1
|
Su Y, Chen J, Hu J, Qian C, Ma J, Brynjolfsson S, Fu W. Manipulation of ion/electron carrier genes in the model diatom Phaeodactylum tricornutum enables its growth under lethal acidic stress. iScience 2024; 27:110482. [PMID: 39758278 PMCID: PMC11700652 DOI: 10.1016/j.isci.2024.110482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom Phaeodactylum tricornutum: ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO3 - transporter (PtSCL4-2). Here, we individually overexpressed these genes in P. tricornutum to investigate their respective roles in resisting acidic stress (pH 5.0). The genetic modifications enabled positive growths of transgenic strains under acidic stress that completely inhibited the growth of the wild-type strain. Physiological studies indicated improved photosynthesis and reduced oxidative stress in the transgenic strains. Transcriptomes of the PtCPA- and PtSCL4-2-overexpressing transgenics showed widespread upregulation of various transmembrane transporters, which could help counteract excessive external protons. This work highlights ion/electron carrier genes' role in enhancing diatom resistance to acidic stress, providing insights into phytoplankton adaptation to ocean acidification and a strategy for biological carbon capture and industrial flue gas CO2 utilization.
Collapse
Affiliation(s)
- Yixi Su
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Jiwei Chen
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Jingyan Hu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Cheng Qian
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jiahao Ma
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Sigurður Brynjolfsson
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Weiqi Fu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|
2
|
Wang Q, Qiao M, Song J. Characterization of Two Na +(K +, Li +)/H + Antiporters from Natronorubrum daqingense. Int J Mol Sci 2023; 24:10786. [PMID: 37445962 DOI: 10.3390/ijms241310786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
The Na+/H+ antiporter NhaC family protein is a kind of Na+/H+ exchanger from the ion transporter (IT) superfamily, which has mainly been identified in the halophilic bacteria of Bacillus. However, little is known about the Na+/H+ antiporter NhaC family of proteins in the extremely halophilic archaea. In this study, two Na+/H+ antiporter genes, nhaC1 and nhaC2, were screened from the genome of Natronorubrum daqingense based on the gene library and complementation of salt-sensitive Escherichia coli KNabc. A clone vector pUC18 containing nhaC1 or nhaC2 could make KNabc tolerate 0.6 M/0.7 M NaCl or 30 mM/40 mM LiCl and a pH of up to 8.5/9.5, respectively. Functional analysis shows that the Na+(K+, Li+)/H+ antiport activities of NhaC1 and NhaC2 are both pH-dependent in the range of pH 7.0-10.0, and the optimal pH is 9.5. Phylogenetic analysis shows that both NhaC1 and NhaC2 belong to the Na+/H+ antiporter NhaC family of proteins and are significantly distant from the identified NhaC proteins from Bacillus. In summary, we have identified two Na+(K+, Li+)/H+ antiporters from N. daqingense.
Collapse
Affiliation(s)
- Qi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Mengwei Qiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Jinzhu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
3
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Liao X, Chen X, Sant'Ana AS, Feng J, Ding T. Pre-Exposure of Foodborne Staphylococcus aureus Isolates to Organic Acids Induces Cross-Adaptation to Mild Heat. Microbiol Spectr 2023; 11:e0383222. [PMID: 36916935 PMCID: PMC10101096 DOI: 10.1128/spectrum.03832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Staphylococcus aureus is a typical enterotoxin-producing bacterium that causes food poisoning. In the food industry, pasteurization is the most widely used technique for food decontamination. However, pre-exposure to an acidic environment might make bacteria more resistant to heat treatment, which could compromise the bactericidal effect of heat treatment and endanger food safety. In this work, the organic acid-induced cross-adaptation of S. aureus isolates to heat and the associated mechanisms were investigated. Cross-adaptation area analysis indicated that pre-exposure to organic acids induced cross-adaptation of S. aureus to heat in a strain-dependent manner. Compared with other strains, S. aureus strain J15 showed extremely high heat resistance after being stressed by acetic acid, citric acid, and lactic acid. S. aureus strains J19, J9, and J17 were found to be unable to develop cross-adaptation to heat with pre-exposure to acetic acid, citric acid, and lactic acid, respectively. Analysis of the phenotypic characteristics of the cell membrane demonstrated that the acid-heat-cross-adapted strain J15 retained cell membrane integrity and functions through enhanced Na+K+-ATPase and FoF1-ATPase activities. Cell membrane fatty acid analysis revealed that the ratio of anteiso to iso branched-chain fatty acids in the acid-heat-cross-adapted strain J15 decreased and the content of straight-chain fatty acids exhibited a 2.9 to 4.4% increase, contributing to the reduction in membrane fluidity. At the molecular level, fabH was overexpressed with preconditioning by organic acid, and its expression was further enhanced with subsequent heat exposure. Organic acids activated the GroESL system, which participated in the heat shock response of S. aureus to the subsequent heat stress. IMPORTANCE Cross-adaptation is one of the most important phenotypes in foodborne pathogens and poses a potential risk to food safety and human health. In this work, we found that pretreatment with acetic acid, citric acid, and lactic acid could induce subsequent heat tolerance development in S. aureus. Various S. aureus strains exhibited different acid-heat cross-adaptation areas. The acid-induced cross-adaptation to heat might be attributable to membrane integrity maintenance, stabilization of the charge equilibrium to achieve a normal internal pH, and membrane fluidity reduction achieved by decreasing the ratios of anteiso to iso fatty acids. The fabH gene, which is involved in fatty acid biosynthesis, and groES/groEL, which are related to heat shock response, contributed to the development of the acid-heat cross-adaptation phenomenon in S. aureus. The investigations of the stress cross-adaptation phenomenon in foodborne pathogens could help optimize food processing to better control S. aureus.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Xin Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anderson S. Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jinsong Feng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| |
