1
|
Raghunandanan S, Priya R, Alanazi F, Lybecker MC, Schlax P, Yang X. A Fur family protein BosR is a novel RNA-binding protein that controls rpoS RNA stability in the Lyme disease pathogen. Nucleic Acids Res 2024; 52:5320-5335. [PMID: 38366569 PMCID: PMC11109971 DOI: 10.1093/nar/gkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
The σ54-σS sigma factor cascade plays a central role in regulating differential gene expression during the enzootic cycle of Borreliella burgdorferi, the Lyme disease pathogen. In this pathway, the primary transcription of rpoS (which encodes σS) is under the control of σ54 which is activated by a bacterial enhancer-binding protein (EBP), Rrp2. The σ54-dependent activation in B. burgdorferi has long been thought to be unique, requiring an additional factor, BosR, a homologue of classical Fur/PerR repressor/activator. However, how BosR is involved in this σ54-dependent activation remains unclear and perplexing. In this study, we demonstrate that BosR does not function as a regulator for rpoS transcriptional activation. Instead, it functions as a novel RNA-binding protein that governs the turnover rate of rpoS mRNA. We further show that BosR directly binds to the 5' untranslated region (UTR) of rpoS mRNA, and the binding region overlaps with a region required for rpoS mRNA degradation. Mutations within this 5'UTR region result in BosR-independent RpoS production. Collectively, these results uncover a novel role of Fur/PerR family regulators as RNA-binding proteins and redefine the paradigm of the σ54-σS pathway in B. burgdorferi.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Meghan C Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO, USA
| | - Paula Jean Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Grassmann AA, Tokarz R, Golino C, McLain MA, Groshong AM, Radolf JD, Caimano MJ. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. J Clin Invest 2023; 133:e166710. [PMID: 36649080 PMCID: PMC9974103 DOI: 10.1172/jci166710] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The RNA polymerase alternative σ factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic-positive and -negative gene regulation essential for the spirochete's dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by tick-borne disease capture sequencing (TBDCapSeq) to compare the transcriptomes of WT and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb's enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that the Borrelia oxidative stress response regulator (BosR), a noncanonical Fur family member, and the cyclic diguanosine monophosphate (c-di-GMP) effector PlzA reciprocally regulate the function of RNA polymerase complexed with RpoS. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting transcription of rpoS by the RNA polymerase alternative σ factor RpoN. During transmission, ligand-bound PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.
Collapse
Affiliation(s)
| | - Rafal Tokarz
- Center for Infection and Immunity and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Caroline Golino
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | | | - Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
- Department of Genetics and Genome Sciences, and
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
| |
Collapse
|
3
|
Stevenson B, Krusenstjerna AC, Castro-Padovani TN, Savage CR, Jutras BL, Saylor TC. The Consistent Tick-Vertebrate Infectious Cycle of the Lyme Disease Spirochete Enables Borrelia burgdorferi To Control Protein Expression by Monitoring Its Physiological Status. J Bacteriol 2022; 204:e0060621. [PMID: 35380872 PMCID: PMC9112904 DOI: 10.1128/jb.00606-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Lyme disease spirochete, Borrelia burgdorferi, persists in nature by alternatingly cycling between ticks and vertebrates. During each stage of the infectious cycle, B. burgdorferi produces surface proteins that are necessary for interactions with the tick or vertebrate tissues it encounters while also repressing the synthesis of unnecessary proteins. Among these are the Erp surface proteins, which are produced during vertebrate infection for interactions with host plasmin, laminin, glycosaminoglycans, and components of the complement system. Erp proteins are not expressed during tick colonization but are induced when the tick begins to ingest blood from a vertebrate host, a time when the bacteria undergo rapid growth and division. Using the erp genes as a model of borrelial gene regulation, our research group has identified three novel DNA-binding proteins that interact with DNA to control erp transcription. At least two of those regulators are, in turn, affected by DnaA, the master regulator of chromosome replication. Our data indicate that B. burgdorferi has evolved to detect the change from slow to rapid replication during tick feeding as a signal to begin expression of Erp and other vertebrate-specific proteins. The majority of other known regulatory factors of B. burgdorferi also respond to metabolic cues. These observations lead to a model in which the Lyme spirochete recognizes unique environmental conditions encountered during the infectious cycle to "know" where they are and adapt accordingly.
