1
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Lafont E, Sturny-Leclère A, Coelho C, Lanternier F, Alanio A. Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line. Methods Mol Biol 2024; 2775:157-169. [PMID: 38758317 DOI: 10.1007/978-1-0716-3722-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte-macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).
Collapse
Affiliation(s)
- Emmanuel Lafont
- Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France
| | - Aude Sturny-Leclère
- Department of Mycology, Translational Mycology Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Paris, France
| | - Carolina Coelho
- MRC Centre for Medical Mycology, College of Health and Medicine, University of Exeter, Exeter, Devon, UK
| | - Fanny Lanternier
- Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France
- MRC Centre for Medical Mycology, College of Health and Medicine, University of Exeter, Exeter, Devon, UK
- Service de maladies infectieuses et tropicales, hôpital Necker-Enfants Malades, Paris, France
| | - Alexandre Alanio
- Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Paris, France.
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
3
|
Yang LH, Dong RJ, Lu YW, Wang HM, Kuang YQ, Wang RR, Li YY. Integration of metabolomics and transcriptomics analyses reveals sphingosine-1-phosphate-mediated S1PR2/PI3K/Akt pathway involved in Talaromyces marneffei infection of macrophages. Microb Pathog 2023; 175:105985. [PMID: 36638850 DOI: 10.1016/j.micpath.2023.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Talaromycosis is a fatal mycosis caused by the thermally dimorphic fungus Talaromyces marneffei (T. marneffei). The pathogenic mechanisms of talaromycosis are still poorly understood. This work combined metabolomics, transcriptomics, and verification experiments in vivo and in vitro to detect metabolic profiles and differentially expressed genes (DEGs) in T. marneffei infected and uninfected macrophages to explore possible pathogenesis and underlying mechanisms. A total of 256 differential metabolites (117 up-regulated and 148 down-regulated) and 1320 DEGs (1286 up-regulated and 34 down-regulated) were identified between the two groups. Integrative metabolomics and transcriptomics analysis showed sphingolipid signaling pathway is the most influential. Verification experiments showed that compared with the control group, the production of sphingosine-1-phosphate (S1P) and the expression of the S1PR1, S1PR2, phosphor-PI3K, and phosphor-Akt genes involved in the sphingolipid signaling pathway have significantly increased in the T. marneffei infection group (p < 0.05). T. marneffei activates the S1PR2/PI3K/Akt pathways in J774A.1 macrophage, regulation of the S1P singling might serve as a promising therapeutic strategy for talaromycosis.
Collapse
Affiliation(s)
- Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Hong-Mei Wang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China; Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Rui-Rui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
5
|
Pan D, Wu W, Zuo G, Xie X, Li H, Ren X, Kong C, Zhou W, Zhang Z, Waterfall M, Chen S. Sphingosine 1-phosphate receptor 2 promotes erythrocyte clearance by vascular smooth muscle cells in intraplaque hemorrhage through MFG-E8 production. Cell Signal 2022; 98:110419. [PMID: 35905868 DOI: 10.1016/j.cellsig.2022.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Intraplaque hemorrhage (IPH) accelerates atherosclerosis progression. To scavenge excessive red blood cells (RBCs), vascular smooth muscle cells (VSMCs) with great plasticity may function as phagocytes. Here, we investigated the erythrophagocytosis function of VSMCs and possible regulations involved. Based on transcriptional microarray analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that genes up-regulated in human carotid atheroma with IPH were enriched in functions of phagocytic activities, while those down-regulated were enriched in VSMCs contraction function. Transcriptional expression of Milk fat globule-epidermal growth factor 8 (MFG-E8) was also down-regulated in atheroma with IPH. In high-fat diet-fed apolipoprotein E-deficient mice, erythrocytes were present in cells expressing VSMC markers αSMA in the brachiocephalic artery, suggesting VSMCs play a role in erythrophagocytosis. Using immunofluorescence and flow cytometry, we also found that eryptotic RBCs were bound to and internalized by VSMCs in a phosphatidylserine/MFG-E8/integrin αVβ3 dependent manner in vitro. Inhibiting S1PR2 signaling with specific inhibitor JTE-013 or siRNA decreased Mfge8 expression and impaired the erythrophagocytosis of VSMCs in vitro. Partial ligation was performed in the left common carotid artery (LCA) followed by intra-intimal injection of isolated erythrocytes to observe their clearance in vivo. Interfering S1PR2 expression in VSMCs with Adeno-associated virus 9 inhibited MFG-E8 expression inside LCA plaques receiving RBCs injection and attenuated erythrocytes clearance. Erythrophagocytosis by VSMCs increased vascular endothelial growth factor-a secretion and promoted angiogenesis. The present study revealed that VSMCs act as phagocytes for RBC clearance through S1PR2 activation induced MFG-E8 release.
