1
|
Zhang H, Yang J, Cheng J, Zeng J, Ma X, Lin J. PQS and pyochelin in Pseudomonas aeruginosa share inner membrane transporters to mediate iron uptake. Microbiol Spectr 2024; 12:e0325623. [PMID: 38171001 PMCID: PMC10846271 DOI: 10.1128/spectrum.03256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jing Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Xin Ma
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
2
|
Martínez D, Oyarzún-Salazar R, Quilapi AM, Coronado J, Enriquez R, Vargas-Lagos C, Oliver C, Santibañez N, Godoy M, Muñoz JL, Vargas-Chacoff L, Romero A. Live and inactivated Piscirickettsia salmonis activated nutritional immunity in Atlantic salmon ( Salmo salar). Front Immunol 2023; 14:1187209. [PMID: 37187753 PMCID: PMC10175622 DOI: 10.3389/fimmu.2023.1187209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional immunity regulates the homeostasis of micronutrients such as iron, manganese, and zinc at the systemic and cellular levels, preventing the invading microorganisms from gaining access and thereby limiting their growth. Therefore, the objective of this study was to evaluate the activation of nutritional immunity in specimens of Atlantic salmon (Salmo salar) that are intraperitoneally stimulated with both live and inactivated Piscirickettsia salmonis. The study used liver tissue and blood/plasma samples on days 3, 7, and 14 post-injections (dpi) for the analysis. Genetic material (DNA) of P. salmonis was detected in the liver tissue of fish stimulated with both live and inactivated P. salmonis at 14 dpi. Additionally, the hematocrit percentage decreased at 3 and 7 dpi in fish stimulated with live P. salmonis, unchanged in fish challenged with inactivated P. salmonis. On the other hand, plasma iron content decreased during the experimental course in fish stimulated with both live and inactivated P. salmonis, although this decrease was statistically significant only at 3 dpi. Regarding the immune-nutritional markers such as tfr1, dmt1, and ireg1 were modulated in the two experimental conditions, compared to zip8, ft-h, and hamp, which were down-regulated in fish stimulated with live and inactivated P. salmonis during the course experimental. Finally, the intracellular iron content in the liver increased at 7 and 14 dpi in fish stimulated with live and inactivated P. salmonis, while the zinc content decreased at 14 dpi under both experimental conditions. However, stimulation with live and inactivated P. salmonis did not alter the manganese content in the fish. The results suggest that nutritional immunity does not distinguish between live and inactivated P. salmonis and elicits a similar immune response. Probably, this immune mechanism would be self-activated with the detection of PAMPs, instead of a sequestration and/or competition of micronutrients by the living microorganism.
Collapse
Affiliation(s)
- Danixa Martínez
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Ricardo Oyarzún-Salazar
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Ana María Quilapi
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - José Coronado
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Ricardo Enriquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Escuela de Tecnología Médica, Facultad de la Salud, Universidad Santo Tomás, Osorno, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Natacha Santibañez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Marcos Godoy
- Laboratorio Institucional de Investigación, Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt, Chile
| | - José Luis Muñoz
- Centro de Investigación y Desarrollo i~mar, Universidad de los Lagos, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), University Austral of Chile, Valdivia, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- *Correspondence: Danixa Martínez, ; Luis Vargas-Chacoff, ; Alex Romero,
| |
Collapse
|
3
|
Nick JA, Dedrick RM, Gray AL, Vladar EK, Smith BE, Freeman KG, Malcolm KC, Epperson LE, Hasan NA, Hendrix J, Callahan K, Walton K, Vestal B, Wheeler E, Rysavy NM, Poch K, Caceres S, Lovell VK, Hisert KB, de Moura VC, Chatterjee D, De P, Weakly N, Martiniano SL, Lynch DA, Daley CL, Strong M, Jia F, Hatfull GF, Davidson RM. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 2022; 185:1860-1874.e12. [PMID: 35568033 PMCID: PMC9840467 DOI: 10.1016/j.cell.2022.04.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 04/14/2022] [Indexed: 01/17/2023]
Abstract
Two mycobacteriophages were administered intravenously to a male with treatment-refractory Mycobacterium abscessus pulmonary infection and severe cystic fibrosis lung disease. The phages were engineered to enhance their capacity to lyse M. abscessus and were selected specifically as the most effective against the subject's bacterial isolate. In the setting of compassionate use, the evidence of phage-induced lysis was observed using molecular and metabolic assays combined with clinical assessments. M. abscessus isolates pre and post-phage treatment demonstrated genetic stability, with a general decline in diversity and no increased resistance to phage or antibiotics. The anti-phage neutralizing antibody titers to one phage increased with time but did not prevent clinical improvement throughout the course of treatment. The subject received lung transplantation on day 379, and systematic culturing of the explanted lung did not detect M. abscessus. This study describes the course and associated markers of a successful phage treatment of M. abscessus in advanced lung disease.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alice L Gray
