1
|
Kuroda E, Koizumi Y, Piao Z, Nakayama H, Tomono K, Oishi K, Hamaguchi S, Akeda Y. Establishment of a modified opsonophagocytic killing assay for anti-pneumococcal surface protein A antibody. J Microbiol Methods 2023; 212:106804. [PMID: 37543109 DOI: 10.1016/j.mimet.2023.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a pathogenic gram-positive bacterium that causes pneumonia, meningitis, and sepsis. Pneumococcal surface protein A (PspA) induces antibodies that protect against lethal infections by pneumococci. PspA is a choline-binding protein present on the cell surface of almost all pneumococcal strains and is a non-capsular polysaccharide vaccine candidate. For research and development of PspA-based vaccines, an in-vitro test system to measure the activity of functional antibodies capable of killing pneumococci is essential. The opsonophagocytic killing (OPK) assay is used to evaluate the opsonic activity of functional antibodies induced by capsular polysaccharide (CPS)-based vaccines (standard OPK assay). Despite the potential of anti-PspA antibodies to protect against lethal infections in mice, the standard OPK assay fails to evaluate anti-PspA antibodies. Using a pneumococcal surface protein C-deficient strain and extending the incubation time of opsonized bacteria, complement, and HL-60 cells reportedly results in enhanced bactericidal activity (modified OPK assay). We aimed to measure the bactericidal activity of anti-PspA antibodies in intact pneumococcal strains. We optimized the pneumococcal culture method used in the OPK assay to increase the efficiency of anti-PspA antibody-mediated phagocytosis of HL-60 cells. As thick capsules hinder phagocytosis, we attempted to obtain pneumococci with thin capsules through an improved culture method. As pneumococci attached to cells exhibit thin capsules, pneumococci cultured in Todd Hewitt yeast extract (THY) broth were spread on blood agar plates and incubated for 4 h. cpsA mRNA transcript levels in pneumococci cultured on blood agar were lower than those in pneumococci cultured in THY broth. OPK activity against pneumococci expressing PspA of clades 1-5 was reasonably well detected using pneumococci cultured on blood agar in the modified OPK assay. The modified OPK assay for anti-PspA antibody using pneumococci cultured on blood agar represents a useful assay to determine the killing activity of functional anti-PspA antibodies against pneumococci.
Collapse
Affiliation(s)
- Eisuke Kuroda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Department of Transformative Infection Control Development Studies, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Yuka Koizumi
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Zhenyu Piao
- Biotechnology Section, Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Hiroki Nakayama
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | | | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Department of Transformative Analysis for Human Specimen, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Kant S, Sun Y, Pancholi V. StkP- and PhpP-Mediated Posttranslational Modifications Modulate the S. pneumoniae Metabolism, Polysaccharide Capsule, and Virulence. Infect Immun 2023; 91:e0029622. [PMID: 36877045 PMCID: PMC10112228 DOI: 10.1128/iai.00296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Pneumococcal Ser/Thr kinase (StkP) and its cognate phosphatase (PhpP) play a crucial role in bacterial cytokinesis. However, their individual and reciprocal metabolic and virulence regulation-related functions have yet to be adequately investigated in encapsulated pneumococci. Here, we demonstrate that the encapsulated pneumococcal strain D39-derived D39ΔPhpP and D39ΔStkP mutants displayed differential cell division defects and growth patterns when grown in chemically defined media supplemented with glucose or nonglucose sugars as the sole carbon source. Microscopic and biochemical analyses supported by RNA-seq-based global transcriptomic analyses of these mutants revealed significantly down- and upregulated polysaccharide capsule formation and cps2 genes in D39ΔPhpP and D39ΔStkP mutants, respectively. While StkP and PhpP individually regulated several unique genes, they also participated in sharing the regulation of the same set of differentially regulated genes. Cps2 genes were reciprocally regulated in part by the StkP/PhpP-mediated reversible phosphorylation but independent of the MapZ-regulated cell division process. StkP-mediated dose-dependent phosphorylation of CcpA proportionately inhibited CcpA-binding to Pcps2A, supporting increased cps2 gene expression and capsule formation in D39ΔStkP. While the attenuation of the D39ΔPhpP mutant in two mouse infection models corroborated with several downregulated capsules-, virulence-, and phosphotransferase systems (PTS)-related genes, the D39ΔStkP mutant with increased amounts of polysaccharide capsules displayed significantly decreased virulence in mice compared to the D39 wild-type, but more virulence compared to D39ΔPhpP. NanoString technology-based inflammation-related gene expression and Meso Scale Discovery-based multiplex chemokine analysis of human lung cells cocultured with these mutants confirmed their distinct virulence phenotypes. StkP and PhpP may, therefore, serve as critical therapeutic targets.