Collapse
Affiliation(s)
- Daorong Pan
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiangrong Xie
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Hui Li
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xiaomin Ren
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chaohua Kong
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zihan Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Martin Waterfall
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| |
Collapse
|
6
|
Chatzikonstantinou S, Poulidou V, Arnaoutoglou M, Kazis D, Heliopoulos I, Grigoriadis N, Boziki M. Signaling through the S1P-S1PR Axis in the Gut, the Immune and the Central Nervous System in Multiple Sclerosis: Implication for Pathogenesis and Treatment. Cells 2021; 10:cells10113217. [PMID: 34831439 PMCID: PMC8626013 DOI: 10.3390/cells10113217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/14/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1–5 (S1PR1–5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut–brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P−S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.
Collapse
Affiliation(s)
- Simela Chatzikonstantinou
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Vasiliki Poulidou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Marianthi Arnaoutoglou
- 1st Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece; (V.P.); (M.A.)
| | - Dimitrios Kazis
- 3rd Department of Neurology, Aristotle University of Thessaloniki, “G.Papanikolaou” Hospital, Leoforos Papanikolaou, Exohi, 57010 Thessaloniki, Greece; (S.C.); (D.K.)
| | - Ioannis Heliopoulos
- Department of Neurology, University General Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
| | - Marina Boziki
- Multiple Sclerosis Center, Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, Aristotle University of Thessaloniki, AHEPA Hospital, 1, Stilp Kyriakidi st., 54636 Thessaloniki, Greece;
- Correspondence:
| |
Collapse
|
7
|
Jiang H, Gu J, Zhao H, Joshi S, Perlmutter JS, Gropler RJ, Klein RS, Benzinger TLS, Tu Z. PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection. Mol Imaging 2021; 2021:9982020. [PMID: 34934406 PMCID: PMC8654346 DOI: 10.1155/2021/9982020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression in S. aureus-infected mice. A rodent local muscle bacterial infection model was developed by injecting S. aureus to the lower hind limb of Balb/c mice. The changes of S1PR1 expression in response to bacterial infection and blocking treatment were assessed using ex vivo biodistribution and in vivo positron emission tomography (PET) after intravenous injection of an S1PR1-specific radiotracer [18F]TZ4877. The specificity of [18F]TZ4877 was assessed using S1PR1-specific antagonist, NIBR-0213, and S1PR1-specific DsiRNA pretreated the animals. Immunohistochemical studies were performed to confirm the increase of S1PR1 expression in response to infection. Ex vivo biodistribution data showed that the uptake of [18F]TZ4877 was increased 30.6%, 54.3%, 74.3%, and 115.3% in the liver, kidney, pancreas, and thymus of the infected mice, respectively, compared to that in normal control mice, indicating that S1PR1 is involved in the early immune response to bacterial infection. NIBR-0213 or S1PR1-specific DsiRNA pretreatment reduced the tissue uptake of [18F]TZ4877, suggesting that uptake of [18F]TZ4877 is specific. Our PET/CT study data also confirmed that infected mice have increased [18F]TZ4877 uptake in several organs comparing to that in normal control mice. Particularly, compared to control mice, a 39% increase of [18F]TZ4877 uptake was observed in the infected muscle of S. aureus mice, indicating that S1PR1 expression was directly involved in the inflammatory response to infection. Overall, our study suggested that S1PR1 plays an important role in the early immune response to bacterial infection. The uptake of [18F]TZ4877 is tightly correlated with the S1R1 expression in response to S. aureus infection. PET with S1PR1-specific radiotracer [18F]TZ4877 could provide a noninvasive tool for detecting the early S1PR1 immune response to infectious diseases.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
8
|
Abstract
Although we have recognized cryptococcosis as a disease entity for well over 100 years, there are many details about its pathogenesis which remain unknown. A major barrier to better understanding is the very broad range of clinical and pathological forms cryptococcal infections can take. One such form has been historically called the cryptococcal granuloma, or the cryptococcoma. These words have been used to describe essentially any mass lesion associated with infection, due to their presumed similarity to the quintessential granuloma, the tubercle in tuberculosis. Although clear distinctions between tuberculosis and cryptococcal disease have been discovered, cellular and molecular studies still confirm some important parallels between these 2 diseases and what we now call granulomatous inflammation. In this review, we shall sketch out some of the history behind the term "granuloma" as it pertains to cryptococcal disease, explore our current understanding of the biology of granuloma formation, and try to place that understanding in the context of the myriad pathological presentations of this infection. Finally, we shall summarize the role of the granuloma in cryptococcal latency and present opportunities for future investigations.