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eszter K Vladar
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bailey E Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - L Elaine Epperson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Nabeeh A Hasan
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Jo Hendrix
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA; Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimberly Callahan
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Kendra Walton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Emily Wheeler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Silvia Caceres
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Natalia Weakly
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, CO 80206, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael Strong
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Fan Jia
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
4
|
The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol 2022; 30:959-972. [DOI: 10.1016/j.tim.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
|
5
|
Krachler AM, Sirisaengtaksin N, Monteith P, Paine CET, Coates CJ, Lim J. Defective phagocyte association during infection of Galleria mellonella with Yersinia pseudotuberculosis is detrimental to both insect host and microbe. Virulence 2021; 12:638-653. [PMID: 33550901 PMCID: PMC7889024 DOI: 10.1080/21505594.2021.1878672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/03/2022] Open
Abstract
Adhesins facilitate bacterial colonization and invasion of host tissues and are considered virulence factors, but their impact on immune-mediated damage as a driver of pathogenesis remains unclear. Yersinia pseudotuberculosis encodes for a multivalent adhesion molecule (MAM), a mammalian cell entry (MCE) family protein and adhesin. MAMs are widespread in Gram-negative bacteria and enable enteric bacteria to colonize epithelial tissues. Their role in bacterial interactions with the host innate immune system and contribution to pathogenicity remains unclear. Here, we investigated howY. pseudotuberculosis MAM contributes to pathogenesis during infection of the Galleria mellonella insect model. We show that Y. pseudotuberculosis MAM is required for efficient bacterial binding and uptake by hemocytes, the host phagocytes. Y. pseudotuberculosis interactions with insect and mammalian phagocytes are determined by bacterial and host factors. Loss of MAM, and deficient microbe-phagocyte interaction, increased pathogenesis in G. mellonella. Diminished phagocyte association also led to increased bacterial clearance. Furthermore, Y. pseudotuberculosis that failed to engage phagocytes hyperactivated humoral immune responses, most notably melanin production. Despite clearing the pathogen, excessive melanization also increased phagocyte death and host mortality. Our findings provide a basis for further studies investigating how microbe- and host-factors integrate to drive pathogenesis in a tractable experimental system.
Collapse
Affiliation(s)
- Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Pauline Monteith
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - C. E. Timothy Paine
- School of Environmental and Rural Sciences, University of New England, Armidale, Australia
| | - Christopher J. Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales UK
| | - Jenson Lim
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
6
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
7
|
Molecular Mechanism of Nramp-Family Transition Metal Transport. J Mol Biol 2021; 433:166991. [PMID: 33865868 DOI: 10.1016/j.jmb.2021.166991] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The Natural resistance-associated macrophage protein (Nramp) family of transition metal transporters enables uptake and trafficking of essential micronutrients that all organisms must acquire to survive. Two decades after Nramps were identified as proton-driven, voltage-dependent secondary transporters, multiple Nramp crystal structures have begun to illustrate the fine details of the transport process and provide a new framework for understanding a wealth of preexisting biochemical data. Here we review the relevant literature pertaining to Nramps' biological roles and especially their conserved molecular mechanism, including our updated understanding of conformational change, metal binding and transport, substrate selectivity, proton transport, proton-metal coupling, and voltage dependence. We ultimately describe how the Nramp family has adapted the LeuT fold common to many secondary transporters to provide selective transition-metal transport with a mechanism that deviates from the canonical model of symport.
Collapse
|
8
|
T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. Int J Mol Sci 2021; 22:ijms22020478. [PMID: 33418898 PMCID: PMC7825059 DOI: 10.3390/ijms22020478] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.
