1
|
Kobayashi K, Yoneda K, Maeda Y, Suzuki I. Transcriptomic analysis reveals insights into the responses of Synechocystis sp. PCC 6803 to acidification during cultivation with ammonium salts as a nitrogen source. J Biosci Bioeng 2024; 138:261-270. [PMID: 39112180 DOI: 10.1016/j.jbiosc.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024]
Abstract
Utilizing ammonium in wastewater is a prospective way to reduce costs for bioproduction by photosynthetic organisms. A model cyanobacterium Synechocystis sp. PCC 6803 takes advantage of tolerance to ammonium compared to other microalgae. However, in this study, we report that Synechocystis growth was inhibited when cultured in a medium containing ammonium. This may be due to the pH decreasing below 6 caused by consuming ammonium. Transcriptomic analysis by RNA-seq revealed that the expression of the genes for proteases, chaperones, and antioxidant-scavenging enzymes was induced, but photosynthetic components were repressed. Although these regulations are similar to the previous studies on acidic stress in nitrate-containing culture, the expression of genes such as sigD, slr0042, slr0373, slr0374, and slr1501 was different, indicating that these phenomena are not simply identical to the known responses to acidic stress. The expression of the genes for photosynthesis, gluconeogenesis, and nitrogen assimilation was repressed, and glycolysis and the tricarboxylic acid cycle were induced. Despite the up-regulation of the carbon catabolism and down-regulation of nitrogen assimilation, the 2-oxoglutarate content in the ammonium-grown cells was lower than that in the nitrate-grown cells, and the contents of the major amino acids, such as Glu, Ala, Asp, and Gly were decreased, while the minor amino acids were the same or increased, especially Arg, Lys, Val, and Ile. These results demonstrated that the acidic stress induced by the consumption of ammonium ions differs from the sudden pH drop, and the Synechocystis cell manages amino acid levels to endure carbon limitation under the stress.
Collapse
Affiliation(s)
- Kotaro Kobayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
2
|
Bolay P, Dodge N, Janssen K, Jensen PE, Lindberg P. Tailoring regulatory components for metabolic engineering in cyanobacteria. PHYSIOLOGIA PLANTARUM 2024; 176:e14316. [PMID: 38686633 DOI: 10.1111/ppl.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
The looming climate crisis has prompted an ever-growing interest in cyanobacteria due to their potential as sustainable production platforms for the synthesis of energy carriers and value-added chemicals from CO2 and sunlight. Nonetheless, cyanobacteria are yet to compete with heterotrophic systems in terms of space-time yields and consequently production costs. One major drawback leading to the low production performance observed in cyanobacteria is the limited ability to utilize the full capacity of the photosynthetic apparatus and its associated systems, i.e. CO2 fixation and the directly connected metabolism. In this review, novel insights into various levels of metabolic regulation of cyanobacteria are discussed, including the potential of targeting these regulatory mechanisms to create a chassis with a phenotype favorable for photoautotrophic production. Compared to conventional metabolic engineering approaches, minor perturbations of regulatory mechanisms can have wide-ranging effects.
Collapse
Affiliation(s)
- Paul Bolay
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Nadia Dodge
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Kim Janssen
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| | - Poul Erik Jensen
- Plant Based Foods and Biochemistry, Food Analytics and Biotechnology, Department of Food Science, University of Copenhagen, Denmark
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
3
|
Lin S, Li S, Ouyang T, Chen G. Site-2 Protease Slr1821 Regulates Carbon/Nitrogen Homeostasis during Ammonium Stress Acclimation in Cyanobacterium Synechocystis sp. PCC 6803. Int J Mol Sci 2023; 24:ijms24076606. [PMID: 37047577 PMCID: PMC10094980 DOI: 10.3390/ijms24076606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Excess ammonium imposes toxicity and stress response in cyanobacteria. How cyanobacteria acclimate to NH4+ stress is so far poorly understood. Here, Synechocystis sp. PCC6803 S2P homolog Slr1821 was identified as the essential regulator through physiological characterization and transcriptomic analysis of its knockout mutant. The proper expression of 60% and 67% of the NH4+ activated and repressed genes, respectively, were actually Slr1821-dependent since they were abolished or reversed in ∆slr1821. Synechocystis 6803 suppressed nitrogen uptake and assimilation, ammonium integration and mobilization of other nitrogen sources upon NH4+ stress. Opposite regulation on genes for assimilation of nitrogen and carbon, such as repression of nitrogen regulatory protein PII, PII interactive protein PirC and activation of carbon acquisition regulator RcbR, demonstrated that Synechocystis 6803 coordinated regulation to maintain carbon/nitrogen homeostasis under increasing nitrogen, while functional Slr1821 was indispensable for most of this coordinated regulation. Additionally, slr1821 knockout disrupted the proper response of regulators and transporters in the ammonium-specific stimulon, and resulted in defective photosynthesis as well as compromised translational and transcriptional machinery. These results provide new insight into the coordinated regulation of nutritional fluctuation and the functional characterization of S2Ps. They also provide new targets for bioengineering cyanobacteria in bioremediation and improving ammonium tolerance in crop plants.