Collapse
Affiliation(s)
- Laura C. Ristow
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - J. Muse Davis
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| |
Collapse
|
9
|
Bryan AM, You JK, McQuiston T, Lazzarini C, Qiu Z, Sheridan B, Nuesslein-Hildesheim B, Del Poeta M. FTY720 reactivates cryptococcal granulomas in mice through S1P receptor 3 on macrophages. J Clin Invest 2021; 130:4546-4560. [PMID: 32484801 DOI: 10.1172/jci136068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
FTY720 is a treatment for relapsing remitting multiple sclerosis (MS). It is an analog of sphingosine-1-phosphate (S1P) and targets S1P receptors 1, 3, 4, and 5. Recent reports indicate an association between long-term exposure to FTY720 and cases of cryptococcal infection. Here, we studied the effect of FTY720 and its derivative, BAF312, which only target S1P receptors 1 and 5, in a mouse model of cryptococcal infection. We found that treatment with FTY720, but not with BAF312, led to decreased survival and increased organ burden in mouse cryptococcal granulomas. Both FTY720 and BAF312 caused a profound CD4+ and CD8+ T cell depletion in blood and lungs but only treatment with FTY720 led to cryptococcal reactivation. Treatment with FTY720, but not with BAF312, was associated with disorganization of macrophages and with M2 polarization at the granuloma site. In a cell system, FTY720 decreased phagocytosis and production of reactive oxygen species by macrophages, a phenotype recapitulated in the S1pr3-/- knockout macrophages. Our results suggest that FTY720 reactivates cryptococcosis from the granuloma through a S1P receptor 3-mediated mechanism and support the rationale for development of more-specific receptor modulators for therapeutic use of MS.
Collapse
Affiliation(s)
- Arielle M Bryan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jeehyun Karen You
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | | | - Cristina Lazzarini
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA.,Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
10
|
Normile TG, Bryan AM, Del Poeta M. Animal Models of Cryptococcus neoformans in Identifying Immune Parameters Associated With Primary Infection and Reactivation of Latent Infection. Front Immunol 2020; 11:581750. [PMID: 33042164 PMCID: PMC7522366 DOI: 10.3389/fimmu.2020.581750] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus species are environmental fungal pathogens and the causative agents of cryptococcosis. Infection occurs upon inhalation of infectious particles, which proliferate in the lung causing a primary infection. From this primary lung infection, fungal cells can eventually disseminate to other organs, particularly the brain, causing lethal meningoencephalitis. However, in most cases, the primary infection resolves with the formation of a lung granuloma. Upon severe immunodeficiency, dormant cryptococcal cells will start proliferating in the lung granuloma and eventually will disseminate to the brain. Many investigators have sought to study the protective host immune response to this pathogen in search of host parameters that keep the proliferation of cryptococcal cells under control. The majority of the work assimilates research carried out using the primary infection animal model, mainly because a reactivation model has been available only very recently. This review will focus on anti-cryptococcal immunity in both the primary and reactivation models. An understanding of the differences in host immunity between the primary and reactivation models will help to define the key host parameters that control the infections and are important for the research and development of new therapeutic and vaccine strategies against cryptococcosis.
Collapse
Affiliation(s)
- Tyler G Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Arielle M Bryan
- Ingenious Targeting Laboratory Incorporated, Ronkonkoma, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States.,Veterans Administration Medical Center, Northport, NY, United States
| |
Collapse
|
11
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
12
|
Setianingrum F, Rautemaa-Richardson R, Denning DW. Pulmonary cryptococcosis: A review of pathobiology and clinical aspects. Med Mycol 2019; 57:133-150. [PMID: 30329097 DOI: 10.1093/mmy/myy086] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Pulmonary cryptococcosis is an important opportunistic invasive mycosis in immunocompromised patients, but it is also increasingly seen in immunocompetent patients. The main human pathogens are Cryptococcus neoformans and C. gattii, which have a worldwide distribution. In contrast to cryptococcal meningitis, pulmonary cryptococcosis is still underdiagnosed because of limitations in diagnostic tools. It can mimic lung cancer, pulmonary tuberculosis, bacterial pneumonia, and other pulmonary mycoses both clinically and radiologically. Pulmonary nodules are the most common radiological feature, but these are not specific to pulmonary cryptococcosis. The sensitivity of culture of respiratory samples for Cryptococcus is poor and a positive result may also reflect colonisation. Cryptococcal antigen (CrAg) with lateral flow device is a fast and sensitive test and widely used on serum and cerebrospinal fluid, but sera from patients with pulmonary cryptococcosis are rarely positive in the absence of disseminated disease. Detection of CrAg from respiratory specimens might assist the diagnosis of pulmonary cryptococcosis but there are very few data. Molecular detection techniques such as multiplex reverse transcription polymerase chain reaction (RT-PCR) could also provide better sensitivity but these still require validation for respiratory specimens. The first line of treatment for pulmonary cryptococcosis is fluconazole, or amphotericin B and flucytosine for those with central nervous system involvement. Pulmonary cryptococcosis worsens the prognosis of cryptococcal meningitis. In this review, we summarize the biological aspects of Cryptococcus and provide an update on the diagnosis and management of pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Findra Setianingrum
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Parasitology Department, Universitas Indonesia, Jakarta, Indonesia
| | - Riina Rautemaa-Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Department of Infectious Diseases, Wythenshawe Hospital Manchester University NHS Foundation Trust, Manchester, UK
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
13
|
Weigert A, Olesch C, Brüne B. Sphingosine-1-Phosphate and Macrophage Biology-How the Sphinx Tames the Big Eater. Front Immunol 2019; 10:1706. [PMID: 31379883 PMCID: PMC6658986 DOI: 10.3389/fimmu.2019.01706] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology.