Collapse
|
9
|
Enniatin A1, A Natural Compound with Bactericidal Activity against Mycobacterium tuberculosis In Vitro. Molecules 2019; 25:molecules25010038. [PMID: 31861925 PMCID: PMC6982829 DOI: 10.3390/molecules25010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Tuberculosis remains a global disease that poses a serious threat to human health, but there is lack of new and available anti-tuberculosis agents to prevent the emergence of drug-resistant strains. To address this problem natural products are still potential sources for the development of novel drugs. Methods: A whole-cell screening approach was utilized to obtain a natural compound enniatin A1 from a natural products library. The target compound’s antibacterial activity against Mycobacterium tuberculosis (M. tuberculosis) was evaluated by using the resazurin reduction micro-plate assay (REMA) method. The cytotoxicity of the compound against Vero cells was measured to calculate the selectivity index. The intracellular inhibition activity of enniatin A1 was determined. We performed its time-kill kinetic assay against M. tuberculosis. We first tested its synergistic effect in combination with the first and second-line anti-tuberculosis drugs. Finally, we measured the membrane potential and intracellular ATP levels of M. tuberculosis after exposure to enniatin A1. Results: We identified enniatinA1 as a potential antibacterial agent against M. tuberculosis, against which it showed strong selectivity. Enniatin A1 exhibited a time-concentration-dependent bactericidal effect against M. tuberculosis, and it displayed synergy with rifamycin, amikacin, and ethambutol. After exposure to enniatinA1, the membrane potential and intracellular ATP levels of M. tuberculosis was significantly decreased. Conclusions: Enniatin A1 exhibits the positive potential anti-tuberculosis agent characteristics.
Collapse
|
10
|
Radin JN, Zhu J, Brazel EB, McDevitt CA, Kehl-Fie TE. Synergy between Nutritional Immunity and Independent Host Defenses Contributes to the Importance of the MntABC Manganese Transporter during Staphylococcus aureus Infection. Infect Immun 2019; 87:e00642-18. [PMID: 30348827 PMCID: PMC6300641 DOI: 10.1128/iai.00642-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
During infection, the host utilizes a diverse array of processes to combat invaders, including the restriction of availability of essential nutrients such as manganese. Similarly to many other pathogens, Staphylococcus aureus possesses two manganese importers, MntH and MntABC. Several infection models have revealed a critical role for MntABC during staphylococcal infection. However, culture-based studies have suggested parity between the two transporters when cells are resisting manganese starvation imposed by the manganese binding immune effector calprotectin. In this investigation, initial elemental analysis revealed that MntABC is the primary transporter responsible for obtaining manganese in culture in the presence of calprotectin. MntABC was also necessary to maintain wild-type levels of manganese-dependent superoxide dismutase activity in the presence of calprotectin. Building on this framework, we investigated if MntABC enabled S. aureus to resist the synergistic actions of nutritional immunity and other host defenses. This analysis revealed that MntABC critically contributes to staphylococcal growth when S. aureus is subjected to manganese limitations and exposed to oxidative stress. This transporter was also important for growth in manganese-limited environments when S. aureus was forced to consume glucose as an energy source, which occurs when it encounters nitric oxide. MntABC also expanded the pH range conducive for S. aureus growth under conditions of manganese scarcity. Collectively, the data presented in this work provide a robust molecular basis for the crucial role of MntABC in staphylococcal virulence. Further, this work highlights the importance of synergy between host defenses and the necessity of evaluating the contribution of virulence factors to pathogenesis in the presence of multiple stressors.
Collapse
Affiliation(s)
- Jana N Radin
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jamie Zhu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Erin B Brazel
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Siderophore-Mediated Iron Acquisition Enhances Resistance to Oxidative and Aromatic Compound Stress in Cupriavidus necator JMP134. Appl Environ Microbiol 2018; 85:AEM.01938-18. [PMID: 30366993 DOI: 10.1128/aem.01938-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023] Open
Abstract
Many bacteria secrete siderophores to enhance iron uptake under iron-restricted conditions. In this study, we found that Cupriavidus necator JMP134, a well-known aromatic pollutant-degrading bacterium, produces an unknown carboxylate-type siderophore named cupriabactin to overcome iron limitation. Using genome mining, targeted mutagenesis, and biochemical analysis, we discovered an operon containing six open reading frames (cubA-F) in the C. necator JMP134 genome that encodes proteins required for the biosynthesis and uptake of cupriabactin. As the dominant siderophore of C. necator JMP134, cupriabactin promotes the growth of C. necator JMP134 under iron-limited conditions via enhanced ferric iron uptake. Furthermore, we demonstrated that the iron concentration-dependent expression of the cub operon is mediated by the ferric uptake regulator (Fur). Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and resistance to oxidative and aromatic compound stress in C. necator JMP134. In conclusion, we identified a carboxylate-type siderophore named cupriabactin, which plays important roles in iron scavenging, bacterial motility, biofilm formation, and stress resistance.IMPORTANCE Since siderophores have been widely exploited for agricultural, environmental, and medical applications, the identification and characterization of new siderophores from different habitats and organisms will have great beneficial applications. Here, we identified a novel siderophore-producing gene cluster in C. necator JMP134. This gene cluster produces a previously unknown carboxylate siderophore, cupriabactin. Physiological analyses revealed that the cupriabactin-mediated iron acquisition system influences swimming motility, biofilm formation, and oxidative stress resistance. Most notably, this system also plays important roles in increasing the resistance of C. necator JMP134 to stress caused by aromatic compounds, which provide a promising strategy to engineer more efficient approaches to degrade aromatic pollutants.
