1
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
2
|
Magnus N, Weise T, Piechulla B. Carbon Catabolite Repression Regulates the Production of the Unique Volatile Sodorifen of Serratia plymuthica 4Rx13. Front Microbiol 2017; 8:2522. [PMID: 29312220 PMCID: PMC5742105 DOI: 10.3389/fmicb.2017.02522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of synthesizing a plethora of secondary metabolites including the long-overlooked volatile organic compounds. Little knowledge has been accumulated regarding the regulation of the biosynthesis of such mVOCs. The emission of the unique compound sodorifen of Serratia plymuthica isolates was significantly reduced in minimal medium with glucose, while succinate elevated sodorifen release. The hypothesis of carbon catabolite repression (CCR) acting as a major control entity on the synthesis of mVOCs was proven by genetic evidence. Central components of the typical CCR of Gram-negative bacteria such as the adenylate cyclase (CYA), the cAMP binding receptor protein (CRP), and the catabolite responsive element (CRE) were removed by insertional mutagenesis. CYA, CRP, CRE1 mutants revealed a lower sodorifen release. Moreover, the emission potential of other S. plymuthica isolates was also evaluated.
Collapse
Affiliation(s)
- Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Teresa Weise
- EuroImmun, Medizinische Labordiagnostik AG, Lübeck, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Han X, Shen L, Wang Q, Cen X, Wang J, Wu M, Li P, Zhao W, Zhang Y, Zhao G. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket. J Biol Chem 2016; 292:1374-1384. [PMID: 27974467 DOI: 10.1074/jbc.m116.753640] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Indexed: 11/06/2022] Open
Abstract
The high-affinity biosynthetic pathway for converting acetate to acetyl-coenzyme A (acetyl-CoA) is catalyzed by the central metabolic enzyme acetyl-coenzyme A synthetase (Acs), which is finely regulated both at the transcriptional level via cyclic AMP (cAMP)-driven trans-activation and at the post-translational level via acetylation inhibition. In this study, we discovered that cAMP directly binds to Salmonella enterica Acs (SeAcs) and inhibits its activity in a substrate-competitive manner. In addition, cAMP binding increases SeAcs acetylation by simultaneously promoting Pat-dependent acetylation and inhibiting CobB-dependent deacetylation, resulting in enhanced SeAcs inhibition. A crystal structure study and site-directed mutagenesis analyses confirmed that cAMP binds to the ATP/AMP pocket of SeAcs, and restrains SeAcs in an open conformation. The cAMP contact residues are well conserved from prokaryotes to eukaryotes, suggesting a general regulatory mechanism of cAMP on Acs.
Collapse
Affiliation(s)
- Xiaobiao Han
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Shen
- the Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qijun Wang
- the Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xufeng Cen
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Meng Wu
- the Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Li
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhao
- From the Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| | - Yu Zhang
- the Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| | - Guoping Zhao
- the Key Laboratory of Synthetic Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China, .,the State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,the Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,the Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China, and
| |
Collapse
|
4
|
Gunasekara SM, Hicks MN, Park J, Brooks CL, Serate J, Saunders CV, Grover SK, Goto JJ, Lee JW, Youn H. Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. J Biol Chem 2015; 290:26587-96. [PMID: 26378231 DOI: 10.1074/jbc.m115.678474] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli cAMP receptor protein (CRP) requires cAMP binding to undergo a conformational change for DNA binding and transcriptional regulation. Two CRP residues, Thr(127) and Ser(128), are known to play important roles in cAMP binding through hydrogen bonding and in the cAMP-induced conformational change, but the connection between the two is not completely clear. Here, we simultaneously randomized the codons for these two residues and selected CRP mutants displaying high CRP activity in a cAMP-producing E. coli. Many different CRP mutants satisfied the screening condition for high CRP activity, including those that cannot form any hydrogen bonds with the incoming cAMP at the two positions. In vitro DNA-binding analysis confirmed that these selected CRP mutants indeed display high CRP activity in response to cAMP. These results indicate that the hydrogen bonding ability of the Thr(127) and Ser(128) residues is not critical for the cAMP-induced CRP activation. However, the hydrogen bonding ability of Thr(127) and Ser(128) was found to be important in attaining high cAMP affinity. Computational analysis revealed that most natural cAMP-sensing CRP homologs have Thr/Ser, Thr/Thr, or Thr/Asn at positions 127 and 128. All of these pairs are excellent hydrogen bonding partners and they do not elevate CRP activity in the absence of cAMP. Taken together, our analyses suggest that CRP evolved to have hydrogen bonding residues at the cAMP pocket residues 127 and 128 for performing dual functions: preserving high cAMP affinity and keeping CRP inactive in the absence of cAMP.
Collapse
Affiliation(s)
| | | | | | - Cory L Brooks
- Chemistry, California State University Fresno, Fresno, California 93740
| | - Jose Serate
- the Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, and
| | | | | | - Joy J Goto
- Chemistry, California State University Fresno, Fresno, California 93740
| | - Jin-Won Lee
- the Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | |
Collapse
|