Collapse
Affiliation(s)
- Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
14
|
Methamphetamine Impairs IgG1-Mediated Phagocytosis and Killing of Cryptococcus neoformans by J774.16 Macrophage- and NR-9640 Microglia-Like Cells. Infect Immun 2019; 87:IAI.00113-18. [PMID: 30510106 DOI: 10.1128/iai.00113-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.
Collapse
|
15
|
Zheng YH, Ma YY, Ding Y, Chen XQ, Gao GX. An insight into new strategies to combat antifungal drug resistance. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3807-3816. [PMID: 30464412 PMCID: PMC6225914 DOI: 10.2147/dddt.s185833] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections especially in immunocompromised patients represent a dominating cause of mortality. The most commonly used antifungal agents can be divided into three broad categories, including triazoles, echinocandins and polyenes. Antifungal resistance is on the increase, posing a growing threat to the stewardship of immunocompromised patients with fungal infections. The paucity of currently available antifungals leads to the rapid emergence of drug resistance and thus aggravates the refractoriness of invasive fungal infections. Therefore, deep exploration into mechanisms of drug resistance and search for new antifungal targets are required. This review highlights the therapeutic strategies targeting Hsp90, calcineurin, trehalose biosynthesis and sphingolipids biosynthesis, in an attempt to provide clinical evidence for overcoming drug resistance and to form the rationale for combination therapy of conventional antifungals and agents with novel mechanisms of action. What’s more, this review also gives a concise introduction of three new-fashioned antifungals, including carboxymethyl chitosan, silver nanoparticles and chromogranin A-N46.
Collapse
Affiliation(s)
- Yan-Hua Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Yue-Yun Ma
- Department of Clinical Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xie-Qun Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| | - Guang-Xun Gao
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, ;
| |
Collapse
|
16
|
Bezgovsek J, Gulbins E, Friedrich SK, Lang KS, Duhan V. Sphingolipids in early viral replication and innate immune activation. Biol Chem 2018; 399:1115-1123. [DOI: 10.1515/hsz-2018-0181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
Abstract
Abstract
In this review, we summarize the mechanisms by which sphingolipids modulate virus multiplication and the host innate immune response, using a number of host-virus systems as illustrative models. Sphingolipids exert diverse functions, both at the level of the viral life cycle and in the regulation of antiviral immune responses. Sphingolipids may influence viral replication in three ways: by serving as (co)receptors during viral entry, by modulating virus replication, and by shaping the antiviral immune response. Several studies have demonstrated that sphingosine kinases (SphK) and their product, sphingosine-1-phosphate (S1P), enhance the replication of influenza, measles, and hepatitis B virus (HBV). In contrast, ceramides, particularly S1P and SphK1, influence the expression of type I interferon (IFN-I) by modulating upstream antiviral signaling and enhancing dendritic cell maturation, differentiation, and positioning in tissue. The synthetic molecule α-galactosylceramide has also been shown to stimulate natural killer cell activation and interferon (IFN)-γ secretion. However, to date, clinical trials have failed to demonstrate any clinical benefit for sphingolipids in the treatment of cancer or HBV infection. Taken together, these findings show that sphingolipids play an important and underappreciated role in the control of virus replication and the innate immune response.
Collapse
|
17
|
Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol 2018; 20:e12836. [PMID: 29498184 DOI: 10.1111/cmi.12836] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/04/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well-studied role of S1P signalling is to modulate T-cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.