Collapse
Affiliation(s)
- Sashi Kant
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Youcheng Sun
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
3
|
Müller A, Salmen A, Aebi S, de Gouveia L, von Gottberg A, Hathaway LJ. Pneumococcal serotype determines growth and capsule size in human cerebrospinal fluid. BMC Microbiol 2020; 20:16. [PMID: 31959125 PMCID: PMC6971925 DOI: 10.1186/s12866-020-1700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
Background The polysaccharide capsule is a major virulence factor of S. pneumoniae in diseases such as meningitis. While some capsular serotypes are more often found in invasive disease, high case fatality rates are associated with those serotypes more commonly found in asymptomatic colonization. We tested whether growth patterns and capsule size in human cerebrospinal fluid depends on serotype using a clinical isolate of S. pneumoniae and its capsule switch mutants. Results We found that the growth pattern differed markedly from that in culture medium by lacking the exponential and lysis phases. Growth in human cerebrospinal fluid was reduced when strains lost their capsules. When a capsule was present, growth was serotype-specific: high carriage serotypes (6B, 9 V, 19F and 23F) grew better than low carriage serotypes (7F, 14, 15B/C and 18C). Growth correlated with the case-fatality rates of serotypes reported in the literature. Capsule size in human cerebrospinal fluid also depended on serotype. Conclusions We propose that serotype-specific differences in disease severity observed in meningitis patients may, at least in part, be explained by differences in growth and capsule size in human cerebrospinal fluid. This information could be useful to guide future vaccine design.
Collapse
Affiliation(s)
- Annelies Müller
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland
| | - Linda de Gouveia
- National Institute for Communicable Diseases: Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases: Division of the National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.
| |
Collapse
|
4
|
Nasher F, Kwun MJ, Croucher NJ, Heller M, Hathaway LJ. Peptide Occurring in Enterobacteriaceae Triggers Streptococcus pneumoniae Cell Death. Front Cell Infect Microbiol 2019; 9:320. [PMID: 31552200 PMCID: PMC6748166 DOI: 10.3389/fcimb.2019.00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/26/2019] [Indexed: 11/15/2022] Open
Abstract
Non-encapsulated Streptococcus pneumoniae often possess two genes, aliB-like ORF 1 and aliB-like ORF 2, in place of capsule genes. AliB-like ORF 1 is thought to encode a substrate binding protein of an ABC transporter which binds peptide SETTFGRDFN, found in 50S ribosomal subunit protein L4 of Enterobacteriaceae. Here, we investigated the effect of binding of AliB-like ORF 1 peptide on the transcriptome and proteome of non-encapsulated pneumococci. We found upregulation of gene expression of a metacaspase and a gene encoding N-acetylmuramoyl-L-alanine amidase, both of which are proposed to be involved in programmed cell death in prokaryotic cells. Proteome profiling indicated upregulation of transcriptional regulators and downregulation of metabolism-associated genes. Exposure to the peptide specifically triggered death in pneumococci which express AliB-like ORF 1, with the bacteria having an apoptotic appearance by electron microscopy. We propose that binding of the AliB-like ORF 1 peptide ligand by the pneumococcus signals a challenging environment with hostile bacterial species leading to death of a proportion of the pneumococcal population.