Collapse
Affiliation(s)
- Brian Stevenson
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew C. Krusenstjerna
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Tatiana N. Castro-Padovani
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Christina R. Savage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| | - Brandon L. Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Timothy C. Saylor
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Wachter J, Martens C, Barbian K, Rego ROM, Rosa P. Epigenomic Landscape of Lyme Disease Spirochetes Reveals Novel Motifs. mBio 2021; 12:e0128821. [PMID: 34156261 PMCID: PMC8262957 DOI: 10.1128/mbio.01288-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the etiological agent of Lyme disease, persists in nature through an enzootic cycle consisting of a vertebrate host and an Ixodes tick vector. The sequence motifs modified by two well-characterized restriction/modification (R/M) loci of B. burgdorferi type strain B31 were recently described, but the methylation profiles of other Lyme disease Borrelia bacteria have not been characterized. Here, the methylomes of B. burgdorferi type strain B31 and 7 clonal derivatives, along with B. burgdorferi N40, B. burgdorferi 297, B. burgdorferi CA-11, B. afzelii PKo, B. afzelii BO23, and B. garinii PBr, were defined through PacBio single-molecule real-time (SMRT) sequencing. This analysis revealed 9 novel sequence motifs methylated by the plasmid-encoded restriction/modification enzymes of these Borrelia strains. Furthermore, while a previous analysis of B. burgdorferi B31 revealed an epigenetic impact of methylation on the global transcriptome, the current data contradict those findings; our analyses of wild-type B. burgdorferi B31 revealed no consistent differences in gene expression among isogenic derivatives lacking one or more restriction/modification enzymes. IMPORTANCE The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi, while B. burgdorferi, B. afzelii, and B. garinii, collectively members of the Borrelia burgdorferi sensu lato species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease Borrelia bacteria. This paper describes the methylation motifs present on genomic DNAs of multiple B. burgdorferi, B. afzelii, and B. garinii strains. Contrary to a previous report, we did not find evidence for an epigenetic impact on gene expression by methylation. Knowledge of the motifs recognized and methylated by the restriction/modification enzymes of Lyme disease Borrelia will facilitate molecular genetic investigations of these important human pathogens. Additionally, the similar motifs methylated by orthologous restriction/modification systems of Lyme disease Borrelia bacteria and the presence of these motifs within recombinogenic loci suggest a biological role for these ubiquitous restriction/modification systems in horizontal gene transfer.
Collapse
Affiliation(s)
- Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kent Barbian
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Patricia Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Sevilla E, Bes MT, Peleato ML, Fillat MF. Fur-like proteins: Beyond the ferric uptake regulator (Fur) paralog. Arch Biochem Biophys 2021; 701:108770. [PMID: 33524404 DOI: 10.1016/j.abb.2021.108770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.
Collapse
Affiliation(s)
- Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Teresa Bes
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - M Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC and BIFI-IQFR Joint Units), Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
6
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|
7
|
Mason C, Liu X, Prabhudeva S, Ouyang Z. The CXXC Motifs Are Essential for the Function of BosR in Borrelia burgdorferi. Front Cell Infect Microbiol 2019; 9:109. [PMID: 31041197 PMCID: PMC6476982 DOI: 10.3389/fcimb.2019.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/28/2019] [Indexed: 01/07/2023] Open
Abstract
BosR, a Fur family member, is essential for the pathogenesis of the Lyme disease pathogen, Borrelia burgdorferi. Unlike typical Fur proteins in which DNA binding represses gene expression, binding of BosR to the rpoS promoter directly activates rpoS transcription in B. burgdorferi. However, virtually nothing is known concerning potential structural features and amino acid residues of BosR that are important for protein function and virulence regulation in B. burgdorferi. Particularly, it remains unknown what structural motifs or residues of BosR coordinate Zn, although previous analyses have indicated that the function of BosR may depend on Zn. To address these information gaps, we herein introduced mutations into four conserved cysteine residues in two putative CXXC motifs of BosR. Our data showed that the ability of BosR to bind Zn was dramatically reduced when the CXXC motifs were mutated. Moreover, we found that the two CXXC motifs contributed to the ability of BosR to form dimers. By using a trans-complementation genetic approach, we additionally demonstrated that both CXXC motifs of BosR were essential for in vivo gene expression regulation. Mutation of any of the four cysteines abolished the transcriptional activation of rpoS. In contrast to wild type BosR, each mutant protein was incapable of binding the rpoS promoter in electrophoretic mobility shift assays. The combined data strongly support that the two CXXC motifs and four cysteines constitute the structural site essential for Zn-coordination, protein dimerization, and the unique regulatory activity of BosR.