Collapse
Affiliation(s)
- Arielle M Bryan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA.,Veterans Administration Medical Center, Northport, NY, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Mechanisms of Pulmonary Escape and Dissemination by Cryptococcus neoformans. J Fungi (Basel) 2018; 4:jof4010025. [PMID: 29463005 PMCID: PMC5872328 DOI: 10.3390/jof4010025] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.
Collapse
|
19
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Xu S, Shinohara ML. Tissue-Resident Macrophages in Fungal Infections. Front Immunol 2017; 8:1798. [PMID: 29312319 PMCID: PMC5732976 DOI: 10.3389/fimmu.2017.01798] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022] Open
Abstract
Invasive fungal infections result in high morbidity and mortality. Host organs targeted by fungal pathogens vary depending on the route of infection and fungal species encountered. Cryptococcus neoformans infects the respiratory tract and disseminates throughout the central nervous system. Candida albicans infects mucosal tissues and the skin, and systemic Candida infection in rodents has a tropism to the kidney. Aspergillus fumigatus reaches distal areas of the lung once inhaled by the host. Across different tissues in naïve hosts, tissue-resident macrophages (TRMs) are one of the most populous cells of the innate immune system. Although they function to maintain homeostasis in a tissue-specific manner during steady state, TRMs may function as the first line of defense against invading pathogens and may regulate host immune responses. Thus, in any organs, TRMs are uniquely positioned and specifically programmed to function. This article reviews the current understanding of the roles of TRMs during major fungal infections.
Collapse
Affiliation(s)
- Shengjie Xu
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
21
|
Singh A, MacKenzie A, Girnun G, Del Poeta M. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 2017; 58:2017-2036. [PMID: 28811322 DOI: 10.1194/jlr.m078600] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl-N,N-dimethylethanolamine, phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794
| | | | - Geoffrey Girnun
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, NY 11794
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794 .,Veterans Administration Medical Center, Northport, NY 11768.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
22
|
FTY720 Attenuates Infection-Induced Enhancement of Aβ Accumulation in APP/PS1 Mice by Modulating Astrocytic Activation. J Neuroimmune Pharmacol 2017. [PMID: 28620801 DOI: 10.1007/s11481-017-9753-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that infection has a significant detrimental effect on patients with Alzheimer's disease (AD), accelerating cognitive decline and, even in healthy ageing individuals, increasing amyloid-β (Aβ) accumulation in the brain. In animal models of AD infection can also cause damage, with evidence of increased neuroinflammation, amyloid pathology and deterioration of cognitive function. These changes are against a backdrop of an age- and AD-related increase in susceptibility to infection. Here we set out to determine whether FTY720, a molecule that binds sphingosine-1-phosphate (S1P) receptors and with known immunosuppressant effects mediating its therapeutic action in multiple sclerosis (MS), might modulate the impact of infection in a mouse model of AD. Transgenic mice that overexpress amyloid precursor protein (APP) and presenilin 1 (PS1; APP/PS1 mice) and their littermates were/were not infected with Bordetella pertussis and were treated orally with FTY720 or vehicle beginning 3 days before infection. Infection increased astrocytic activation and enhanced blood brain barrier (BBB) permeability and these changes were attenuated in FTY720-treated B. pertussis-infected mice. Significantly, infection increased Aβ containing plaques and soluble Aβ and these infection-related changes were also attenuated in FTY720-treated B. pertussis-infected mice. The data suggest that this effect results from an FTY720-induced increase in Aβ phagocytosis by astrocytes. FTY720 did not impact on genotype-related changes in the absence of an infection indicating that its potential usefulness is restricted to reducing the impact of acute inflammatory stimuli in AD.