Collapse
Affiliation(s)
- Fauzy Nasher
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Min Jung Kwun
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Nicholas J Croucher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
6
|
Nasher F, Förster S, Yildirim EC, Grandgirard D, Leib SL, Heller M, Hathaway LJ. Foreign peptide triggers boost in pneumococcal metabolism and growth. BMC Microbiol 2018; 18:23. [PMID: 29580217 PMCID: PMC5870813 DOI: 10.1186/s12866-018-1167-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/15/2018] [Indexed: 01/19/2023] Open
Abstract
Background Nonencapsulated Streptococcus pneumoniae bacteria are successful colonizers of the human nasopharynx and often possess genes aliB-like ORF 1 and 2 in place of capsule genes. AliB-like ORF 2 binds peptide FPPQSV, found in Prevotella species, resulting in enhanced colonization. How this response is mediated is so far unknown. Results Here we show that the peptide increases expression of genes involved in release of host carbohydrates, carbohydrate uptake and carbohydrate metabolism. In particular, the peptide increased expression of 1,5-anhydro-D-fructose reductase, a metabolic enzyme of an alternative starch and glycogen degrading pathway found in many organisms, in both transcriptomic and proteomic data. The peptide enhanced pneumococcal growth giving a competitive advantage to a strain with aliB-like ORF 2, over its mutant lacking the gene. Possession of aliB-like ORF 2 did not affect release of inflammatory cytokine CXCL8 from epithelial cells in culture and the nonencapsulated wild type strain was not able to establish disease or inflammation in an infant rat model of meningitis. Conclusions We propose that AliB-like ORF 2 confers an advantage in colonization by enhancing carbohydrate metabolism resulting in a boost in growth. This may explain the widespread presence of aliB-like ORF 2 in the nonencapsulated pneumococcal population in the human nasopharynx. Electronic supplementary material The online version of this article (10.1186/s12866-018-1167-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fauzy Nasher
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sunniva Förster
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Efe C Yildirim
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, CH-3010, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 51, CH-3001, Bern, Switzerland.
| |
Collapse
|
7
|
CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep 2016; 6:29255. [PMID: 27386955 PMCID: PMC4937376 DOI: 10.1038/srep29255] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of capsule expression is critical for pneumococcal transition from carriage to infection, yet the underlying mechanism remains incompletely understood. Here, we describe the regulation of capsular polysaccharide, one of the most important pneumococcal virulence factor by a GntR family regulator, CpsR. Electrophoretic mobility-shift assays have shown the direct interaction between CpsR and the cps promoter (cpsp), and their interaction could be competitively interfered by glucose. DNase I footprinting assays localized the binding site to a region −146 to −114 base pairs relative to the transcriptional start site of the cps locus in S. pneumoniae D39. We found that CpsR negatively controlled the transcription of the cps locus and hence CPS production, which was confirmed by fine-tuning expression of CpsR in a ΔcpsR complemented strain. Increased expression of CpsR in complemented strain led to a decreased resistance to the whole-blood-mediated killing, suggesting a protective role for CpsR-cpsp interaction in the establishment of invasive infection. Finally, animal experiments showed that CpsR-cpsp interaction was necessary for both pneumococcal colonization and invasive infection. Taken together, our results provide a thorough insight into the regulation of capsule production mediated by CpsR and its important roles in pneumococcal pathogenesis.
Collapse
|
8
|
Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Sci Rep 2016; 6:22845. [PMID: 26961406 PMCID: PMC4785377 DOI: 10.1038/srep22845] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/19/2016] [Indexed: 01/30/2023] Open
Abstract
Lactobacillus rhamnosus GG (LGG) cells have been shown to promote type-1 immune responsiveness; however knowledge of immunomodulation of soluble factors secreted by LGG is limited. This is the first study to investigate whether LGG soluble factors promote a comparable immune responsiveness as the bacterial cells. Both treatments − LGG conditioned medium with (CM + LGG) or without (CM) LGG cells, in this study increased expression of several toll-like receptors (TLRs) in all studied cell types and antigen presentation-associated receptor HLA-DR in macrophages and “intermediate” monocytes; but decreased that of activation markers on monocytes and macrophages and production of IL-10, IL-12 and TNFα in macrophages. In co-culture with mononuclear cells, CM increased Th1-type cytokine profile but not as pronounced as CM + LGG. This study suggests that LGG soluble factors exert similar immunomodulatory effects as the intact cells, but cells may be required for optimal type-1 immune responsiveness polarizing capacity of this probiotic strain.
Collapse
|
9
|
Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S, Sá-Leão R, de Lencastre H, Hermans P, Sadowy E, Turner P, Chewapreecha C, Diggle M, Pluschke G, McGee L, Eser ÖK, Low DE, Smith-Vaughan H, Endimiani A, Küffer M, Dupasquier M, Beaudoing E, Weber J, Bruggmann R, Hanage WP, Parkhill J, Hathaway LJ, Mühlemann K, Bentley SD. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol 2014; 6:3281-94. [PMID: 25480686 PMCID: PMC4986459 DOI: 10.1093/gbe/evu263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 01/08/2023] Open
Abstract
The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent.