Collapse
|
5
|
Maharajan AD, Hjerde E, Hansen H, Willassen NP. Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Front Vet Sci 2022; 9:799414. [PMID: 35211539 PMCID: PMC8861277 DOI: 10.3389/fvets.2022.799414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022] Open
Abstract
For bacteria to thrive in an environment with competitors, phages and environmental cues, they use different strategies, including Type VI Secretion Systems (T6SSs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) to compete for space. Bacteria often use quorum sensing (QS), to coordinate their behavior as the cell density increases. Like other aliivibrios, Aliivibrio wodanis 06/09/139 harbors two QS systems, the main LuxS/LuxPQ system and an N-acyl homoserine lactone (AHL)-mediated AinS/AinR system and a master QS regulator, LitR. To explore the QS and survival strategies, we performed genome analysis and gene expression profiling on A. wodanis and two QS mutants (ΔainS and ΔlitR) at two cell densities (OD600 2.0 and 6.0) and temperatures (6 and 12°C). Genome analysis of A. wodanis revealed two CRISPR systems, one without a cas loci (CRISPR system 1) and a type I-F CRISPR system (CRISPR system 2). Our analysis also identified three main T6SS clusters (T6SS1, T6SS2, and T6SS3) and four auxiliary clusters, as well about 80 potential Type VI secretion effectors (T6SEs). When comparing the wildtype transcriptome data at different cell densities and temperatures, 13-18% of the genes were differentially expressed. The CRISPR system 2 was cell density and temperature-independent, whereas the CRISPR system 1 was temperature-dependent and cell density-independent. The primary and auxiliary clusters of T6SSs were both cell density and temperature-dependent. In the ΔlitR and ΔainS mutants, several CRISPR and T6SS related genes were differentially expressed. Deletion of litR resulted in decreased expression of CRISPR system 1 and increased expression of CRISPR system 2. The T6SS1 and T6SS2 gene clusters were less expressed while the T6SS3 cluster was highly expressed in ΔlitR. Moreover, in ΔlitR, the hcp1 gene was strongly activated at 6°C compared to 12°C. AinS positively affected the csy genes in the CRISPR system 2 but did not affect the CRISPR arrays. Although AinS did not significantly affect the expression of T6SSs, the hallmark genes of T6SS (hcp and vgrG) were AinS-dependent. The work demonstrates that T6SSs and CRISPR systems in A. wodanis are QS dependent and may play an essential role in survival in its natural environment.
Collapse
Affiliation(s)
- Amudha Deepalakshmi Maharajan
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik Hjerde
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hilde Hansen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nils Peder Willassen
- Norwegian Structural Biology Center and Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- Centre for Bioinformatics, Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
6
|
Mourin M, Bhattacharjee A, Wai A, Hausner G, O'Neil J, Dibrov P. Pharmacophore-Based Screening & Modification of Amiloride Analogs for targeting the NhaP-type Cation-Proton Antiporter in Vibrio cholerae. Can J Microbiol 2021; 67:835-849. [PMID: 34224663 DOI: 10.1139/cjm-2021-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and mutational analysis of Vc-NhaP2 identified a putative cation binding pocket formed by antiparallel extended regions of two transmembrane segments (TMSs V/XII) along with TMS VI. Molecular Dynamics (MD) simulations suggested that the flexibility of TMS-V/XII is crucial for the intra-molecular conformational events in Vc-NhaP2. In this study, we developed some putative Vc-NhaP2 inhibitors from Amiloride analogs (AAs). Molecular docking of the modified AAs revealed promising binding. The four selected drugs potentially interacted with functionally important amino acid residues located on the cytoplasmic side of TMS VI, the extended chain region of TMS V and TMS XII and the loop region between TMSs VIIII and IX. Molecular dynamics simulations revealed that binding of the selected drugs can potentially destabilize the Vc-NhaP2 and alters the flexibility of the functionally important TMS VI. The work presents the utility of in silico approaches for the rational identification of potential targets and drugs that could target NhaP2 cation proton antiporter to control Vibrio cholerae. The goal is to identify potential drugs that can be validated in future experiments.
Collapse
Affiliation(s)
- Muntahi Mourin
- University of Manitoba Faculty of Science, 124614, Microbiology, 66 chancellor drive, Winnipeg, Winnipeg, Manitoba, Canada, R3T 2N2;
| | - Arittra Bhattacharjee
- North South University, 54495, Biochemistry and Microbiology, Dhaka, Dhaka District, Bangladesh;
| | - Alvan Wai
- University of Manitoba, 8664, Winnipeg, Canada, R3T 2N2;
| | - Georg Hausner
- University of Manitoba, 8664, Buller Building 213, Buller Building 213, Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2;
| | - Joe O'Neil
- University of Manitoba, 8664, Chemistry, Winnipeg, Manitoba, Canada;
| | - Pavel Dibrov
- University of Manitoba Faculty of Science, 124614, Microbiology, Winnipeg, Manitoba, Canada;
| |
Collapse
|
7
|
Qin Z, Yang X, Chen G, Park C, Liu Z. Crosstalks Between Gut Microbiota and Vibrio Cholerae. Front Cell Infect Microbiol 2020; 10:582554. [PMID: 33194819 PMCID: PMC7644805 DOI: 10.3389/fcimb.2020.582554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, could proliferate in aquatic environment and infect humans through contaminated food and water. Enormous microorganisms residing in human gastrointestinal tract establish a special microecological system, which immediately responds to the invasion of V. cholerae, through “colonization resistance” mechanisms, such as antimicrobial peptide production, nutrients competition, and intestinal barrier maintenances. Meanwhile, V. cholerae could quickly sense those signals and modulate the expression of relevant genes to circumvent those stresses during infection, leading to successful colonization on the surface of small intestinal epithelial cells. In this review, we summarized the crosstalks profiles between gut microbiota and V. cholerae in the terms of Type VI Secretion System (T6SS), Quorum Sensing (QS), Reactive Oxygen Species (ROS)/pH stress, and Bioactive metabolites. These mechanisms can also be applied to molecular bacterial pathogenesis of other pathogens in host.