Collapse
|
23
|
Sharma L, Prakash H. Sphingolipids Are Dual Specific Drug Targets for the Management of Pulmonary Infections: Perspective. Front Immunol 2017; 8:378. [PMID: 28400772 PMCID: PMC5372786 DOI: 10.3389/fimmu.2017.00378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are the major constituent of the mucus secreted by the cells of epithelial linings of lungs where they maintain the barrier functions and prevent microbial invasion. Sphingolipids are interconvertible, and their primary and secondary metabolites have both structural and functional roles. Out of several sphingolipid metabolites, sphingosine-1 phosphate (S1P) and ceramide are central molecules and decisive for sphingolipid signaling. These are produced by enzymatic activity of sphingosine kinase-1 (SK-1) upon the challenge with either biological or physiological stresses. S1P and ceramide rheostat are important for the progression of various pathologies, which are manifested by inflammatory cascade. S1P is a well-established secondary messenger and associated with various neuronal, metabolic, and inflammatory diseases other than respiratory infections such as Chlamydia pneumoniae, Streptococcus pneumoniae, and Mycobacterium tuberculosis. These pathogens are known to exploit sphingolipid metabolism for their opportunistic survival. Decreased sphingosine kinase activity/S1P content in the lung and peripheral blood of tuberculosis patients clearly indicated a dysregulation of sphingolipid metabolism during infection and suggest that sphingolipid metabolism is important for management of infection by the host. Our previous study has demonstrated that gain of SK-1 activity is important for the maturation of phagolysosomal compartment, innate activation of macrophages, and subsequent control of mycobacterial replication/growth in macrophages. Furthermore, S1P-mediated amelioration of lung pathology and disease severity in TB patients is believed to be mediated by the selective activation or rearrangement of various S1P receptors (S1PR) particularly S1PR2, which has been effective in controlling respiratory fungal pathogens. Therefore, such specificity of S1P-S1PR would be paramount for triggering inflammatory events, subsequent activation, and fostering bactericidal potential in macrophages for the control of TB. In this review, we have discussed and emphasized that sphingolipids may represent effective novel, yet dual specific drug targets for controlling pulmonary infections.
Collapse
Affiliation(s)
- Lalita Sharma
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad , Hyderabad, Telengana , India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad , Hyderabad, Telengana , India
| |
Collapse
|
24
|
Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7584621. [PMID: 28367448 PMCID: PMC5358463 DOI: 10.1155/2017/7584621] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/16/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022]
Abstract
Introduction. Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P1–5) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods. Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results. All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P1. In contrast, M1-polarized macrophages significantly downregulated S1P4. The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion. The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.
Collapse
|
25
|
Abstract
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Collapse
|
26
|
Tran HB, Barnawi J, Ween M, Hamon R, Roscioli E, Hodge G, Reynolds PN, Pitson SM, Davies LT, Haberberger R, Hodge S. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720. J Leukoc Biol 2016; 100:195-202. [PMID: 26792820 DOI: 10.1189/jlb.3a1015-471r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hai B Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia;
| | - Jameel Barnawi
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia; Department of Medical Laboratory Technology, University of Tabuk, Saudi Arabia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Paul N Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia
| | - Stuart M Pitson
- Department of Medicine, University of Adelaide, Australia; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia; and
| | - Rainer Haberberger
- Centre for Neuroscience Anatomy and Histology, Flinders University, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; Department of Medicine, University of Adelaide, Australia;
| |
Collapse
|
27
|
Sphingolipids as Regulators of the Phagocytic Response to Fungal Infections. Mediators Inflamm 2015; 2015:640540. [PMID: 26688618 PMCID: PMC4673356 DOI: 10.1155/2015/640540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 12/14/2022] Open
Abstract
Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes. In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.
Collapse
|
28
|
Barnawi J, Tran H, Jersmann H, Pitson S, Roscioli E, Hodge G, Meech R, Haberberger R, Hodge S. Potential Link between the Sphingosine-1-Phosphate (S1P) System and Defective Alveolar Macrophage Phagocytic Function in Chronic Obstructive Pulmonary Disease (COPD). PLoS One 2015; 10:e0122771. [PMID: 26485657 PMCID: PMC4617901 DOI: 10.1371/journal.pone.0122771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/19/2015] [Indexed: 02/06/2023] Open
Abstract
Introduction We previously reported that alveolar macrophages from patients with chronic obstructive pulmonary disease (COPD) are defective in their ability to phagocytose apoptotic cells, with a similar defect in response to cigarette smoke. The exact mechanisms for this defect are unknown. Sphingolipids including ceramide, sphingosine and sphingosine-1-phosphate (S1P) are involved in diverse cellular processes and we hypothesised that a comprehensive analysis of this system in alveolar macrophages in COPD may help to delineate the reasons for defective phagocytic function. Methods We compared mRNA expression of sphingosine kinases (SPHK1/2), S1P receptors (S1PR1-5) and S1P-degrading enzymes (SGPP1, SGPP2, SGPL1) in bronchoalveolar lavage-derived alveolar macrophages from 10 healthy controls, 7 healthy smokers and 20 COPD patients (10 current- and 10 ex-smokers) using Real-Time PCR. Phagocytosis of apoptotic cells was investigated using flow cytometry. Functional associations were assessed between sphingosine signalling system components and alveolar macrophage phagocytic ability in COPD. To elucidate functional effects of increased S1PR5 on macrophage phagocytic ability, we performed the phagocytosis assay in the presence of varying concentrations of suramin, an antagonist of S1PR3 and S1PR5. The effects of cigarette smoking on the S1P system were investigated using a THP-1 macrophage cell line model. Results We found significant increases in SPHK1/2 (3.4- and 2.1-fold increases respectively), S1PR2 and 5 (4.3- and 14.6-fold increases respectively), and SGPL1 (4.5-fold increase) in COPD vs. controls. S1PR5 and SGPL1 expression was unaffected by smoking status, suggesting a COPD “disease effect” rather than smoke effect per se. Significant associations were noted between S1PR5 and both lung function and phagocytosis. Cigarette smoke extract significantly increased mRNA expression of SPHK1, SPHK2, S1PR2 and S1PR5 by THP-1 macrophages, confirming the results in patient-derived macrophages. Antagonising SIPR5 significantly improved phagocytosis. Conclusion Our results suggest a potential link between the S1P signalling system and defective macrophage phagocytic function in COPD and advise therapeutic targets.