Collapse
Affiliation(s)
- Shiqi Lin
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Shiliang Li
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Tong Ouyang
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Gu Chen
- School of Food Sciences and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
4
|
Srivastava A, Varshney RK, Shukla P. Sigma Factor Modulation for Cyanobacterial Metabolic Engineering. Trends Microbiol 2020; 29:266-277. [PMID: 33229204 DOI: 10.1016/j.tim.2020.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/18/2022]
Abstract
Sigma (σ) factors are key regulatory proteins that control the transcription initiation in prokaryotes. In response to environmental or developmental cues, σ factors initiate the transcription of necessary genes responsible for maintaining a life-sustaining metabolic balance. Due to the significant role of σ factors in bacterial metabolism, their rational engineering for commercial metabolite production in photoautotrophic, cyanobacterial cells is a desirable venture. As cyanobacterial genomes typically encode multiple σ factors, effective execution of metabolic engineering efforts largely relies on uncovering the complicated gene regulatory network and further characterization of the members of σ factor regulatory circuits. This review outlines the prospects of σ factor in metabolic engineering of cyanobacteria, summarizes the challenges in the path towards an efficient strain construction and highlights the genomic context of putative regulators of cyanobacterial σ factors.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
5
|
Xie Y, Chen L, Sun T, Jiang J, Tian L, Cui J, Zhang W. A transporter Slr1512 involved in bicarbonate and pH-dependent acclimation mechanism to high light stress in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148336. [PMID: 33181099 DOI: 10.1016/j.bbabio.2020.148336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
High light (HL) exposure leads to photoinhibition and excess accumulation of toxic reactive oxygen species (ROS) in photosynthetic organisms, negatively impacting the global primary production. In this study, by screening a mutant library, a gene related with bicarbonate transport, slr1512, was found involved in HL acclimation in model cyanobacterium Synechocystis sp. PCC 6803. Comparative growth analysis showed that the slr1512 knockout mutant dramatically enhanced the tolerance of Synechocystis towards long-term HL stress (200 μmol photons m-2 s-1) than the wild type, achieving an enhanced growth by ~1.95-folds after 10 d. The phenotype differences between Δslr1512 and the wild type were analyzed via absorption spectrum and chlorophyll a content measurement. In addition, the accessible bicarbonate controlled by slr1512 and decreased PSII activity were demonstrated, and they were found to be the key factors affecting the tolerance of Synechocystis against HL stress. Further analysis confirmed that intracellular bicarbonate can significantly affect the activity of photosystem II, leading to the altered accumulation of toxic ROS under HL. Finally, a comparative transcriptomics was applied to determine the differential responses to HL between Δslr1512 and the wild type. This work provides useful insights to long-term acclimation mechanisms towards HL and valuable information to guide the future tolerance engineering of cyanobacteria against HL.