Collapse
Affiliation(s)
- Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chaiwoo Park
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Vibrio cholerae OmpR Contributes to Virulence Repression and Fitness at Alkaline pH. Infect Immun 2020; 88:IAI.00141-20. [PMID: 32284367 DOI: 10.1128/iai.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is a Gram-negative human pathogen and the causative agent of the life-threatening disease cholera. V. cholerae is a natural inhabitant of marine environments and enters humans through the consumption of contaminated food or water. The ability to transition between aquatic ecosystems and the human host is paramount to the pathogenic success of V. cholerae The transition between these two disparate environments requires the expression of adaptive responses, and such responses are most often regulated by two-component regulatory systems such as the EnvZ/OmpR system, which responds to osmolarity and acidic pH in many Gram-negative bacteria. Previous work in our laboratory indicated that V. cholerae OmpR functioned as a virulence regulator through repression of the LysR-family transcriptional regulator aphB; however, the role of OmpR in V. cholerae biology outside virulence regulation remained unknown. In this work, we sought to further investigate the function of OmpR in V. cholerae biology by defining the OmpR regulon through RNA sequencing. This led to the discovery that V. cholerae ompR was induced at alkaline pH to repress genes involved in acid tolerance and virulence factor production. In addition, OmpR was required for V. cholerae fitness during growth under alkaline conditions. These findings indicate that V. cholerae OmpR has evolved the ability to respond to novel signals during pathogenesis, which may play a role in the regulation of adaptive responses to aid in the transition between the human gastrointestinal tract and the marine ecosystem.
Collapse
|
9
|
Lin J, Weixler D, Daboss S, Seibold GM, Andronescu C, Schuhmann W, Kranz C. Time-resolved ATP measurements during vesicle respiration. Talanta 2019; 205:120083. [PMID: 31450430 DOI: 10.1016/j.talanta.2019.06.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
In vitro synthesis of ATP catalyzed by the ATP-synthase requires membrane vesicles, in which the ATP-synthase is present within the bilayer membrane. Inverted vesicle prepared from Gram negative cells (e.g., Escherichia coli or Pseudomonas putida) can be readily obtained and used for in vitro ATP-synthesis. Up to now, quantification of ATP synthesized by membrane vesicles has been mostly analyzed via bioluminescence-based assays. Alternatively, vesicle respiration and the associated ATP level can be determined using biosensors, which not only provide high selectivity, but allow ATP measurements without the sample being illuminated. Here, we present a microbiosensor for ATP in combination with scanning electrochemical microscopy (SECM) using an innovative two-compartment electrochemical cell for the determination of ATP levels at E.coli or P. putida inverted vesicles. For a protein concentration of 22 mg/ml, a total amount of 0.29 ± 0.03 μM/μl ATP per vesicle was determined in case of E.coli; in turn, P. putida derived vesicles yielded 0.48 ± 0.02 μM/μl ATP per vesicle at a total protein concentration of 25.2 mg/ml. Inhibition experiments with Venturicidin A clearly revealed that the respiratory chain enzyme complex responsible for ATP generation is effectively involved.
Collapse
Affiliation(s)
- Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 17 Universitätsstr. 150, 44780, Bochum, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Physiological, Structural, and Functional Analysis of the Paralogous Cation-Proton Antiporters of NhaP Type from Vibrio cholerae. Int J Mol Sci 2019; 20:ijms20102572. [PMID: 31130620 PMCID: PMC6567090 DOI: 10.3390/ijms20102572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
The transmembrane K+/H+ antiporters of NhaP type of Vibrio cholerae (Vc-NhaP1, 2, and 3) are critical for maintenance of K+ homeostasis in the cytoplasm. The entire functional NhaP group is indispensable for the survival of V. cholerae at low pHs suggesting their possible role in the acid tolerance response (ATR) of V. cholerae. Our findings suggest that the Vc-NhaP123 group, and especially its major component, Vc-NhaP2, might be a promising target for the development of novel antimicrobials by narrowly targeting V. cholerae and other NhaP-expressing pathogens. On the basis of Vc-NhaP2 in silico structure modeling, Molecular Dynamics Simulations, and extensive mutagenesis studies, we suggest that the ion-motive module of Vc-NhaP2 is comprised of two functional regions: (i) a putative cation-binding pocket that is formed by antiparallel unfolded regions of two transmembrane segments (TMSs V/XII) crossing each other in the middle of the membrane, known as the NhaA fold; and (ii) a cluster of amino acids determining the ion selectivity.