Collapse
Affiliation(s)
- Charlotte Mason
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Xiaoyan Liu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Spoorthy Prabhudeva
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
8
|
Abstract
Bioinformatic approaches and a large volume of prokaryotic genome sequences have enabled rapid identification of regulatory proteins with features to bind DNA or RNA in a given prokaryote. However, biological relevance of these regulatory proteins requires methods to rapidly purify and determine their binding properties within the physiological context or life style of the organism. Here, we describe the experimental approaches to determine the nucleic acid binding properties of regulatory proteins of Borrelia burgdorferi using Borrelia host-adaptation Re.3gulator (BadR-a DNA binding protein) and Carbon storage regulators A of B. b urgdorferi (CsrABb-an RNA binding protein) as examples. Best laboratory practices associated with overexpression/purification of recombinant borrelial proteins, synthesis of target nucleic acid sequences, and electrophoretic mobility assays to assess the protein/nucleic acid interactions are described. The methods described are intended to facilitate empirical assessment of the binding affinity, co-factor requirements, quality of the interacting partners, and readily modifiable assay conditions to assess the binding properties to define known and unknown regulatory properties of nucleic acid binding proteins of B. burgdorferi.
Collapse
|
9
|
Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete. mBio 2017; 8:mBio.01204-17. [PMID: 28830947 PMCID: PMC5565969 DOI: 10.1128/mbio.01204-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi, the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ70-dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP) transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB, the glp operon, and bba74. As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs) implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB- and glp-gfp constructs containing only the minimal (−35/−10) σ70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between −165 and −82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon) involves primarily sequence elements near the core promoter, while the other (e.g., bba74) involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential “gatekeeper” role of RpoS throughout the B. burgdorferi enzootic cycle. Borrelia burgdorferi, the Lyme disease spirochete, modulates gene expression to adapt to the distinctive environments of its mammalian host and arthropod vector during its enzootic cycle. The alternative sigma factor RpoS has been referred to as a “gatekeeper” due to its central role in regulating the reciprocal expression of mammalian host- and tick-phase genes. While RpoS-dependent transcription has been studied extensively, little is known regarding the mechanism(s) of RpoS-mediated repression. We employed a combination of green fluorescent protein transcriptional reporters along with an in vivo model to define cis regulatory sequences responsible for RpoS-mediated repression of prototypical tick-phase genes. Repression of ospAB and the glp operon requires only sequences near their core promoters, whereas modulation of bba74 expression involves a putative RpoS-dependent repressor that binds upstream of the core promoter. Thus, Lyme disease spirochetes employ at least two different RpoS-dependent mechanisms to repress tick-phase genes within the mammal.
Collapse
|
10
|
Regulation of Gene and Protein Expression in the Lyme Disease Spirochete. Curr Top Microbiol Immunol 2017; 415:83-112. [PMID: 29064060 DOI: 10.1007/82_2017_49] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The infectious cycle of Borrelia burgdorferi necessitates persistent infection of both vertebrates and ticks, and efficient means of transmission between those two very different types of hosts. The Lyme disease spirochete has evolved mechanisms to sense its location in the infectious cycle, and use that information to control production of the proteins and other factors required for each step. Numerous components of borrelial regulatory pathways have been characterized to date. Their effects are being pieced together, thereby providing glimpses into a complex web of cooperative and antagonistic interactions. In this chapter, we present a broad overview of B. burgdorferi gene and protein regulation during the natural infectious cycle, discussions of culture-based methods for elucidating regulatory mechanisms, and summaries of many of the known regulatory proteins and small molecules. We also highlight areas that are in need of substantially more research.
Collapse
|
11
|
Evidence that BosR (BB0647) Is a Positive Autoregulator in Borrelia burgdorferi. Infect Immun 2016; 84:2566-74. [PMID: 27324485 DOI: 10.1128/iai.00297-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi survives in nature through a complex tick-mammalian life cycle. During its transit between ticks and mammalian hosts, B. burgdorferi must dramatically alter its outer surface profile in order to interact with and adapt to these two diverse niches. It has been established that the regulator BosR (BB0647) in B. burgdorferi plays important roles in modulating borrelial host adaptation. However, to date, how bosR expression itself is controlled in B. burgdorferi remains largely unknown. Previously, it has been shown that DNA sequences upstream of BosR harbor multiple sites for the binding of recombinant BosR, suggesting that BosR may influence its own expression in B. burgdorferi However, direct experimental evidence supporting this putative autoregulation of BosR has been lacking. Here, we investigated the expression of bosR throughout the tick-mammal life cycle of B. burgdorferi via quantitative reverse transcription (RT)-PCR analyses. Our data indicated that bosR is expressed not only during mouse infection, but also during the tick acquisition, intermolt, and transmission phases. Further investigation revealed that bosR expression in B. burgdorferi is influenced by environmental stimuli, such as temperature shift and pH change. By employing luciferase reporter assays, we also identified two promoters potentially driving bosR transcription. Our study offers strong support for the long-postulated function of BosR as an autoregulator in B. burgdorferi.