Collapse
|
12
|
MntC-Dependent Manganese Transport Is Essential for Staphylococcus aureus Oxidative Stress Resistance and Virulence. mSphere 2018; 3:3/4/e00336-18. [PMID: 30021878 PMCID: PMC6052334 DOI: 10.1128/msphere.00336-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence. Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH. Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence. IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.
Collapse
|
13
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
14
|
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2017; 114:E2233-E2242. [PMID: 28242693 DOI: 10.1073/pnas.1614902114] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn2+) under oxidative stress. Next, we identified a T6SS-4-dependent Mn2+-binding effector TseM, and its interacting partner MnoT, a Mn2+-specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn2+ across the outer membrane under Mn2+-limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.
Collapse
|
16
|
Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227-3246. [PMID: 27632589 DOI: 10.1111/1462-2920.13525] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Biological metal ions, including Co, Cu, Fe, Mg, Mn, Mo, Ni and Zn ions, are necessary for the survival and the growth of all microorganisms. Their biological functions are linked to their particular chemical properties: they play a role in structuring macromolecules and/or act as co-factors catalyzing diverse biochemical reactions. These metal ions are also essential for microbial pathogens during infection: they are involved in bacterial metabolism and various virulence factor functions. Therefore, during infection, bacteria need to acquire biological metal ions from the host such that there is competition for these ions between the bacterium and the host. Evidence is increasingly emerging of "nutritional immunity" against pathogens in the hosts; this includes strategies making access to metals difficult for infecting bacteria. It is clear that biological metals play key roles during infection and in the battle between the pathogens and the host. Here, we summarize current knowledge about the strategies used by Pseudomonas aeruginosa to access the various biological metals it requires. P. aeruginosa is a medically significant Gram-negative bacterial opportunistic pathogen that can cause severe chronic lung infections in cystic fibrosis patients and that is responsible for nosocomial infections worldwide.
Collapse
Affiliation(s)
- Isabelle J Schalk
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France.
| | - Olivier Cunrath
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413, Illkirch, Strasbourg, France
| |
Collapse
|
17
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
18
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
19
|
Labouta HI, Menina S, Kochut A, Gordon S, Geyer R, Dersch P, Lehr CM. Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery. J Control Release 2015; 220:414-424. [PMID: 26522071 DOI: 10.1016/j.jconrel.2015.10.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022]
Abstract
Intracellular bacteria invade mammalian cells to establish an infectious niche. The current work models adhesion and subsequent internalization strategy of pathogenic bacteria into mammalian cells to design a bacteriomimetic bioinvasive delivery system. We report on the surface functionalization of liposomes with a C-terminal fragment of invasin (InvA497), an invasion factor in the outer membrane of Yersinia pseudotuberculosis. InvA497-functionalized liposomes adhere to mammalian epithelial HEp-2 cell line at different infection stages with a significantly higher efficiency than liposomes functionalized with bovine serum albumin. Covalent attachment of InvA497 results in higher cellular adhesion than liposomes with physically adsorbed InvA497 with non-specific surface protein alignment. Uptake studies in HEp-2 cells indicate active internalization of InvA497-functionalized liposomes via β1-integrin receptor-mediated uptake mechanism mimicking the natural invasion strategy of Y. pseudotuberculosis. Uptake studies in Caco-2 cells at different polarization states demonstrate specific targeting of the InvA497-functionalized liposomes to less polarized cells reflecting the status of inflamed cells. Moreover, when loaded with the anti-infective agent gentamicin and applied to HEp-2 cells infected with Y. pseudotuberculosis, InvA497-functionalized liposomes are able to significantly reduce the infection load relative to non-functionalized drug-loaded liposomes. This indicates a promising application of such a bacteriomimetic system for drug delivery to intracellular compartments.