Collapse
|
11
|
Xu T, Chen H, Li J, Hong S, Shao L, Zheng X, Zou Q, Wang Y, Guo S, Jiang J. Implications for Cation Selectivity and Evolution by a Novel Cation Diffusion Facilitator Family Member From the Moderate Halophile Planococcus dechangensis. Front Microbiol 2019; 10:607. [PMID: 30967858 PMCID: PMC6440370 DOI: 10.3389/fmicb.2019.00607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/11/2019] [Indexed: 11/28/2022] Open
Abstract
In the cation diffusion facilitator (CDF) family, the transported substrates are confined to divalent metal ions, such as Zn2+, Fe2+, and Mn2+. However, this study identifies a novel CDF member designated MceT from the moderate halophile Planococcus dechangensis. MceT functions as a Na+(Li+, K+)/H+ antiporter, together with its capability of facilitated Zn2+ diffusion into cells, which have not been reported in any identified CDF transporters as yet. MceT is proposed to represent a novel CDF group, Na-CDF, which shares significantly distant phylogenetic relationship with three known CDF groups including Mn-CDF, Fe/Zn-CDF, and Zn-CDF. Variation of key function-related residues to “Y44-S48-Q150” in two structural motifs explains a significant discrimination in cation selectivity between Na-CDF group and three major known CDF groups. Functional analysis via site-directed mutagenesis confirms that MceT employs Q150, S158, and D184 for the function of MceT as a Na+(Li+, K+)/H+ antiporter, and retains D41, D154, and D184 for its facilitated Zn2+ diffusion into cells. These presented findings imply that MceT has evolved from its native CDF family function to a Na+/H+ antiporter in an evolutionary strategy of the substitution of key conserved residues to “Q150-S158-D184” motif. More importantly, the discovery of MceT contributes to a typical transporter model of CDF family with the unique structural motifs, which will be utilized to explore the cation-selective mechanisms of secondary transporters.
Collapse
Affiliation(s)
- Tong Xu
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jincheng Li
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Shan Hong
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Li Shao
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiutao Zheng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Qiao Zou
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yuting Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Sijia Guo
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Meng Y, Lv P, Cui Y, Zhang L, Wang Y, Ma C, Xu P, Yang C. Potassium resistance of halotolerant and alkaliphilic Halomonas sp. Y2 by a Na +-induced K + extrusion mechanism. MICROBIOLOGY-SGM 2019; 165:411-418. [PMID: 30777817 DOI: 10.1099/mic.0.000784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In most halophiles, K+ generally acts as a major osmotic solute for osmotic adjustment and pH homeostasis. However, strains also need to extrude excessive intracellular K+ to avoid its toxicity. In the halotolerant and alkaliphilic Halomonas sp. Y2, an Na+-induced K+ extrusion process was observed when the cells were confronted with high extracellular K+ pressure and supplementation by millimolar Na+ ions. Among three mechanosensitive channels (KefA) and two K+/H+ antiporters founded in the genome of the strain, ke1 displayed around 3-5-fold upregulation to ion stress at pH 8.0, while much higher upregulation of Ha-mrp was observed at pH 10.0. Compared to the growth of wild-type Halomonas sp. Y2, deletion of these genes from the strain resulted in different growth phenotypes in response to the osmotic pressure of potassium. In combination with the transcriptional response of these genes, we proposed that the KefA channel of Ke1 is the main contributor to the K+-extrusion process under weak alkalinity, while the Mrp system plays critical roles in alleviating K+ contents at high pH. The combination of these strategies allows Halomonas sp. Y2 to grow over a range of extracellular pH and ion concentrations, and thus protect cells under high osmotic stress conditions.
Collapse
Affiliation(s)
- Yiwei Meng
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Peiwen Lv
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yanbing Cui
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Lina Zhang
- 2College of Bioengineering, Qilu University of Technology, Jinan 250353, PR China
| | - Yan Wang
- 2College of Bioengineering, Qilu University of Technology, Jinan 250353, PR China
| | - Cuiqing Ma
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ping Xu
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Chunyu Yang
- 1State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
13
|
Abdel-Motaal H, Meng L, Zhang Z, Abdelazez AH, Shao L, Xu T, Meng F, Abozaed S, Zhang R, Jiang J. An Uncharacterized Major Facilitator Superfamily Transporter From Planococcus maritimus Exhibits Dual Functions as a Na +(Li +, K +)/H + Antiporter and a Multidrug Efflux Pump. Front Microbiol 2018; 9:1601. [PMID: 30061877 PMCID: PMC6055358 DOI: 10.3389/fmicb.2018.01601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/27/2018] [Indexed: 02/01/2023] Open
Abstract
Within major facilitator superfamily (MFS), up to 27 unknown major facilitator families and many members of 60 well-characterized families have been functionally unknown as yet, due to their sharing no or significantly low sequence identity with characterized MFS members. Here we present the first report on the characterization of one functionally unknown MFS transporter designated MdrP with the accession version No. ANU18183.1 from the slight halophile Planococcus maritimus DS 17275T. During the screening of Na+/H+ antiporter genes, we found at first that MdrP exhibits Na+(Li+, K+)/H+ antiport activity, and propose that it should represent a novel class of Na+(Li+, K+)/H+ antiporters. However, we speculate that MdrP may possess an additional protein function. The existence of the signature Motif A of drug/H+antiporter (DHA) family members and phylogenetic analysis suggest that MdrP may also function as a drug efflux pump, which was established by minimum inhibitory concentration tests and drug efflux activity assays. Taken together, this novel MFS transporter exhibits dual functions as a Na+(Li+, K+)/H+ antiporter and a multidrug efflux pump, which will be very helpful to not only positively contribute to the function prediction of uncharacterized MFS members especially DHA1 family ones, but also broaden the knowledge of Na+/H+ antiporters.
