1
|
Rios Miguel AB, Jetten MS, Welte CU. The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. WATER RESEARCH X 2020; 9:100065. [PMID: 32984801 PMCID: PMC7494797 DOI: 10.1016/j.wroa.2020.100065] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 05/24/2023]
Abstract
Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment. Microbial degradation plays a pivotal role in OMP conversion. Microorganisms can adapt their metabolism to the use of novel molecules via mutations and rearrangements of existing genes in new clusters. Many catabolic genes have been found adjacent to mobile genetic elements (MGEs), which provide a stable scaffold to host new catabolic pathways and spread these genes in the microbial community. These mobile systems could be engineered to enhance OMP degradation in WWTPs, and this review aims to summarize and better understand the role that MGEs might play in the degradation and wastewater treatment process. Available data about the presence of catabolic MGEs in WWTPs are reviewed, and current methods used to identify and measure MGEs in environmental samples are critically evaluated. Finally, examples of how these MGEs could be used to improve micropollutant degradation in WWTPs are outlined. In the near future, advances in the use of MGEs will hopefully enable us to apply selective augmentation strategies to improve OMP conversion in WWTPs.
Collapse
Affiliation(s)
- Ana B. Rios Miguel
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Mike S.M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525, AJ Nijmegen, the Netherlands
| |
Collapse
|
2
|
Wojcieszyńska D, Marchlewicz A, Guzik U. Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds. Molecules 2020; 25:molecules25194473. [PMID: 33003396 PMCID: PMC7583021 DOI: 10.3390/molecules25194473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation.
Collapse
|
3
|
Takeo M, Akizuki J, Kawasaki A, Negoro S. Degradation Potential of the Nonylphenol Monooxygenase of Sphingomonas sp. NP5 for Bisphenols and Their Structural Analogs. Microorganisms 2020; 8:microorganisms8020284. [PMID: 32093107 PMCID: PMC7074866 DOI: 10.3390/microorganisms8020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 11/21/2022] Open
Abstract
The nonylphenol-degrading bacterium Sphingomonas sp. strain NP5 has a very unique monooxygenase that can attack a wide range of 4-alkylphenols with a branched side chain. Due to the structural similarity, it can also attack bisphenolic compounds, which are very important materials for the synthesis of plastics and resins, but many of them are known to or suspected to have endocrine disrupting effects to fish and animals. In this study, to clarify the substrate specificity of the enzyme (NmoA) for bisphenolic compounds, degradation tests using the cell suspension of Pseudomonas putida harboring the nonylphenol monooxygenase gene (nmoA) were conducted. The cell suspension degraded several bisphenols including bisphenol F, bisphenol S, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylether, and 4,4′-thiodiphenol, indicating that this monooxygenase has a broad substrate specificity for compounds with a bisphenolic structure.
Collapse
|
4
|
Ootsuka M, Nishizawa T, Hasegawa M, Kurusu Y, Ohta H. Comparative Analysis of the Genetic Basis of Branched Nonylphenol Degradation by Sphingobium amiense DSM 16289 T and Sphingobium cloacae JCM 10874 T. Microbes Environ 2018; 33:450-454. [PMID: 30518740 PMCID: PMC6308004 DOI: 10.1264/jsme2.me18077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branched nonylphenol (BNP), a degradation product of nonylphenol polyethoxylates, exerts estrogenic effects on various organisms. The genes underlying BNP degradation by Sphingobium amiense DSM 16289T were analyzed by complete genome sequencing and compared with those of the versatile BNP-degrading Sphingobium cloacae JCM 10874T. An opdA homolog (opdADSM16289) encoding BNP degradation activity was identified in DSM 16289T, in contrast with JCM 10874T, possessing both the opdA homolog and nmoA. The degradation profile of different BNP isomers was examined by Escherichia coli transformants harboring opdADSM16289, opdAJCM10874, and nmoAJCM10874 to characterize and compare the expression activities of these genes.
Collapse
Affiliation(s)
- Mina Ootsuka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Morifumi Hasegawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Yasurou Kurusu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| |
Collapse
|
5
|
Complete Genome Sequence of the Nonylphenol-Degrading Bacterium Sphingobium cloacae JCM 10874T. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01358-16. [PMID: 27932652 PMCID: PMC5146444 DOI: 10.1128/genomea.01358-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingobium cloacae JCM 10874T can degrade phenolic endocrine-disrupting chemicals, nonylphenol, and octylphenol. Here, we report the complete genome sequence of the JCM 10874T strain.