Collapse
Affiliation(s)
- Hagar Ibrahim Labouta
- Dept. of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus A4 1, D-66123 Saarbrücken, Germany; Department of Pharmaceutics, Alexandria University, Alexandria 21521, Egypt
| | - Sara Menina
- Dept. of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus A4 1, D-66123 Saarbrücken, Germany
| | - Annika Kochut
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sarah Gordon
- Dept. of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus A4 1, D-66123 Saarbrücken, Germany
| | - Rebecca Geyer
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Claus-Michael Lehr
- Dept. of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus A4 1, D-66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
20
|
Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog 2015; 11:e1005020. [PMID: 26134274 PMCID: PMC4489752 DOI: 10.1371/journal.ppat.1005020] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments. One unique feature of type VI secretion system is the presence of multiple distinct systems in certain bacterial species. It is well established that some of these systems function to compete for their living niches among diverse bacterial species, whilst the activity of many such transporters remains unknown. Because metal ions are essential components to virtually all forms of life including bacteria, eukaryotic hosts have evolved complicated strategies to sequester metal ions, which constitute a major branch of their nutritional immunity. Therefore the ability to acquire metal ions is critical for bacterial virulence. This study reveals that the T6SS-4 of Yersinia pseudotuberculosis (Yptb) functions to import Zn2+ from the environment to mitigate the detrimental effects such as hydroxyl radicals induced by diverse stresses. Expression of the transporter is activated by multiple regulatory proteins, including OxyR and OmpR that sense diverse environmental cues. Zinc ion acquisition is achieved by translocating a Zn2+-binding substrate YezP, which is co-regulated with T6SS-4 by OxyR. Our results reveal a novel role for type VI secretion system, which is important in the study of the mechanism of metal ion acquisition by bacteria and the role of this process in bacterial pathogenesis and survival in detrimental environments.
Collapse
Affiliation(s)
- Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunhong Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
21
|
Wessling-Resnick M. Nramp1 and Other Transporters Involved in Metal Withholding during Infection. J Biol Chem 2015; 290:18984-90. [PMID: 26055722 DOI: 10.1074/jbc.r115.643973] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the course of infection, many natural defenses are set up along the boundaries of the host-pathogen interface. Key among these is the host response to withhold metals to restrict the growth of invading microbes. This simple act of nutritional warfare, starving the invader of an essential element, is an effective means of limiting infection. The physiology of metal withholding is often referred to as "nutritional immunity," and the mechanisms of metal transport that contribute to this host response are the focus of this review.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- From the Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
23
|
Abstract
Plague has been a scourge of mankind for centuries, and outbreaks continue to the present day. The virulence mechanisms employed by the etiological agent Yersinia pestis are reviewed in the context of the available prophylactic and therapeutic strategies for plague. Although antibiotics are available, resistance is emerging in this dangerous pathogen. Therapeutics used in the clinic are discussed and innovative approaches to the design and development of new therapeutic compounds are reviewed. Currently there is no licensed vaccine available for prevention of plague in the USA or western Europe, although both live attenuated strains and killed whole-cell extracts have been used historically. Live strains are still approved for human use in some parts of the world, such as the former Soviet Union, but poor safety profiles render them unacceptable to many countries. The development of safe, effective next-generation vaccines, including the recombinant subunit vaccine currently used in clinical trials is discussed.
Collapse
Affiliation(s)
- Petra C F Oyston
- Biomedical Sciences, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | |
Collapse
|
24
|
Guilhen C, Taha MK, Veyrier FJ. Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Front Cell Infect Microbiol 2013; 3:102. [PMID: 24392357 PMCID: PMC3870273 DOI: 10.3389/fcimb.2013.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/05/2013] [Indexed: 01/01/2023] Open
Abstract
Transition metals such as iron, manganese, and zinc are essential micronutrients for bacteria. However, at high concentration, they can generate non-functional proteins or toxic compounds. Metal metabolism is therefore regulated to prevent shortage or overload, both of which can impair cell survival. In addition, equilibrium among these metals has to be tightly controlled to avoid molecular replacement in the active site of enzymes. Bacteria must actively maintain intracellular metal concentrations to meet physiological needs within the context of the local environment. When intracellular buffering capacity is reached, they rely primarily on membrane-localized exporters to maintain metal homeostasis. Recently, several groups have characterized new export systems and emphasized their importance in the virulence of several pathogens. This article discusses the role of export systems as general virulence determinants. Furthermore, it highlights the contribution of these exporters in pathogens emergence with emphasis on the human nasopharyngeal colonizer Neisseria meningitidis.
Collapse
Affiliation(s)
- Cyril Guilhen
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Muhamed-Kheir Taha
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| | - Frédéric J Veyrier
- Département Infection et Epidémiologie, Institut Pasteur, Unité des Infections Bactériennes Invasives Paris, France
| |
Collapse
|
25
|
Lisher JP, Giedroc DP. Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 2013; 3:91. [PMID: 24367765 PMCID: PMC3851752 DOI: 10.3389/fcimb.2013.00091] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022] Open
Abstract
Pathogenic bacteria acquire transition metals for cell viability and persistence of infection in competition with host nutritional defenses. The human host employs a variety of mechanisms to stress the invading pathogen with both cytotoxic metal ions and oxidative and nitrosative insults while withholding essential transition metals from the bacterium. For example, the S100 family protein calprotectin (CP) found in neutrophils is a calcium-activated chelator of extracellular Mn and Zn and is found in tissue abscesses at sites of infection by Staphylococcus aureus. In an adaptive response, bacteria have evolved systems to acquire the metals in the face of this competition while effluxing excess or toxic metals to maintain a bioavailability of transition metals that is consistent with a particular inorganic "fingerprint" under the prevailing conditions. This review highlights recent biological, chemical and structural studies focused on manganese (Mn) acquisition and homeostasis and connects this process to oxidative stress resistance and iron (Fe) availability that operates at the human host-pathogen interface.