Collapse
Affiliation(s)
- Heba Abdel-Motaal
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China.,Department of Microbiology, Agriculture Research Center, Soils, Water, Environment and Microbiology Research Institute, Giza, Egypt
| | - Lin Meng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhenglai Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Amro H Abdelazez
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Li Shao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Tong Xu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Fankui Meng
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Shaima Abozaed
- Department of Microbiology, Agriculture Research Center, Soils, Water, Environment and Microbiology Research Institute, Giza, Egypt
| | - Rui Zhang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, and Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Shao L, Abdel-Motaal H, Chen J, Chen H, Xu T, Meng L, Zhang Z, Meng F, Jiang J. Characterization of a Functionally Unknown Arginine-Aspartate-Aspartate Family Protein From Halobacillus andaensis and Functional Analysis of Its Conserved Arginine/Aspartate Residues. Front Microbiol 2018; 9:807. [PMID: 29922240 PMCID: PMC5996927 DOI: 10.3389/fmicb.2018.00807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
Arginine–aspartate–aspartate (RDD) family, representing a category of transmembrane proteins containing one highly conserved arginine and two highly conserved aspartates, has been functionally uncharacterized as yet. Here we present the characterization of a member of this family designated RDD from the moderate halophile Halobacillus andaensis NEAU-ST10-40T and report for the first time that RDD should function as a novel Na+(Li+, K+)/H+ antiporter. It’s more interesting whether the highly conserved arginine/aspartate residues among the whole family or between RDD and its selected homologs are related to the protein function. Therefore, we analyzed their roles in the cation-transporting activity through site-directed mutagenesis and found that D154, R124, R129, and D158 are indispensable for Na+(Li+, K+)/H+ antiport activity whereas neither R35 nor D42 is involved in Na+(Li+, K+)/H+ antiport activity. As a dual representative of Na+(Li+, K+)/H+ antiporters and RDD family proteins, the characterization of RDD and the analysis of its important residues will positively contribute to the knowledge of the cation-transporting mechanisms of this novel antiporter and the roles of highly conserved arginine/aspartate residues in the functions of RDD family proteins.
Collapse
Affiliation(s)
- Li Shao
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Heba Abdel-Motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jin Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Tong Xu
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lin Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Fankui Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Wang Y, Song N, Yang L, Abdel-motaal H, Zhang R, Zhang Z, Meng F, Jiang J. A novel NhaD-type Na+/H+ antiporter from the moderate halophile and alkaliphile Halomonas alkaliphila. Can J Microbiol 2017; 63:596-607. [DOI: 10.1139/cjm-2017-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, a NhaD-type Na+/H+ antiporter gene designated Ha-nhaD was obtained by selection of genomic DNA from the moderate halophile and alkaliphile Halomonas alkaliphila in Escherichia coli KNabc lacking 3 major Na+/H+ antiporters. The presence of Ha-NhaD conferred tolerance of E. coli KNabc to NaCl up to 0.6 mol·L–1 and to LiCl up to 0.2 mol·L–1 and to an alkaline pH. pH-dependent Na+(Li+)/H+ antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc/pUC-nhaD but not those of KNabc/pUC18. Ha-NhaD exhibited Na+(Li+)/H+ antiport activity over a wide pH range from 7.0 to 9.5, with the highest activity at pH 9.0. Protein sequence alignment and phylogenetic analysis revealed that Ha-NhaD is significantly different from the 7 known NhaD-type Na+/H+ antiporters, including Dw-NhaD, Dl-NhaD, Vp-NhaD, Vc-NhaD, Aa-NhaD, He-NhaD, and Ha-NhaD1. Although Ha-NhaD showed a closer phylogenetic relationship with Ha-NhaD2, a significant difference in pH-dependent activity profile exists between Ha-NhaD and Ha-NhaD2. Taken together, Ha-nhaD encodes a novel pH-dependent NhaD-type Na+/H+ antiporter.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People’s Republic of China
| | - Na Song
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Lina Yang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Heba Abdel-motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
- Department of Microbiology, Soils, Water & Environment Research Institute, Agriculture Research Center, Egypt
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Fankui Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People’s Republic of China
| |
Collapse
|
16
|
Characterization of a novel two-component Na +(Li +, K +)/H + antiporter from Halomonas zhaodongensis. Sci Rep 2017; 7:4221. [PMID: 28652569 PMCID: PMC5484666 DOI: 10.1038/s41598-017-04236-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/30/2017] [Indexed: 02/01/2023] Open
Abstract
In this study, genomic DNA was screened for novel Na+/H+ antiporter genes from Halomonas zhaodongensis by selection in Escherichia coli KNabc lacking three major Na+/H+ antiporters. Co-expression of two genes designated umpAB, encoding paired homologous unknown membrane proteins belonging to DUF1538 (domain of unknown function with No. 1538) family, were found to confer E. coli KNabc the tolerance to 0.4 M NaCl and 30 mM LiCl, and an alkaline pH resistance at 8.0. Western blot and co-immunoprecipitation establish that UmpAB localize as a hetero-dimer in the cytoplasmic membranes. Functional analysis reveals that UmpAB exhibit pH-dependent Na+(Li+, K+)/H+ antiport activity at a wide pH range of 6.5 to 9.5 with an optimal pH at 9.0. Neither UmpA nor UmpB showed homology with known single-gene or multi-gene Na+/H+ antiporters, or such proteins as ChaA, MdfA, TetA(L), Nap and PsmrAB with Na+/H+ antiport activity. Phylogenetic analysis confirms that UmpAB should belong to DUF1538 family, which are significantly distant with the above-mentioned proteins with Na+/H+ antiport activity. Taken together, we propose that UmpAB represent a novel two-component Na+(Li+, K+)/H+ antiporter. To the best of our knowledge, this is the first report on the functional analysis of unknown membrane proteins belonging to DUF1538 family.