Collapse
Affiliation(s)
- Jameel Barnawi
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- Dept Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Hai Tran
- Lung Research, Hanson Institute, Adelaide, Australia
| | - Hubertus Jersmann
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
| | - Stuart Pitson
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia and SA Pathology, Adelaide, Australia
| | | | - Greg Hodge
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
| | - Robyn Meech
- Department of Clinical Pharmacology, Flinders University, Adelaide, Australia
| | - Rainer Haberberger
- Centre for Neuroscience, Anatomy & Histology, Flinders University, Adelaide, Australia
| | - Sandra Hodge
- Lung Research, Hanson Institute, Adelaide, Australia
- Dept of Medicine, University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
29
|
Arish M, Husein A, Kashif M, Saleem M, Akhter Y, Rub A. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. Drug Discov Today 2015; 21:133-142. [PMID: 26456576 DOI: 10.1016/j.drudis.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.
Collapse
Affiliation(s)
- Mohd Arish
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Atahar Husein
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Kashif
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Kangra, HP 176216, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
30
|
The Granuloma Response Controlling Cryptococcosis in Mice Depends on the Sphingosine Kinase 1-Sphingosine 1-Phosphate Pathway. Infect Immun 2015; 83:2705-13. [PMID: 25895971 DOI: 10.1128/iai.00056-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.
Collapse
|
31
|
Wozniak KL, Olszewski MA, Wormley FL. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility. Fungal Genet Biol 2014; 78:87-92. [PMID: 25445308 DOI: 10.1016/j.fgb.2014.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC).
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States; South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Michal A Olszewski
- Veterans Affairs Ann Arbor Health System, Ann Arbor, MI, United States; University of Michigan Medical School, Ann Arbor, MI, United States
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States; South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
32
|
Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res 2014; 55:1596-608. [PMID: 24459205 PMCID: PMC4109755 DOI: 10.1194/jlr.r046300] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/09/2014] [Indexed: 02/07/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a membrane-derived lysophospholipid that acts primarily as an ex-tracellular signaling molecule. Signals initiated by S1P are transduced by five G protein-coupled receptors, named S1P1-5 Cellular and temporal expression of the S1P receptors (S1PRs) determine their specific roles in various organ systems, but they are particularly critical for regulation of the cardiovascular, immune, and nervous systems, with the most well-known contributions of S1PR signaling being modulation of vascular barrier function, vascular tone, and regulation of lymphocyte trafficking. However, our knowledge of S1PR biology is rapidly increasing as they become attractive therapeutic targets in several diseases, such as chronic inflammatory pathologies, autoimmunity, and cancer. Understanding how the S1PRs regulate interactions between biological systems will allow for greater efficacy in this novel therapeutic strategy as well as characterization of complex physiological networks. Because of the rapidly expanding body of research, this review will focus on the most recent advances in S1PRs.
Collapse
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
33
|
Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, Piccio L, Schmidt RE, Cross AH, Crosby SD, Klein RS. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest 2014; 124:2571-84. [PMID: 24812668 DOI: 10.1172/jci73408] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/20/2014] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Case-Control Studies
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Humans
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sex Characteristics
- Species Specificity
- Sphingosine-1-Phosphate Receptors
Collapse
|
34
|
Adada M, Canals D, Hannun YA, Obeid LM. Sphingosine-1-phosphate receptor 2. FEBS J 2013; 280:6354-66. [PMID: 23879641 DOI: 10.1111/febs.12446] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 12/15/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in cell proliferation, angiogenesis, inflammation and malignant transformation among other functions. S1P acts either directly on intracellular targets or activates G protein-coupled receptors, specifically five S1P receptors (S1PRs). The identified S1PRs differ in cellular and tissue distribution, and each is coupled to specific G proteins, which mediate unique functions. Here, we describe functional characteristics of all five receptors, emphasizing S1PR2, which is critical in the immune, nervous, metabolic, cardiovascular, musculoskeletal, and renal systems. This review also describes the role of this receptor in tumor growth and metastasis and suggests potential therapeutic avenues that exploit S1PR2.