Collapse
Affiliation(s)
- Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Cyanobacterial sigma factors: Current and future applications for biotechnological advances. Biotechnol Adv 2020; 40:107517. [DOI: 10.1016/j.biotechadv.2020.107517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
|
7
|
Uchiyama J, Itagaki A, Ishikawa H, Tanaka Y, Kohga H, Nakahara A, Imaida A, Tahara H, Ohta H. Characterization of ABC transporter genes, sll1180, sll1181, and slr1270, involved in acid stress tolerance of Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2019; 139:325-335. [PMID: 29959748 DOI: 10.1007/s11120-018-0548-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Over 50 ATP-binding cassette (ABC) transporter-related genes are detected in the Synechocystis sp. PCC 6803 genome by genome sequence analysis. Deletion mutants of other substrate-unknown ABC transporter genes were screened for their acid stress sensitivities in a low-pH medium to identify ABC transporters involved in acid resistance. We found that a mutant of sll1180 encoding proteins with homology to HlyB in Escherichia coli (E.coli) is more sensitive to acid stress than wild-type (WT) cells and analyzed the abundance of expression of the genes in WT cells under acid stress condition by quantitative real-time reverse transcriptase-polymerase chain reaction. sll1180 expression increased in the WT cells after acid stress treatment. Immunofluorescence revealed that Sll1180 localized in the plasma membrane. These results suggest that Sll1180 has an important role in the growth of Synechocystis sp. PCC 6803 under acid stress conditions. HlyB, HlyD, and TolC complex transport HlyA in E.coli; therefore, we searched for genes corresponding to these in Synechocystis sp. PCC 6803. A BlastP search suggested that HlyA, HlyD, and TolC proteins had homology to Sll1951, Sll1181, and Slr1270. Therefore, we constructed deletion mutant of these genes. sll1181 and slr1270 mutant cells revealed acid stress sensitivity. The bacterial two-hybrid analysis showed that Sll1180 interacted with Sll1181 and Sll1951. Dot blot analysis of Sll1951-His revealed that the sll1180 and sll1181 mutant cells did not transport Sll1951-His from the cytoplasm to the extracellular matrix. These results suggest that Sll1180 and Sll1181 transport Sll1951 and that Sll1951-outside of the cells-might be a key factor in acid stress tolerance.
Collapse
Affiliation(s)
- Junji Uchiyama
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
| | - Ayako Itagaki
- Department of Mathematics and Science Education, Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Ishikawa
- Department of Mathematics and Science Education, Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yu Tanaka
- Department of Mathematics and Science Education, Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hidetaka Kohga
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Ayami Nakahara
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Akiko Imaida
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hiroko Tahara
- Department of Mathematics and Science Education, Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Hisataka Ohta
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Mathematics and Science Education, Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Mathematics and Science Education, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
8
|
Liran O, Shemesh E, Tchernov D. Investigation into the CO2 concentrating step rates within the carbon concentrating mechanism of Synechocystis sp. PCC6803 at various pH and light intensities reveal novel mechanistic properties. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ding Q, Chen G, Wang Y, Wei D. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing. Int J Mol Sci 2015; 16:24081-93. [PMID: 26473841 PMCID: PMC4632739 DOI: 10.3390/ijms161024081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally.
Collapse
Affiliation(s)
- Qinglong Ding
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, 510641 Guangzhou, China.
| |
Collapse
|
10
|
Matsuhashi A, Tahara H, Ito Y, Uchiyama J, Ogawa S, Ohta H. Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2015; 125:267-277. [PMID: 25822232 DOI: 10.1007/s11120-015-0129-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Living organisms must defend themselves against various environmental stresses. Extracellular polysaccharide-producing cells exhibit enhanced tolerance toward adverse environmental stress. In Synechocystis sp. PCC6803 (Synechocystis), lipopolysaccharide (LPS) may play a role in this protection. To examine the relationship between stress tolerance of Synechocystis and LPS, we focused on Slr2019 because Slr2019 is homologous to MsbA in Escherichia coli, which is related to LPS synthesis. First, to obtain a defective mutant of LPS, we constructed the slr2019 insertion mutant (slr2019) strain. Sodium deoxycholate-polyacrylamide gel electrophoresis indicated that slr2019 strain did not synthesize normal LPS. Second, to clarify the participation of LPS in acid tolerance, wild type (WT) and slr2019 strain were grown under acid stress; slr2019 strain growth was significantly weaker than WT growth. Third, to examine influences on stress tolerance, slr2019 strain was grown under various stresses. Under salinity and temperature stress, slr2019 strain grew significantly slower than WT. To confirm cell morphology, cell shape and envelope of slr2019 strain were observed by transmission electron microscopy; slr2019 cells contained more electron-transparent bodies than WT cells. Finally, to confirm whether electron-transparent bodies are poly-3-hydroxybutyrate (PHB), slr2019 strain was stained with Nile Blue A, a PHB detector, and observed by fluorescence microscopy. The PHB granule content ratio of WT and slr2019 strain grown at BG-11 pH 8.0 was each 7.18 and 8.41 %. At pH 6.0, the PHB granule content ratio of WT and slr2019 strain was 2.99 and 2.60 %. However, the PHB granule content ratio of WT and slr2019 strain grown at BG-11N-reduced was 10.82 and 0.56 %. Because slr2019 strain significantly decreased PHB under BG-11N-reduced compared with WT, LPS synthesis may be related to PHB under particular conditions. These results indicated that Slr2019 is necessary for Synechocystis survival in various stresses.