Collapse
Affiliation(s)
- Markus Hilty
- Institute for Infectious Diseases, University of Bern, Switzerland Department of Infectious Diseases, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Hansjürg Engel
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Samuel Campbell
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química e Biológica, University of Lisbon, Portugal
| | - Hermínia de Lencastre
- Instituto de Tecnologia Química e Biológica, University of Lisbon, Portugal Laboratory of Microbiology and Infectious Diseases, The Rockefeller University
| | - Peter Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ewa Sadowy
- National Medicines Institute, Warsaw, Poland
| | - Paul Turner
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Claire Chewapreecha
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mathew Diggle
- Clinical Microbiology Department, Queens Medical Centre, Nottingham, United Kingdom
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, University of Basel, Switzerland
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Georgia, Atlanta
| | - Özgen Köseoğlu Eser
- Department of Microbiology, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Donald E Low
- Mt Sinai Hospital & Public Health Laboratories, Toronto, Ontario, Canada
| | | | - Andrea Endimiani
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Marianne Küffer
- Institute for Infectious Diseases, University of Bern, Switzerland
| | | | | | - Johann Weber
- Centre for Integrative Genomics, University of Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - William P Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard School of Public Health
| | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Switzerland Department of Infectious Diseases, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom Department of Medicine, Addenbrookes Hospital, University of Cambridge, United Kingdom
| |
Collapse
|
10
|
Schaffner TO, Hinds J, Gould KA, Wüthrich D, Bruggmann R, Küffer M, Mühlemann K, Hilty M, Hathaway LJ. A point mutation in cpsE renders Streptococcus pneumoniae nonencapsulated and enhances its growth, adherence and competence. BMC Microbiol 2014; 14:210. [PMID: 25163487 PMCID: PMC4243769 DOI: 10.1186/s12866-014-0210-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polysaccharide capsule is a major virulence factor of the important human pathogen Streptococcus pneumoniae. However, S. pneumoniae strains lacking capsule do occur. RESULTS Here, we report a nasopharyngeal isolate of Streptococcus pneumoniae composed of a mixture of two phenotypes; one encapsulated (serotype 18C) and the other nonencapsulated, determined by serotyping, electron microscopy and fluorescence isothiocyanate dextran exclusion assay.By whole genome sequencing, we demonstrated that the phenotypes differ by a single nucleotide base pair in capsular gene cpsE (C to G change at gene position 1135) predicted to result in amino acid change from arginine to glycine at position 379, located in the cytoplasmic, enzymatically active, region of this transmembrane protein. This SNP is responsible for loss of capsule production as the phenotype is transferred with the capsule operon. The nonencapsulated variant is superior in growth in vitro and is also 117-fold more adherent to and more invasive into Detroit 562 human epithelial cells than the encapsulated variant.Expression of six competence pathway genes and one competence-associated gene was 11 to 34-fold higher in the nonencapsulated variant than the encapsulated and transformation frequency was 3.7-fold greater. CONCLUSIONS We identified a new single point mutation in capsule gene cpsE of a clinical S. pneumoniae serotype 18C isolate sufficient to cause loss of capsule expression resulting in the co-existence of the encapsulated and nonencapsulated phenotype. The mutation caused phenotypic changes in growth, adherence to epithelial cells and transformability. Mutation in capsule gene cpsE may be a way for S. pneumoniae to lose its capsule and increase its colonization potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Bern, CH-3010, Switzerland.
