence in Mycobacterium marinum. J Bacteriol 2014; 196:1877-88. [PMID: 24610712 DOI: 10.1128/jb.01502-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EsxA (ESAT-6) and EsxB (CFP-10) are virulence factors exported by the ESX-1 system in mycobacterial pathogens. In Mycobacterium marinum, an established model for ESX-1 secretion in Mycobacterium tuberculosis, genes required for ESX-1 export reside at the extended region of difference 1 (RD1) locus. In this study, a novel locus required for ESX-1 export in M. marinum was identified outside the RD1 locus. An M. marinum strain bearing a transposon-insertion between the MMAR_1663 and MMAR_1664 genes exhibited smooth-colony morphology, was deficient for ESX-1 export, was nonhemolytic, and was attenuated for virulence. Genetic complementation revealed a restoration of colony morphology and a partial restoration of virulence in cell culture models. Yet hemolysis and the export of ESX-1 substrates into the bacteriological medium in vitro as measured by both immunoblotting and quantitative proteomics were not restored. We show that genetic complementation of the transposon insertion strain partially restored the translocation of EsxA and EsxB to the mycobacterial cell surface. Our findings indicate that the export of EsxA and EsxB to the cell surface, rather than secretion into the bacteriological medium, correlates with virulence in M. marinum. Together, these findings not only expand the known genetic loci required for ESX-1 secretion in M. marinum but also provide an explanation for the observed disparity between in vitro ESX-1 export and virulence.
Collapse
|
29
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
30
|
Deng W, Xiang X, Xie J. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence. Curr Microbiol 2013; 68:558-67. [PMID: 24362585 DOI: 10.1007/s00284-013-0507-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Beibei, 400715, Chongqing, China,
| | | | | |
Collapse
|
31
|
Fyans JK, Bignell D, Loria R, Toth I, Palmer T. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. MOLECULAR PLANT PATHOLOGY 2013; 14:119-30. [PMID: 23009676 PMCID: PMC6638804 DOI: 10.1111/j.1364-3703.2012.00835.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Streptomyces scabies is a model organism for the investigation of plant-microbe interactions in Gram-positive bacteria. Here, we investigate the type VII protein secretion system (T7SS) in S. scabies; the T7SS is required for the virulence of other Gram-positive bacteria, including Mycobacterium tuberculosis and Staphylococcus aureus. The hallmarks of a functional T7SS are an EccC protein that forms an essential component of the secretion apparatus and two small, sequence-related substrate proteins, EsxA and EsxB. A putative transmembrane protein, EccD, may also be associated with T7S in Actinobacteria. In this study, we constructed strains of the plant pathogen S. scabies carrying marked mutations in genes coding for EccC, EccD, EsxA and EsxB. Unexpectedly, we showed that all four mutant strains retain full virulence towards several plant hosts. However, disruption of the esxA or esxB, but not eccC or eccD, genes affects S. scabies development, including a delay in sporulation, abnormal spore chains and resistance to lysis by the Streptomyces-specific phage ϕC31. We further showed that these phenotypes are specific to the loss of the T7SS substrate proteins EsxA and EsxB, and are not observed when components of the T7SS secretion machinery are lacking. Taken together, these results imply an unexpected intracellular role for EsxA and EsxB.
Collapse
Affiliation(s)
- Joanna K Fyans
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
32
|
Clark LC, Seipke RF, Prieto P, Willemse J, van Wezel GP, Hutchings MI, Hoskisson PA. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci Rep 2013; 3:1109. [PMID: 23346366 PMCID: PMC3552289 DOI: 10.1038/srep01109] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/06/2012] [Indexed: 11/09/2022] Open
Abstract
Understanding the evolution of virulence is key to appreciating the role specific loci play in pathogenicity. Streptomyces species are generally non-pathogenic soil saprophytes, yet within their genome we can find homologues of virulence loci. One example of this is the mammalian cell entry (mce) locus, which has been characterised in Mycobacterium tuberculosis. To investigate the role in Streptomyces we deleted the mce locus and studied its impact on cell survival, morphology and interaction with other soil organisms. Disruption of the mce cluster resulted in virulence towards amoebae (Acanthamoeba polyphaga) and reduced colonization of plant (Arabidopsis) models, indicating these genes may play an important role in Streptomyces survival in the environment. Our data suggest that loss of mce in Streptomyces spp. may have profound effects on survival in a competitive soil environment, and provides insight in to the evolution and selection of these genes as virulence factors in related pathogenic organisms.
Collapse
Affiliation(s)
- Laura C Clark
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Schneewind O, Missiakas DM. Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 2012; 367:1123-39. [PMID: 22411983 PMCID: PMC3297441 DOI: 10.1098/rstb.2011.0210] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The cell wall peptidoglycan of Gram-positive bacteria functions as a surface organelle for the transport and assembly of proteins that interact with the environment, in particular, the tissues of an infected host. Signal peptide-bearing precursor proteins are secreted across the plasma membrane of Gram-positive bacteria. Some precursors carry C-terminal sorting signals with unique sequence motifs that are cleaved by sortase enzymes and linked to the cell wall peptidoglycan of vegetative forms or spores. The sorting signals of pilin precursors are cleaved by pilus-specific sortases, which generate covalent bonds between proteins leading to the assembly of fimbrial structures. Other precursors harbour surface (S)-layer homology domains (SLH), which fold into a three-pronged spindle structure and bind secondary cell wall polysaccharides, thereby associating with the surface of specific Gram-positive microbes. Type VII secretion is a non-canonical secretion pathway for WXG100 family proteins in mycobacteria. Gram-positive bacteria also secrete WXG100 proteins and carry unique genes that either contribute to discrete steps in secretion or represent distinctive substrates for protein transport reactions.