Collapse
Affiliation(s)
- Ayumi Matsuhashi
- Graduate School of Mathematics and Science Education, Tokyo University of Science, Shinjuku-ku, Tokyo, 162-8601, Japan,
| | | | | | | | | | | |
Collapse
|
11
|
Uchiyama J, Kanesaki Y, Iwata N, Asakura R, Funamizu K, Tasaki R, Agatsuma M, Tahara H, Matsuhashi A, Yoshikawa H, Ogawa S, Ohta H. Genomic analysis of parallel-evolved cyanobacterium Synechocystis sp. PCC 6803 under acid stress. PHOTOSYNTHESIS RESEARCH 2015; 125:243-54. [PMID: 25736465 DOI: 10.1007/s11120-015-0111-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/25/2015] [Indexed: 05/06/2023]
Abstract
Experimental evolution is a powerful tool for clarifying phenotypic and genotypic changes responsible for adaptive evolution. In this study, we isolated acid-adapted Synechocystis sp. PCC 6803 (Synechocystis 6803) strains to identify genes involved in acid tolerance. Synechocystis 6803 is rarely found in habitants with pH < 5.75. The parent (P) strain was cultured in BG-11 at pH 6.0. We gradually lowered the pH of the medium from pH 6.0 to pH 5.5 over 3 months. Our adapted cells could grow in acid stress conditions at pH 5.5, whereas the parent cells could not. We performed whole-genome sequencing and compared the acid-adapted and P strains, thereby identifying 11 SNPs in the acid-adapted strains, including in Fo F1-ATPase. To determine whether the SNP genes responded to acid stress, we examined gene expression in the adapted strains using quantitative reverse-transcription polymerase chain reaction. sll0914, sll1496, sll0528, and sll1144 expressions increased under acid stress in the P strain, whereas sll0162, sll0163, slr0623, and slr0529 expressions decreased. There were no differences in the SNP genes expression levels between the P strain and two adapted strains, except for sll0528. These results suggest that SNPs in certain genes are involved in acid stress tolerance in Synechocystis 6803.
Collapse
Affiliation(s)
- Junji Uchiyama
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, 2641, Yamasaki, Noda, Chiba, 278-8510, Japan,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tahara H, Matsuhashi A, Uchiyama J, Ogawa S, Ohta H. Sll0751 and Sll1041 are involved in acid stress tolerance in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 125:233-242. [PMID: 25952746 DOI: 10.1007/s11120-015-0153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
The ATP-binding cassette (ABC) transporter is a multi-subunit membrane protein complex involved in lipid transport and acid stress tolerance in the cyanobacterium Synechocystis sp. PCC 6803. This organism has two sets of three ABC transporter subunits: Slr1045 and Slr1344, Sll0751 and Sll1002, and Sll1001 and Sll1041. We previously found that Slr1045 is essential for survival under acid stress condition (Tahara et al. 2012). In the present study, we examined the participation of other ABC transporter subunits in acid stress tolerance using a deletion mutant series of Synechocystis sp. PCC 6803. Although Slr1344 is highly homologous to Slr1045, Δslr1344 cells were not susceptible to acid stress. Δsll0751 and Δsll1041 cells displayed acid stress sensitivity, whereas Δsll1001/sll1002 double mutant cells grew normally. Under high- and low-temperature stress conditions, the growth rate of Δslr1344 and Δsll1001/sll1002 cells did not differ from WT cells, whereas Δsll0751 and Δsll1041 cells showed significant growth retardation, as previously observed in Δslr1045 cells. Moreover, nile red staining showed more lipid accumulation in Δslr1045, Δsll0751, and Δsll1041 cells than in WT cells. These results suggest that Slr1045, Sll0751, and Sll1041 function together as a lipid transport complex in Synechocystis sp. PCC 6803 and are essential for growth under various stresses.