| |
Collapse
|
11
|
A low-affinity penicillin-binding protein 2x variant is required for heteroresistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2014; 58:3934-41. [PMID: 24777105 DOI: 10.1128/aac.02547-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heteroresistance to penicillin in Streptococcus pneumoniae is the ability of subpopulations to grow at a higher antibiotic concentration than expected from the MIC. This may render conventional resistance testing unreliable and lead to therapeutic failure. We investigated the role of the primary β-lactam resistance determinants, penicillin-binding protein 2b (PBP2b) and PBP2x, and the secondary resistance determinant PBP1a in heteroresistance to penicillin. Transformants containing PBP genes from the heteroresistant strain Spain(23F) 2349 in the nonheteroresistant strain R6 background were tested for heteroresistance by population analysis profiling (PAP). We found that pbp2x, but not pbp2b or pbp1a alone, conferred heteroresistance to R6. However, a change of pbp2x expression was not observed, and therefore, expression does not correlate with an increased proportion of resistant subpopulations. In addition, the influence of the CiaRH system, mediating PBP-independent β-lactam resistance, was assessed by PAP on ciaR disruption mutants but revealed no heteroresistant phenotype. We also showed that the highly resistant subpopulations (HOM*) of transformants containing low-affinity pbp2x undergo an increase in resistance upon selection on penicillin plates that partially reverts after passaging on selection-free medium. Shotgun proteomic analysis showed an upregulation of phosphate ABC transporter subunit proteins encoded by pstS, phoU, pstB, and pstC in these highly resistant subpopulations. In conclusion, the presence of low-affinity pbp2x enables certain pneumococcal colonies to survive in the presence of β-lactams. Upregulation of phosphate ABC transporter genes may represent a reversible adaptation to antibiotic stress.
Collapse
|
12
|
Hathaway LJ, Bättig P, Reber S, Rotzetter JU, Aebi S, Hauser C, Heller M, Kadioglu A, Mühlemann K. Streptococcus pneumoniae detects and responds to foreign bacterial peptide fragments in its environment. Open Biol 2014; 4:130224. [PMID: 24718598 PMCID: PMC4043112 DOI: 10.1098/rsob.130224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Küng E, Coward WR, Neill DR, Malak HA, Mühlemann K, Kadioglu A, Hilty M, Hathaway LJ. The pneumococcal polysaccharide capsule and pneumolysin differentially affect CXCL8 and IL-6 release from cells of the upper and lower respiratory tract. PLoS One 2014; 9:e92355. [PMID: 24664110 PMCID: PMC3963895 DOI: 10.1371/journal.pone.0092355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.
Collapse
Affiliation(s)
- Eliane Küng
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - William R. Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, United Kingdom
| | - Daniel R. Neill
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hesham A. Malak
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aras Kadioglu
- Clinical Infection, Microbiology and Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, University Hospital, Bern, Switzerland
| | - Lucy J. Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Wierzbowski AK, Karlowsky JA, Adam HJ, Nichol KA, Hoban DJ, Zhanel GG. Evolution and molecular characterization of macrolide-resistant Streptococcus pneumoniae in Canada between 1998 and 2008. J Antimicrob Chemother 2013; 69:59-66. [DOI: 10.1093/jac/dkt332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
15
|
Heteroresistance to fosfomycin is predominant in Streptococcus pneumoniae and depends on the murA1 gene. Antimicrob Agents Chemother 2013; 57:2801-8. [PMID: 23571543 DOI: 10.1128/aac.00223-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fosfomycin targets the first step of peptidoglycan biosynthesis in Streptococcus pneumoniae catalyzed by UDP-N-acetylglucosamine enolpyruvyltransferase (MurA1). We investigated whether heteroresistance to fosfomycin occurs in S. pneumoniae. We found that of 11 strains tested, all but 1 (Hungary(19A)) displayed heteroresistance and that deletion of murA1 abolished heteroresistance. Hungary(19A) differs from the other strains by a single amino acid substitution in MurA1 (Ala(364)Thr). To test whether this substitution is responsible for the lack of heteroresistance, it was introduced into strain D39. The heteroresistance phenotype of strain D39 was not changed. Furthermore, no relevant structural differences between the MurA1 crystal structures of heteroresistant strain D39 and nonheteroresistant strain Hungary(19A) were found. Our results reveal that heteroresistance to fosfomycin is the predominant phenotype of S. pneumoniae and that MurA1 is required for heteroresistance to fosfomycin but is not the only factor involved. The findings provide a caveat for any future use of fosfomycin in the treatment of pneumococcal infections.