Collapse
Affiliation(s)
- Mohamad Adada
- Department of Medicine, Stony Brook University, NY, USA
| | | | | | | |
Collapse
|
35
|
McClelland EE, Hobbs LM, Rivera J, Casadevall A, Potts WK, Smith JM, Ory JJ. The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS One 2013; 8:e63632. [PMID: 23741297 PMCID: PMC3669355 DOI: 10.1371/journal.pone.0063632] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/09/2013] [Indexed: 01/18/2023] Open
Abstract
Cryptococcus neoformans (Cn) is a pathogenic yeast and the cause of cryptococcal meningitis. Prevalence of disease between males and females is skewed, with males having an increased incidence of disease. Based on the reported gender susceptibility differences to Cn in the literature, we used clinical isolates from Botswanan HIV-infected patients to test the hypothesis that different gender environments exerted different selective pressures on Cn. When we examined this data set, we found that men had significantly higher risk of death despite having significantly higher CD4+ T lymphocyte counts upon admittance to the hospital. These observations suggested that Cn strains are uniquely adapted to different host gender environments and that the male immune response may be less efficient in controlling Cn infection. To discriminate between these possibilities, we tested whether there were phenotypic differences between strains isolated from males and females and whether there was an interaction between Cn and the host immune response. Virulence phenotypes showed that Cn isolates from females had longer doubling times and released more capsular glucoronoxylomannan (GXM). The presence of testosterone but not 17-β estradiol was associated with higher levels of GXM release for a laboratory strain and 28 clinical isolates. We also measured phagocytic efficiency, survival of Cn, and amount of killing of human macrophages by Cn after incubation with four isolates. While macrophages from females phagocytosed more Cn than macrophages from males, male macrophages had a higher fungal burden and showed increased killing by Cn. These data are consistent with the hypothesis that differential interaction between Cn and macrophages within different gender environments contribute to the increased prevalence of cryptococcosis in males. This could be related to differential expression of cryptococcal virulence genes and capsule metabolism, changes in Cn phagocytosis and increased death of Cn-infected macrophages.
Collapse
Affiliation(s)
- Erin E McClelland
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
36
|
Carr JM, Mahalingam S, Bonder CS, Pitson SM. Sphingosine kinase 1 in viral infections. Rev Med Virol 2012; 23:73-84. [PMID: 22639116 DOI: 10.1002/rmv.1718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/24/2022]
Abstract
Sphingosine kinase 1 (SphK1) is an enzyme that phosphorylates the lipid sphingosine to generate sphingosine-1-phosphate (S1P). S1P can act intracellularly as a signaling molecule and extracellularly as a receptor ligand. The SphK1/S1P axis has well-described roles in cell signaling, the cell death/survival decision, the production of a pro-inflammatory response, immunomodulation, and control of vascular integrity. Agents targeting the SphK1/S1P axis are being actively developed as therapeutics for cancer and immunological and inflammatory disorders. Control of cell death/survival and pro-inflammatory immune responses is central to the pathology of infectious disease, and we can capitalize on the knowledge provided by investigations of SphK1/S1P in cancer and immunology to assess its application to selected human infections. We have herein reviewed the growing literature relating viral infections to changes in SphK1 and S1P. SphK1 activity is reportedly increased following human cytomegalovirus and respiratory syncytial virus infections, and elevated SphK1 enhances influenza virus infection. In contrast, SphK1 activity is reduced in bovine viral diarrhea virus and dengue virus infections. Sphingosine analogs that modulate S1P receptors have proven useful in animal models in alleviating influenza virus infection but have shown no benefit in simian human immunodeficiency virus and lymphocytic choriomeningitis virus infections. We have rationalized a role for SphK1/S1P in dengue virus, chikungunya virus, and Ross River virus infections, on the basis of the biology and the pathology of these diseases. The increasing number of effective SphK1 and S1P modulating agents currently in development makes it timely to investigate these roles with the potential for developing modulators of SphK1 and S1P for novel anti-viral therapies.
Collapse
Affiliation(s)
- Jillian M Carr
- Microbiology and Infectious Diseases, Flinders Medical Science and Technology, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
37
|
Blaho VA, Hla T. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev 2011; 111:6299-320. [PMID: 21939239 PMCID: PMC3216694 DOI: 10.1021/cr200273u] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Victoria A. Blaho
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|