Collapse
|
17
|
Dong P, Wang L, Song N, Yang L, Chen J, Yan M, Chen H, Zhang R, Li J, Abdel-Motaal H, Jiang J. A UPF0118 family protein with uncharacterized function from the moderate halophile Halobacillus andaensis represents a novel class of Na +(Li +)/H + antiporter. Sci Rep 2017; 7:45936. [PMID: 28374790 PMCID: PMC5379678 DOI: 10.1038/srep45936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/07/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, genomic DNA was screened from Halobacillus andaensis NEAU-ST10-40T by selection in Escherichia coli KNabc lacking three major Na+/H+ antiporters. One gene designated upf0118 exhibiting Na+(Li+)/H+ antiport activity was finally cloned. Protein alignment showed that UPF0118 shares the highest identity of 81.5% with an unannotated gene encoding a protein with uncharacterized protein function belonging to UPF0118 family from H. kuroshimensis, but shares no identity with all known specific Na+(Li+)/H+ antiporter genes or genes with Na+(Li+)/H+ antiport activity. Growth test, western blot and Na+(Li+)/H+ antiport assay revealed that UPF0118 as a transmembrane protein exhibits pH-dependent Na+(Li+)/H+ antiport activity. Phylogenetic analysis indicated that UPF0118 clustered with all its homologs belonging to UPF0118 family at a wide range of 22–82% identities with the bootstrap value of 92%, which was significantly distant with all known specific single-gene Na+(Li+)/H+ antiporters and single-gene proteins with the Na+(Li+)/H+ antiport activity. Taken together, we propose that UPF0118 should represent a novel class of Na+(Li+)/H+ antiporter. To the best of our knowledge, this is the first report on the functional analysis of a protein with uncharacterized protein function as a representative of UPF0118 family containing the domain of unknown function, DUF20.
Collapse
Affiliation(s)
- Ping Dong
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lidan Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Song
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lina Yang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingxue Yan
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jincheng Li
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Heba Abdel-Motaal
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
18
|
Mourin M, Schubiger CB, Resch CT, Häse CC, Dibrov P. Physiology of the Vc-NhaP paralogous group of cation–proton antiporters in Vibrio cholerae. Mol Cell Biochem 2017; 428:87-99. [DOI: 10.1007/s11010-016-2919-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
19
|
Aagesen AM, Schubiger CB, Hobson EC, Dibrov P, Häse CC. Effects of chromosomal deletion of the operon encoding the multiple resistance and pH-related antiporter in Vibrio cholerae. MICROBIOLOGY-SGM 2016; 162:2147-2158. [PMID: 27902431 DOI: 10.1099/mic.0.000384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To examine the possible physiological significance of Mrp, a multi-subunit cation/proton antiporter from Vibrio cholerae, a chromosomal deletion Δmrp of V. cholerae was constructed and characterized. The resulting mutant showed a consistent early growth defect in LB broth that became more evident at elevated pH of the growth medium and increasing Na+ or K+ loads. After 24 h incubation, these differences disappeared likely due to the concerted effort of other cation pumps in the mrp mutant. Phenotype MicroArray analyses revealed an unexpected systematic defect in nitrogen utilization in the Δmrp mutant that was complemented by using the mrpA'-F operon on an arabinose-inducible expression vector. Deletion of the mrp operon also led to hypermotility, observable on LB and M9 semi-solid agar. Surprisingly, Δmrp mutation resulted in wild-type biofilm formation in M9 despite a growth defect but the reverse was true in LB. Furthermore, the Δmrp strain exhibited higher susceptibility to amphiphilic anions. These pleiotropic phenotypes of the Δmrp mutant demonstrate how the chemiosmotic activity of Mrp contributes to the survival potential of V. cholerae despite the presence of an extended battery of cation/proton antiporters of varying ion selectivity and pH profile operating in the same membrane.
Collapse
Affiliation(s)
- Alisha M Aagesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Carla B Schubiger
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Eric C Hobson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Pavel Dibrov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Claudia C Häse
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
20
|
Vorburger T, Nedielkov R, Brosig A, Bok E, Schunke E, Steffen W, Mayer S, Götz F, Möller HM, Steuber J. Role of the Na(+)-translocating NADH:quinone oxidoreductase in voltage generation and Na(+) extrusion in Vibrio cholerae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:473-82. [PMID: 26721205 DOI: 10.1016/j.bbabio.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
Abstract
For Vibrio cholerae, the coordinated import and export of Na(+) is crucial for adaptation to habitats with different osmolarities. We investigated the Na(+)-extruding branch of the sodium cycle in this human pathogen by in vivo (23)Na-NMR spectroscopy. The Na(+) extrusion activity of cells was monitored after adding glucose which stimulated respiration via the Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR). In a V. cholerae deletion mutant devoid of the Na(+)-NQR encoding genes (nqrA-F), rates of respiratory Na(+) extrusion were decreased by a factor of four, but the cytoplasmic Na(+) concentration was essentially unchanged. Furthermore, the mutant was impaired in formation of transmembrane voltage (ΔΨ, inside negative) and did not grow under hypoosmotic conditions at pH8.2 or above. This growth defect could be complemented by transformation with the plasmid encoded nqr operon. In an alkaline environment, Na(+)/H(+) antiporters acidify the cytoplasm at the expense of the transmembrane voltage. It is proposed that, at alkaline pH and limiting Na(+) concentrations, the Na(+)-NQR is crucial for generation of a transmembrane voltage to drive the import of H(+) by electrogenic Na(+)/H(+) antiporters. Our study provides the basis to understand the role of the Na(+)-NQR in pathogenicity of V. cholerae and other pathogens relying on this primary Na(+) pump for respiration.