Collapse
Affiliation(s)
- Olaf Schneewind
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
34
|
van der Woude AD, Luirink J, Bitter W. Getting across the cell envelope: mycobacterial protein secretion. Curr Top Microbiol Immunol 2012; 374:109-34. [PMID: 23239236 DOI: 10.1007/82_2012_298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.
Collapse
Affiliation(s)
- Aniek D van der Woude
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
35
|
Ilghari D, Lightbody KL, Veverka V, Waters LC, Muskett FW, Renshaw PS, Carr MD. Solution structure of the Mycobacterium tuberculosis EsxG·EsxH complex: functional implications and comparisons with other M. tuberculosis Esx family complexes. J Biol Chem 2011; 286:29993-30002. [PMID: 21730061 PMCID: PMC3191040 DOI: 10.1074/jbc.m111.248732] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis encodes five type VII secretion systems that are responsible for exporting a number of proteins, including members of the Esx family, which have been linked to tuberculosis pathogenesis and survival within host cells. The gene cluster encoding ESX-3 is regulated by the availability of iron and zinc, and secreted protein products such as the EsxG·EsxH complex have been associated with metal ion acquisition. EsxG and EsxH have previously been shown to form a stable 1:1 heterodimeric complex, and here we report the solution structure of the complex, which features a core four-helix bundle decorated at both ends by long, highly flexible, N- and C-terminal arms that contain a number of highly conserved residues. Despite clear similarities in the overall backbone fold to the EsxA·EsxB complex, the structure reveals some striking differences in surface features, including a potential protein interaction site on the surface of the EsxG·EsxH complex. EsxG·EsxH was also found to contain a specific Zn2+ binding site formed from a cluster of histidine residues on EsxH, which are conserved across obligate mycobacterial pathogens including M. tuberculosis and Mycobacterium leprae. This site may reflect an essential role in zinc ion acquisition or point to Zn2+-dependent regulation of its interaction with functional partner proteins. Overall, the surface features of both the EsxG·EsxH and the EsxA·EsxB complexes suggest functions mediated via interactions with one or more target protein partners.
Collapse
Affiliation(s)
- Dariush Ilghari
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Schrempf H, Koebsch I, Walter S, Engelhardt H, Meschke H. Extracellular Streptomyces vesicles: amphorae for survival and defence. Microb Biotechnol 2011; 4:286-99. [PMID: 21342473 PMCID: PMC3818868 DOI: 10.1111/j.1751-7915.2011.00251.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/12/2011] [Indexed: 11/27/2022] Open
Abstract
Blue-pigmented exudates arise as droplets on sporulated lawns of Streptomyces coelicolor M110 grown on agar plates. Our electron microscopical and biochemical studies suggest that droplets contain densely packed vesicles with large assemblies of different protein types and/or the polyketide antibiotic actinorhodin. Frozen-hydrated vesicles were unilamellar with a typical bilayer membrane, and ranged from 80 to 400 nm in diameter with a preferred width of 150-300 nm. By means of cryo-electron tomography, three types were reconstructed three-dimensionally: vesicles that were filled with particulate material, likely protein assemblies, those that contained membrane-bound particles, and a vesicle that showed a higher contrast inside, but lacked particles. Our LC/MS analyses of generated tryptic peptides led to the identification of distinct proteins that carry often a predicted N-terminal signal peptide with a twin-arginine motif or lack a canonical signal sequence. The proteins are required for a range of processes: the acquisition of inorganic as well as organic phosphate, iron ions, and of distinct carbon sources, energy metabolism and redox balance, defence against oxidants and tellurites, the tailoring of actinorhodin, folding and assembly of proteins, establishment of turgor, and different signalling cascades. Our novel findings have immense implications for understanding new avenues of environmental biology of streptomycetes and for biotechnological applications.
Collapse
Affiliation(s)
- Hildgund Schrempf
- FB Biology/Chemistry, Applied Genetics of Microorganisms, University Osnabrück, Barbarastr. 13, D-49069 Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
37
|
A transposon insertion single-gene knockout library and new ordered cosmid library for the model organism Streptomyces coelicolor A3(2). Antonie van Leeuwenhoek 2010; 99:515-22. [DOI: 10.1007/s10482-010-9518-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/30/2010] [Indexed: 01/25/2023]
|
38
|
Sutcliffe IC. New insights into the distribution of WXG100 protein secretion systems. Antonie Van Leeuwenhoek 2010; 99:127-31. [PMID: 20852931 DOI: 10.1007/s10482-010-9507-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/06/2010] [Indexed: 11/25/2022]
Abstract
Protein secretion is an important aspect of bacterial interaction with the environment. The WXG100 secretion system is a poorly understood pathway for the secretion of members of the WXG100 protein family in Firmicutes and Actinobacteria, notably Mycobacteria. This pathway has also been termed the Type VII secretion system but there are semantic problems with this nomenclature. This Perspective reviews the phylum level distribution of WXG100 secretion systems and presents comparative genomic evidence that these systems are present in several Chloroflexi and in some members of the phyla Cyanobacteria, Lentisphaerae, Proteobacteria (notably Helicobacter pylori) and Verrucomicrobiae. These findings have implications for the nomenclature of the WXG100 secretion pathway.
Collapse
Affiliation(s)
- Iain C Sutcliffe
- School of Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|