Collapse
|
6
|
Metabolic pathway involved in 2-methyl-6-ethylaniline degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA. Appl Environ Microbiol 2015; 81:8254-64. [PMID: 26386060 DOI: 10.1128/aem.01883-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
2-Methyl-6-ethylaniline (MEA) is the main microbial degradation intermediate of the chloroacetanilide herbicides acetochlor and metolachlor. Sphingobium sp. strain MEA3-1 can utilize MEA and various alkyl-substituted aniline and phenol compounds as sole carbon and energy sources for growth. We isolated the mutant strain MEA3-1Mut, which converts MEA only to 2-methyl-6-ethyl-hydroquinone (MEHQ) and 2-methyl-6-ethyl-benzoquinone (MEBQ). MEA may be oxidized by the P450 monooxygenase system to 4-hydroxy-2-methyl-6-ethylaniline (4-OH-MEA), which can be hydrolytically spontaneously deaminated to MEBQ or MEHQ. The MEA microbial metabolic pathway was reconstituted based on the substrate spectra and identification of the intermediate metabolites in both the wild-type and mutant strains. Plasmidome sequencing indicated that both strains harbored 7 plasmids with sizes ranging from 6,108 bp to 287,745 bp. Among the 7 plasmids, 6 were identical, and pMEA02' in strain MEA3-1Mut lost a 37,000-bp fragment compared to pMEA02 in strain MEA3-1. Two-dimensional electrophoresis (2-DE) and protein mass fingerprinting (PMF) showed that MEA3-1Mut lost the two-component flavin-dependent monooxygenase (TC-FDM) MeaBA, which was encoded by a gene in the lost fragment of pMEA02. MeaA shared 22% to 25% amino acid sequence identity with oxygenase components of some TC-FDMs, whereas MeaB showed no sequence identity with the reductase components of those TC-FDMs. Complementation with meaBA in MEA3-1Mut and heterologous expression in Pseudomonas putida strain KT2440 resulted in the production of an active MEHQ monooxygenase.
Collapse
|
7
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
8
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
9
|
Huijbers MME, Montersino S, Westphal AH, Tischler D, van Berkel WJH. Flavin dependent monooxygenases. Arch Biochem Biophys 2013; 544:2-17. [PMID: 24361254 DOI: 10.1016/j.abb.2013.12.005] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/29/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. As such, they are involved in key biological processes ranging from catabolism, detoxification and biosynthesis, to light emission and axon guidance. Based on fold and function, flavin-dependent monooxygenases can be distributed into eight groups. Groups A and B comprise enzymes that rely on NAD(P)H as external electron donor. Groups C-F are two-protein systems, composed of a monooxygenase and a flavin reductase. Groups G and H comprise internal monooxygenases that reduce the flavin cofactor through substrate oxidation. Recently, many new flavin-dependent monooxygenases have been discovered. In addition to posing basic enzymological questions, these proteins attract attention of pharmaceutical and fine-chemical industries, given their importance as regio- and enantioselective biocatalysts. In this review we present an update of the classification of flavin-dependent monooxygenases and summarize the latest advances in our understanding of their catalytic and structural properties.
Collapse
Affiliation(s)
- Mieke M E Huijbers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Stefania Montersino
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Dirk Tischler
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands; Interdisciplinary Ecological Center, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| |
Collapse
|
10
|
Kolvenbach BA, Helbling DE, Kohler HPE, Corvini PFX. Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol 2013; 27:8-14. [PMID: 24863891 DOI: 10.1016/j.copbio.2013.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
Abstract
The number of new chemicals produced is increasing daily by the thousands, and it is inevitable that many of these chemicals will reach the environment. Current research provides an understanding of how the evolution of promiscuous enzymes and the recruitment of enzymes available from the metagenome allows for the assembly of these pathways. Nevertheless, physicochemical constraints including bioavailability, bioaccessibility, and the structural variations of similar chemicals limit the evolution of biodegradation pathways. Similarly, physiological constraints related to kinetics and substrate utilization at low concentrations likewise limit chemical-enzyme interactions and consequently evolution. Considering these new data, the biodegradation decalogue still proves valid while at the same time the underlying mechanisms are better understood.
Collapse
Affiliation(s)
- Boris A Kolvenbach
- University of Applied Sciences and Arts Northwestern Switzerland, School for Life Sciences, Institute for Ecopreneurship, Gruendenstrasse 40, Muttenz 4132, Switzerland
| | - Damian E Helbling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Ueberlandstrasse 133, P.O. Box 611, Duebendorf 8600, Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Ueberlandstrasse 133, P.O. Box 611, Duebendorf 8600, Switzerland
| | - Philippe F-X Corvini
- University of Applied Sciences and Arts Northwestern Switzerland, School for Life Sciences, Institute for Ecopreneurship, Gruendenstrasse 40, Muttenz 4132, Switzerland; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China.
| |
Collapse
|
11
|
Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 2013; 195:4406-14. [PMID: 23893114 DOI: 10.1128/jb.00397-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.
Collapse
|
12
|
Kolvenbach B, Corvini PX. The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 – a review on seven years of research. N Biotechnol 2012; 30:88-95. [DOI: 10.1016/j.nbt.2012.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/18/2012] [Accepted: 07/21/2012] [Indexed: 11/26/2022]
|