Collapse
Affiliation(s)
- Hiroko Tahara
- Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-Ku, Tokyo, 162-8601, Japan,
| | | | | | | | | |
Collapse
|
13
|
Lei H, Chen G, Wang Y, Ding Q, Wei D. Sll0528, a Site-2-Protease, Is Critically Involved in Cold, Salt and Hyperosmotic Stress Acclimation of Cyanobacterium Synechocystis sp. PCC 6803. Int J Mol Sci 2014; 15:22678-22693. [PMID: 25493476 PMCID: PMC4284730 DOI: 10.3390/ijms151222678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
Site-2-proteases (S2Ps) mediated proteolysis of transmembrane transcriptional regulators is a conserved mechanism to regulate transmembrane signaling. The universal presence of S2P homologs in different cyanobacterial genomes suggest conserved and fundamental functions, though limited data has been available. Here we provide the first evidence that Sll0528, a site-2-protease in Synechocystis sp. PCC 6803 is crucial for salt, cold and hyperosmotic stress acclimation. Remarkable induction of sll0528 gene expression was observed under salt, cold and hyperosmotic stress, much higher than induction of the other three S2Ps. Knock-out of sll0528 gene in wild type Synechocystis sp. PCC 6803 increased their sensitivity to salt, cold and hyperosmotic stress, as revealed by retarded growth, reduced pigments and disrupted photosystems. The sll0528 gene was induced to a much smaller extent by high light and mixotrophic growth with glucose. Similar growth responses of the sll0528 knockout mutant and wild type under high light and mixotrophic growth indicated that sll0528 was dispensable for these conditions. Recombinant Sll0528 protein could cleave beta-casein into smaller fragments. These results together suggest that the Sll0528 metalloprotease plays a role in the stress response and lays the foundation for further investigation of its mechanism, as well as providing hints for the functional analysis of other S2Ps in cyanobacteria.
Collapse
Affiliation(s)
- Haijin Lei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Gu Chen
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Yuling Wang
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Qinglong Ding
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| | - Dong Wei
- College of Light Industry and Food Sciences, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China.
| |
Collapse
|
14
|
Integrated proteomic and metabolomic characterization of a novel two-component response regulator Slr1909 involved in acid tolerance in Synechocystis sp. PCC 6803. J Proteomics 2014; 109:76-89. [DOI: 10.1016/j.jprot.2014.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022]
|
15
|
Conditional, temperature-induced proteolytic regulation of cyanobacterial RNA helicase expression. J Bacteriol 2014; 196:1560-8. [PMID: 24509313 DOI: 10.1128/jb.01362-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Conditional proteolysis is a crucial process regulating the abundance of key regulatory proteins associated with the cell cycle, differentiation pathways, or cellular response to abiotic stress in eukaryotic and prokaryotic organisms. We provide evidence that conditional proteolysis is involved in the rapid and dramatic reduction in abundance of the cyanobacterial RNA helicase, CrhR, in response to a temperature upshift from 20 to 30°C. The proteolytic activity is not a general protein degradation response, since proteolysis is only present and/or functional in cells grown at 30°C and is only transiently active at 30°C. Degradation is also autoregulatory, since the CrhR proteolytic target is required for activation of the degradation machinery. This suggests that an autoregulatory feedback loop exists in which the target of the proteolytic machinery, CrhR, is required for activation of the system. Inhibition of translation revealed that only elongation is required for induction of the temperature-regulated proteolysis, suggesting that translation of an activating factor was already initiated at 20°C. The results indicate that Synechocystis responds to a temperature shift via two independent pathways: a CrhR-independent sensing and signal transduction pathway that regulates induction of crhR expression at low temperature and a CrhR-dependent conditional proteolytic pathway at elevated temperature. The data link the potential for CrhR RNA helicase alteration of RNA secondary structure with the autoregulatory induction of conditional proteolysis in the response of Synechocystis to temperature upshift.
Collapse
|
16
|
Schneider JS, Glickman MS. Function of site-2 proteases in bacteria and bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2808-14. [PMID: 24099002 DOI: 10.1016/j.bbamem.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Site-2 proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which control cholesterol and fatty acid biosynthesis by cleaving Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jessica S Schneider
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Biomedical Sciences, USA
| | | |
Collapse
|