Collapse
Affiliation(s)
- John P. Lisher
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
| | - David P. Giedroc
- Graduate Program in Biochemistry, Indiana UniversityBloomington, IN, USA
- Department of Chemistry, Indiana UniversityBloomington, IN, USA
| |
Collapse
|
26
|
Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90. [PMID: 24367764 PMCID: PMC3852070 DOI: 10.3389/fcimb.2013.00090] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/18/2013] [Indexed: 02/05/2023] Open
Abstract
For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Amélie Garénaux
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Julie Proulx
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mourad Sabri
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Charles M Dozois
- INRS-Institut Armand Frappier Laval, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
27
|
Banh A, Chavez V, Doi J, Nguyen A, Hernandez S, Ha V, Jimenez P, Espinoza F, Johnson HA. Manganese (Mn) oxidation increases intracellular Mn in Pseudomonas putida GB-1. PLoS One 2013; 8:e77835. [PMID: 24147089 PMCID: PMC3798386 DOI: 10.1371/journal.pone.0077835] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023] Open
Abstract
Bacterial manganese (Mn) oxidation plays an important role in the global biogeochemical cycling of Mn and other compounds, and the diversity and prevalence of Mn oxidizers have been well established. Despite many hypotheses of why these bacteria may oxidize Mn, the physiological reasons remain elusive. Intracellular Mn levels were determined for Pseudomonas putida GB-1 grown in the presence or absence of Mn by inductively coupled plasma mass spectrometry (ICP-MS). Mn oxidizing wild type P. putida GB-1 had higher intracellular Mn than non Mn oxidizing mutants grown under the same conditions. P. putida GB-1 had a 5 fold increase in intracellular Mn compared to the non Mn oxidizing mutant P. putida GB-1-007 and a 59 fold increase in intracellular Mn compared to P. putida GB-1 ∆2665 ∆2447. The intracellular Mn is primarily associated with the less than 3 kDa fraction, suggesting it is not bound to protein. Protein oxidation levels in Mn oxidizing and non oxidizing cultures were relatively similar, yet Mn oxidation did increase survival of P. putida GB-1 when oxidatively stressed. This study is the first to link Mn oxidation to Mn homeostasis and oxidative stress protection.
Collapse
Affiliation(s)
- Andy Banh
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Valarie Chavez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Julia Doi
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Allison Nguyen
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Sophia Hernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Vu Ha
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Peter Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Fernanda Espinoza
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Hope A. Johnson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Troxell B, Hassan HM. Transcriptional regulation by Ferric Uptake Regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 2013; 3:59. [PMID: 24106689 PMCID: PMC3788343 DOI: 10.3389/fcimb.2013.00059] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/18/2013] [Indexed: 12/16/2022] Open
Abstract
In the ancient anaerobic environment, ferrous iron (Fe2+) was one of the first metal cofactors. Oxygenation of the ancient world challenged bacteria to acquire the insoluble ferric iron (Fe3+) and later to defend against reactive oxygen species (ROS) generated by the Fenton chemistry. To acquire Fe3+, bacteria produce low-molecular weight compounds, known as siderophores, which have extremely high affinity for Fe3+. However, during infection the host restricts iron from pathogens by producing iron- and siderophore-chelating proteins, by exporting iron from intracellular pathogen-containing compartments, and by limiting absorption of dietary iron. Ferric Uptake Regulator (Fur) is a transcription factor which utilizes Fe2+ as a corepressor and represses siderophore synthesis in pathogens. Fur, directly or indirectly, controls expression of enzymes that protect against ROS damage. Thus, the challenges of iron homeostasis and defense against ROS are addressed via Fur. Although the role of Fur as a repressor is well-documented, emerging evidence demonstrates that Fur can function as an activator. Fur activation can occur through three distinct mechanisms (1) indirectly via small RNAs, (2) binding at cis regulatory elements that enhance recruitment of the RNA polymerase holoenzyme (RNAP), and (3) functioning as an antirepressor by removing or blocking DNA binding of a repressor of transcription. In addition, Fur homologs control defense against peroxide stress (PerR) and control uptake of other metals such as zinc (Zur) and manganese (Mur) in pathogenic bacteria. Fur family members are important for virulence within bacterial pathogens since mutants of fur, perR, or zur exhibit reduced virulence within numerous animal and plant models of infection. This review focuses on the breadth of Fur regulation in pathogenic bacteria.