Collapse
Affiliation(s)
- Thomas Vorburger
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Ruslan Nedielkov
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alexander Brosig
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Eva Bok
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Emina Schunke
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Wojtek Steffen
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Sonja Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Genetics, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Heiko M Möller
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim (Stuttgart), Garbenstraße 30, 70599 Stuttgart, Germany.
| |
Collapse
|
21
|
Soemphol W, Tatsuno M, Okada T, Matsutani M, Kataoka N, Yakushi T, Matsushita K. A novel Na(+)(K(+))/H(+) antiporter plays an important role in the growth of Acetobacter tropicalis SKU1100 at high temperatures via regulation of cation and pH homeostasis. J Biotechnol 2015; 211:46-55. [PMID: 26100236 DOI: 10.1016/j.jbiotec.2015.06.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 06/15/2015] [Indexed: 11/15/2022]
Abstract
A gene encoding a putative Na(+)/H(+) antiporter was previously proposed to be involved in the thermotolerance mechanism of Acetobacter tropicalis SKU 1100. The results of this study show that disruption of this antiporter gene impaired growth at high temperatures with an external pH>6.5. The growth impairment at high temperatures was much more severe in the absence of Na(+) (with only the presence of K(+)); under these conditions, cells failed to grow even at 30°C and neutral to alkaline pH values, suggesting that this protein is also important for K(+) tolerance. Functional analysis with inside-out membrane vesicles from wild type and mutant strains indicated that the antiporter, At-NhaK2 operates as an alkali cation/proton antiporter for ions such as Na(+), K(+), Li(+), and Rb(+) at acidic to neutral pH values (6.5-7.5). The membrane vesicles were also shown to contain a distinct pH-dependent Na(+)(specific)/H(+) antiporter(s) that might function at alkaline pH values. In addition, phylogenetic analysis showed that At-NhaK2 is a novel type of Na(+)/H(+) antiporter belonging to a phylogenetically distinct new clade. These data demonstrate that At-NhaK2 functions as a Na(+)(K(+))/H(+) antiporter and is essential for K(+) and pH homeostasis during the growth of A. tropicalis SKU1100, especially at higher temperatures.
Collapse
Affiliation(s)
- Wichai Soemphol
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Faculty of Applied Science and Engineering, Nong Khai Campus, Khon Kaen University, Nong Khai 43000, Thailand
| | - Maki Tatsuno
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Takahiro Okada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoya Kataoka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
22
|
Meng L, Hong S, Liu H, Huang H, Sun H, Xu T, Jiang J. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis. Extremophiles 2014; 18:963-72. [PMID: 24996797 DOI: 10.1007/s00792-014-0666-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Abstract
The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.
Collapse
Affiliation(s)
- Lin Meng
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Origin and evolution of the sodium -pumping NADH: ubiquinone oxidoreductase. PLoS One 2014; 9:e96696. [PMID: 24809444 PMCID: PMC4014512 DOI: 10.1371/journal.pone.0096696] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022] Open
Abstract
The sodium -pumping NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion pump and the primary entry site for electrons into the respiratory chain of many different types of pathogenic bacteria. This enzymatic complex creates a transmembrane gradient of sodium that is used by the cell to sustain ionic homeostasis, nutrient transport, ATP synthesis, flagellum rotation and other essential processes. Comparative genomics data demonstrate that the nqr operon, which encodes all Na+-NQR subunits, is found in a large variety of bacterial lineages with different habitats and metabolic strategies. Here we studied the distribution, origin and evolution of this enzymatic complex. The molecular phylogenetic analyses and the organizations of the nqr operon indicate that Na+-NQR evolved within the Chlorobi/Bacteroidetes group, after the duplication and subsequent neofunctionalization of the operon that encodes the homolog RNF complex. Subsequently, the nqr operon dispersed through multiple horizontal transfer events to other bacterial lineages such as Chlamydiae, Planctomyces and α, β, γ and δ -proteobacteria. Considering the biochemical properties of the Na+-NQR complex and its physiological role in different bacteria, we propose a detailed scenario to explain the molecular mechanisms that gave rise to its novel redox- dependent sodium -pumping activity. Our model postulates that the evolution of the Na+-NQR complex involved a functional divergence from its RNF homolog, following the duplication of the rnf operon, the loss of the rnfB gene and the recruitment of the reductase subunit of an aromatic monooxygenase.
Collapse
|
24
|
Roles of the sodium-translocating NADH:quinone oxidoreductase (Na+-NQR) on vibrio cholerae metabolism, motility and osmotic stress resistance. PLoS One 2014; 9:e97083. [PMID: 24811312 PMCID: PMC4014592 DOI: 10.1371/journal.pone.0097083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/14/2014] [Indexed: 01/22/2023] Open
Abstract
The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology.