Collapse
|
12
|
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, is a zoonotic pathogen that is maintained in a natural cycle that typically involves mammalian reservoir hosts and a tick vector of the Ixodes species. During each stage of the enzootic cycle, B. burgdorferi is exposed to environments that differ in temperature, pH, small molecules, and most important, nutrient sources. B. burgdorferi has a highly restricted metabolic capacity because it does not contain a tricarboxylic acid cycle, oxidative phosphorylation, or any pathways for de novo biosynthesis of carbohydrates, amino acids, or lipids. Thus, B. burgdorferi relies solely on glycolysis for ATP production and is completely dependent on the transport of nutrients and cofactors from extracellular sources. Herein, pathways for carbohydrate uptake and utilization in B. burgdorferi are described. Regulation of these pathways during the different phases of the enzootic cycle is discussed. In addition, a model for differential control of nutrient flux through the glycolytic pathway as the spirochete transits through the enzootic cycle is presented.
Collapse
|
13
|
Katona LI. The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice. MICROBIOLOGY (READING, ENGLAND) 2015; 161:2243-55. [PMID: 26318670 PMCID: PMC4806591 DOI: 10.1099/mic.0.000166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/30/2022]
Abstract
Borrelia burgdorferi is the causative agent of Lyme disease. In B. burgdorferi, RpoS controls the expression of virulence genes needed for mammalian infection. The Fur homologue BosR regulates the transcription of rpoS and therefore BosR determines, albeit indirectly, the infection status of the spirochaete. Transcription of rpoS in B. burgdorferi is complex: rpoS can be transcribed either from an RpoD-dependent promoter to yield a long transcript or from an RpoN-dependent promoter to yield a short transcript. This study shows that BosR repressed synthesis of the long transcript while at the same time activating synthesis of the short transcript. How BosR does this is unclear. To address this, spirochaetes were engineered to express either BosR or the naturally occurring variant BosRR39K. Mice became infected by the spirochaetes expressing BosR but not by the spirochaetes expressing BosRR39K. Furthermore, the spirochaetes expressing BosR activated rpoS transcription during growth in culture whereas the spirochaetes expressing BosRR39K did not. Thus, BosR's activation of rpoS transcription somehow involves Arg39. This arginine is highly conserved in other FUR proteins and therefore other FUR proteins may also require this arginine to function.
Collapse
Affiliation(s)
- Laura I. Katona
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
14
|
Ouyang Z, Zhou J. BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs. Mol Microbiol 2015; 98:1147-67. [PMID: 26331438 DOI: 10.1111/mmi.13206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 12/15/2022]
Abstract
In Borrelia burgdorferi (Bb), the alternative sigma factor RpoS plays a central role during Bb's adaptation to ticks and mammals. Previous studies have demonstrated that RpoS is not expressed during the early stages of spirochetal growth or when Bb resides in ticks during the intermolt phase, but the molecular details of these events remain unknown. In the current study, biomagnetic bead separation of rpoS promoter-binding proteins, coupled with genetic inactivation, was employed to identify BadR (BB0693) as a negative regulator that controls growth phase-dependent induction of rpoS and bosR in Bb. When badR was inactivated, the expression of rpoS and bosR was induced only during the early stages of bacterial growth, but not during the stationary growth phase. Recombinant BadR bound to the promoter DNA of rpoS and the regulatory region upstream of bosR via AT-rich TAAAATAT motifs. Mutations in this motif markedly inhibited or abolished rBadR binding. These results suggest that BadR directly influences the expression of both rpoS and bosR in Bb. This newly recognized role for BadR to fine-tune the activation of the RpoN-RpoS pathway at strategic times in Bb's life cycle potentially represents another layer of gene control over σ(54)-dependent gene regulation.
Collapse
Affiliation(s)
- Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jianli Zhou
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
15
|
Drecktrah D, Lybecker M, Popitsch N, Rescheneder P, Hall LS, Samuels DS. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation. PLoS Pathog 2015; 11:e1005160. [PMID: 26371761 PMCID: PMC4570706 DOI: 10.1371/journal.ppat.1005160] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/21/2015] [Indexed: 01/09/2023] Open
Abstract
As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Meghan Lybecker
- Department of Biology, University of Colorado, Colorado Springs, Colorado, United States of America
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Niko Popitsch
- Oxford NIHR Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna & Medical University of Vienna, Vienna, Austria
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna & Medical University of Vienna, Vienna, Austria
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|