Collapse
Affiliation(s)
- Bryan Troxell
- Department of Immunology and Microbiology, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
29
|
Liu M, Bouhsira E, Boulouis HJ, Biville F. The Bartonella henselae SitABCD transporter is required for confronting oxidative stress during cell and flea invasion. Res Microbiol 2013; 164:827-37. [PMID: 23811032 DOI: 10.1016/j.resmic.2013.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
Bartonella henselae is a zoonotic pathogen that possesses a flea-cat-flea transmission cycle and causes cat scratch disease in humans via cat scratches and bites. In order to establish infection, B. henselae must overcome oxidative stress damage produced by the mammalian host and arthropod vector. B. henselae encodes for putative Fe²⁺ and Mn²⁺ transporter SitABCD. In B. henselae, SitAB knockdown increases sensitivity to hydrogen peroxide. We consistently show that SitAB knockdown decreases the ability of B. henselae to survive in both human endothelial cells and cat fleas, thus demonstrating that the SitABCD transporter plays an important role during the B. henselae infection cycle.
Collapse
Affiliation(s)
- MaFeng Liu
- Institute of Preventive Veterinary Medicine, Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu-611130/Ya'an-625014, Sichuan, PR China; Université Paris-Est, Ecole nationale vétérinaire d'Alfort, UMR BIPAR INRA-Anses-UPEC-ENVA, F-94700 Maisons-Alfort, France.
| | | | | | | |
Collapse
|
30
|
Utility of insects for studying human pathogens and evaluating new antimicrobial agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 135:1-25. [PMID: 23604210 DOI: 10.1007/10_2013_194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Insect models, such as Galleria mellonella and Drosophila melanogaster have significant ethical, logistical, and economic advantages over mammalian models for the studies of infectious diseases. Using these models, various pathogenic microbes have been studied and many novel virulence genes have been identified. Notably, because insects are susceptible to a wide variety of human pathogens and have immune responses similar to those of mammals, they offer the opportunity to understand innate immune responses against human pathogens better. It is important to note that insect pathosystems have also offered a simple strategy to evaluate the efficacy and toxicity of many antimicrobial agents. Overall, insect models provide a rapid, inexpensive, and reliable way as complementary hosts to conventional vertebrate animal models to study pathogenesis and antimicrobial agents.
Collapse
|
31
|
Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525-37. [PMID: 22796883 DOI: 10.1038/nrmicro2836] [Citation(s) in RCA: 1082] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transition metals occupy an essential niche in biological systems. Their electrostatic properties stabilize substrates or reaction intermediates in the active sites of enzymes, and their heightened reactivity is harnessed for catalysis. However, this heightened activity also renders transition metals toxic at high concentrations. Bacteria, like all living organisms, must regulate their intracellular levels of these elements to satisfy their physiological needs while avoiding harm. It is therefore not surprising that the host capitalizes on both the essentiality and toxicity of transition metals to defend against bacterial invaders. This Review discusses established and emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.
Collapse
|
32
|
Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem 2012; 287:13541-8. [PMID: 22247543 DOI: 10.1074/jbc.r111.312181] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton chemistry, iron may counteract the benefits of non-proteinaceous manganese antioxidants. In this minireview, we highlight ways in which cells maximize the efficacy of manganese as an antioxidant in the midst of pro-oxidant iron.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
33
|
Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O, Mier I, Truszczynska H, Fetherston JD. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. MICROBIOLOGY-SGM 2012; 158:804-815. [PMID: 22222497 DOI: 10.1099/mic.0.053710-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yersinia pestis has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Y. pestis Yfe system transports Fe and Mn. Here we demonstrate that a mutation in yfe or mntH did not significantly affect in vitro aerobic growth under Mn-deficient conditions. A yfe mntH double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of (54)Mn was observed in this double mutant. Like the yfeA promoter, the mntH promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the yfeA promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying cis promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the Y. pestis yfe mntH double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by Y. pestis are different in the lungs (pneumonic plague) compared with systemic disease.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Helena Truszczynska
- Department of Institutional Research Planning and Effectiveness, University of Kentucky, Lexington, KY 40536, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
34
|
Yersinia pestis transition metal divalent cation transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:267-79. [PMID: 22782773 DOI: 10.1007/978-1-4614-3561-7_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
|
36
|