Collapse
|
25
|
The C-terminal cytoplasmic portion of the NhaP2 cation–proton antiporter from Vibrio cholerae affects its activity and substrate affinity. Mol Cell Biochem 2013; 389:51-8. [DOI: 10.1007/s11010-013-1926-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
|
26
|
Zhang H, Wang Z, Wang L, Mu R, Zou Z, Yuan K, Wang Y, Wu H, Jiang J, Yang L. Cloning and identification of a novel NhaD-type Na+/H+ antiporter from metagenomic DNA of the halophilic bacteria in soil samples around Daban Salt Lake. Extremophiles 2013; 18:89-98. [PMID: 24297704 DOI: 10.1007/s00792-013-0600-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/14/2013] [Indexed: 11/25/2022]
Abstract
In this study, metagenomic DNA was screened for the Na(+)/H(+) antiporter gene from the halophilic bacteria in Daban Salt Lake by selection in Escherichia coli KNabc lacking three major Na(+)/H(+) antiporters. One gene designated as Hb_nhaD encoding a novel NhaD-type Na(+)/H(+) antiporter was finally cloned. The presence of Hb_NhaD conferred tolerance of E. coli KNabc to up to 0.5 M NaCl and 0.2 M LiCl, and an alkaline pH. Hb_NhaD has the highest identity (70.6%) with a putative NhaD-type Na(+)/H(+) antiporter from an uncharacterized Clostridiaceae species, and also has lower identity with known NhaD-type Na(+)/H(+) antiporters from Halomonas elongata (20.8%), Alkalimonas amylolytica (19.0%), Vibrio parahaemolyticus (18.9%) and Vibrio cholerae (18.7 %). pH-dependent Na(+)(Li(+))/H(+) antiport activity was detected from everted membrane vesicles prepared from E. coli KNabc carrying Hb_nhaD. Hb_NhaD exhibited very high Na(+)(Li(+))/H(+) antiport activity over a wide pH range from 6.5 to 9.0 with the highest activity at pH 7.0 which is significantly different from those of the above known NhaD-type Na(+)/H(+) antiporters. Also, the apparent K m values of Hb_NhaD for Na(+) and Li(+) at pH 7.0 were determined to be 1.31 and 2.16, respectively. Based on the above results, we proposed that Hb_NhaD should be categorized as a novel NhaD-type Na(+)/H(+) antiporter.
Collapse
Affiliation(s)
- Hua Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, and Key Laboratory of Rubber Biology and Genetic Resource Utilization, Ministry of Agriculture, Hainan, 571737, Hainan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Na(+)/H(+) antiporters are ubiquitous membrane proteins that play a central role in the ion homeostasis of cells. In this study, we examined the possible role of Na(+)/H(+) antiport in Yersinia pestis virulence and found that Y. pestis strains lacking the major Na(+)/H(+) antiporters, NhaA and NhaB, are completely attenuated in an in vivo model of plague. The Y. pestis derivative strain lacking the nhaA and nhaB genes showed markedly decreased survival in blood and blood serum ex vivo. Complementation of either nhaA or nhaB in trans restored the survival of the Y. pestis nhaA nhaB double deletion mutant in blood. The nhaA nhaB double deletion mutant also showed inhibited growth in an artificial serum medium, Opti-MEM, and a rich LB-based medium with Na(+) levels and pH values similar to those for blood. Taken together, these data strongly suggest that intact Na(+)/H(+) antiport is indispensable for the survival of Y. pestis in the bloodstreams of infected animals and thus might be regarded as a promising noncanonical drug target for infections caused by Y. pestis and possibly for those caused by other blood-borne bacterial pathogens.
Collapse
|
28
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
29
|
Anba-Mondoloni J, Chaillou S, Zagorec M, Champomier-Vergès MC. Catabolism of N-acetylneuraminic acid, a fitness function of the food-borne lactic acid bacterium Lactobacillus sakei, involves two newly characterized proteins. Appl Environ Microbiol 2013; 79:2012-8. [PMID: 23335758 PMCID: PMC3592224 DOI: 10.1128/aem.03301-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/11/2013] [Indexed: 01/27/2023] Open
Abstract
In silico analysis of the genome sequence of the meat-borne lactic acid bacterium (LAB) Lactobacillus sakei 23K has revealed a repertoire of potential functions related to the adaptation of this bacterium to the meat environment. Among these functions, the ability to use N-acetyl-neuraminic acid (NANA) as a carbon source could provide a competitive advantage for growth on meat in which this amino sugar is present. In this work, we proposed to analyze the functionality of a gene cluster encompassing nanTEAR and nanK (nanTEAR-nanK). We established that this cluster encoded a pathway allowing transport and early steps of the catabolism of NANA in this genome. We also demonstrated that this cluster was absent from the genome of other L. sakei strains that were shown to be unable to grow on NANA. Moreover, L. sakei 23K nanA, nanT, nanK, and nanE genes were able to complement Escherichia coli mutants. Construction of different mutants in L. sakei 23K ΔnanR, ΔnanT, and ΔnanK and the double mutant L. sakei 23K Δ(nanA-nanE) made it possible to show that all were impaired for growth on NANA. In addition, two genes located downstream from nanK, lsa1644 and lsa1645, are involved in the catabolism of sialic acid in L. sakei 23K, as a L. sakei 23K Δlsa1645 mutant was no longer able to grow on NANA. All these results demonstrate that the gene cluster nanTEAR-nanK-lsa1644-lsa1645 is indeed involved in the use of NANA as an energy source by L. sakei.
Collapse
|