Argüello JM, González-Guerrero M, Raimunda D. Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 2011; 50:9940-9. [PMID: 21999638 DOI: 10.1021/bi201418k] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
P(1B)-type ATPases are polytopic membrane proteins that couple the hydrolysis of ATP to the efflux of cytoplasmic transition metals. This paper reviews recent progress in our understanding of the structure and function of these proteins in bacteria. These are members of the P-type superfamily of transport ATPases. Cu(+)-ATPases are the most frequently observed and best-characterized members of this group of transporters. However, bacterial genomes show diverse arrays of P(1B)-type ATPases with a range of substrates (Cu(+), Zn(2+), Co(2+)). Furthermore, because of the structural similarities among transitions metals, these proteins can also transport nonphysiological substrates (Cd(2+), Pb(2+), Au(+), Ag(+)). P(1B)-type ATPases have six or eight transmembrane segments (TM) with metal coordinating amino acids in three core TMs flanking the cytoplasmic domain responsible for ATP binding and hydrolysis. In addition, regulatory cytoplasmic metal binding domains are present in most P(1B)-type ATPases. Central to the transport mechanism is the binding of the uncomplexed metal to these proteins when cytoplasmic substrates are bound to chaperone and chelating molecules. Metal binding to regulatory sites is through a reversible metal exchange among chaperones and cytoplasmic metal binding domains. In contrast, the chaperone-mediated metal delivery to transport sites appears as a largely irreversible event. P(1B)-ATPases have two overarching physiological functions: to maintain cytoplasmic metal levels and to provide metals for the periplasmic assembly of metalloproteins. Recent studies have shown that both roles are critical for bacterial virulence, since P(1B)-ATPases appear key to overcome high phagosomal metal levels and are required for the assembly of periplasmic and secreted metalloproteins that are essential for survival in extreme oxidant environments.
Collapse
Affiliation(s)
- José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | |
Collapse
|
37
|
Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Pathog 2011; 2011:182051. [PMID: 22567322 PMCID: PMC3335670 DOI: 10.4061/2011/182051] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in the intestine and spreading to the mesenteric lymph nodes. However, more serious infections and chronic conditions can also occur, particularly in immunocompromised individuals. Y. enterocolitica and Y. pseudotuberculosis are both heterogeneous organisms that vary considerably in their degrees of pathogenicity, although some generalizations can be ascribed to pathogenic variants. Adhesion molecules and a type III secretion system are critical for the establishment and progression of infection. Additionally, host innate and adaptive immune responses are both required for yersiniae clearance. Despite the ubiquity of enteric Yersinia species and their association as important causes of food poisoning world-wide, few national enteric pathogen surveillance programs include the yersiniae as notifiable pathogens. Moreover, no standard exists whereby identification and reporting systems can be effectively compared and global trends developed. This review discusses yersinial virulence factors, mechanisms of infection, and host responses in addition to the current state of surveillance, detection, and prevention of yersiniosis.
Collapse
Affiliation(s)
- Cristi L Galindo
- Department of Microbiology & Immunology, Sealy Center for Vaccine Development, Institute of Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
38
|
Veyrier FJ, Boneca IG, Cellier MF, Taha MK. A novel metal transporter mediating manganese export (MntX) regulates the Mn to Fe intracellular ratio and Neisseria meningitidis virulence. PLoS Pathog 2011; 7:e1002261. [PMID: 21980287 PMCID: PMC3182930 DOI: 10.1371/journal.ppat.1002261] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/22/2011] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) are adapted to different environments within their human host. If the basis of this difference has not yet been fully understood, previous studies (including our own data) have reported that, unlike Ng, Nm tolerates high manganese concentrations. As transition metals are essential regulators of cell growth and host pathogen interactions, we aimed to address mechanisms of Nm Mn²⁺ tolerance and its pathogenic consequences. Using bioinformatics, gene deletion and heterologous expression we identified a conserved bacterial manganese resistance factor MntX (formerly YebN). The predicted structure suggests that MntX represents a new family of transporters exporting Mn. In the Neisseria genus, this exporter is present and functional in all Nm isolates but it is mutated in a majority of Ng strains and commonly absent in nonpathogenic species. In Nm, Mn²⁺ export via MntX regulates the intracellular Mn/Fe ratio and protects against manganese toxicity that is exacerbated in low iron conditions. MntX is also important for N. meningitidis to resist killing by human serum and for survival in mice blood during septicemia. The present work thus points to new clues about Mn homeostasis, its interplay with Fe metabolism and the influence on N. meningitidis physiology and pathogenicity.
Collapse
Affiliation(s)
- Frédéric J Veyrier
- Institut Pasteur, Infection Bactériennes Invasives, Dept. Infection et Epidémiologie, Paris, France.
| | | | | | | |
Collapse
|