Collapse
|
16
|
Hathaway LJ, Brugger SD, Morand B, Bangert M, Rotzetter JU, Hauser C, Graber WA, Gore S, Kadioglu A, Mühlemann K. Capsule type of Streptococcus pneumoniae determines growth phenotype. PLoS Pathog 2012; 8:e1002574. [PMID: 22412375 PMCID: PMC3297593 DOI: 10.1371/journal.ppat.1002574] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae defines over ninety serotypes, which differ in their carriage prevalence and invasiveness for poorly understood reasons. Recently, an inverse correlation between carriage prevalence and oligosaccharide structure of a given capsule has been described. Our previous work suggested a link between serotype and growth in vitro. Here we investigate whether capsule production interferes with growth in vitro and whether this predicts carriage prevalence in vivo. Eighty-one capsule switch mutants were constructed representing nine different serotypes, five of low (4, 7F, 14, 15, 18C) and four of high carriage prevalence (6B, 9V, 19F, 23F). Growth (length of lag phase, maximum optical density) of wildtype strains, nontypeable mutants and capsule switch mutants was studied in nutrient-restricted Lacks medium (MLM) and in rich undefined brain heart infusion broth supplemented with 5% foetal calf serum (BHI+FCS). In MLM growth phenotype depended on, and was transferred with, capsule operon type. Colonization efficiency of mouse nasopharynx also depended on, and was transferred with, capsule operon type. Capsule production interfered with growth, which correlated inversely with serotype-specific carriage prevalence. Serotypes with better growth and higher carriage prevalence produced thicker capsules (by electron microscopy, FITC-dextran exclusion assays and HPLC) than serotypes with delayed growth and low carriage prevalence. However, expression of cpsA, the first capsule gene, (by quantitative RT-PCR) correlated inversely with capsule thickness. Energy spent for capsule production (incorporation of H3-glucose) relative to amount of capsule produced was higher for serotypes with low carriage prevalence. Experiments in BHI+FCS showed overall better bacterial growth and more capsule production than growth in MLM and differences between serotypes were no longer apparent. Production of polysaccharide capsule in S. pneumoniae interferes with growth in nutrient-limiting conditions probably by competition for energy against the central metabolism. Serotype-specific nasopharyngeal carriage prevalence in vivo is predicted by the growth phenotype. Streptococcus pneumoniae bacteria are responsible for serious human infections including meningitis, pneumonia and bacteraemia and are a common cause of otitis media (ear infection) in children. However, they most often reside harmlessly in the infant nasopharynx. An association has long been observed between the type of polysaccharide capsule surrounding the bacteria and harmless colonization versus invasive disease. Here we suggest that capsule types that are costly for the bacteria to make are produced in lower quantities and their production limits the growth of the bacteria in nutrient-restricted conditions. In contrast, bacteria with capsules that require less energy can produce more capsule and grow more successfully. This may be an explanation for why S. pneumoniae with certain capsule types can be effective long-term colonizers of the nasopharynx while others need a richer nutritional environment to flourish and so are most often associated with invasive disease. This information may be of use when considering which capsules types to target in future vaccines.
Collapse
Affiliation(s)
- Lucy J. Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Silvio D. Brugger
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Brigitte Morand
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Mathieu Bangert
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Christoph Hauser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Suzanna Gore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kathrin Mühlemann
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Infectious Diseases, University Hospital, Bern, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Interleukin-1β regulates CXCL8 release and influences disease outcome in response to Streptococcus pneumoniae, defining intercellular cooperation between pulmonary epithelial cells and macrophages. Infect Immun 2011; 80:1140-9. [PMID: 22158745 DOI: 10.1128/iai.05697-11] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The success of Streptococcus pneumoniae (the pneumococcus) as a pulmonary pathogen is related to its restriction of innate immune responses by respiratory epithelial cells. The mechanisms used to overcome this restriction are incompletely elucidated. Pulmonary chemokine expression involves complex cellular and molecular networks, involving the pulmonary epithelium, but the specific cellular interactions and the cytokines that control them are incompletely defined. We show that serotype 2 or 4 pneumococci induce only modest levels of CXCL8 expression from epithelial cell lines, even in the absence of a polysaccharide capsule. In contrast, coculture of A549 cells with the macrophage-like THP-1 cell line, differentiated with vitamin D, or monocyte-derived macrophages enhanced CXCL8 release. Supernatants from the THP-1 cell line prime A549 cells to release CXCL8 at levels similar to cocultures. Interleukin-1Ra (IL-1Ra) inhibits CXCL8 release from cocultures and reduces the activity of macrophage-conditioned media, but inhibition of tumor necrosis factor alpha (TNF-α) had only a minimal effect on CXCL8 release. Release of IL-1β but not TNF-α was upregulated in cocultures. IL-1 type 1 receptor knockout C57BL/6 and BALB/c mice confirmed the importance of IL-1 signaling in CXC chemokine expression and neutrophil recruitment in vivo. In fulminant disease, increased IL-1 signaling resulted in increased neutrophils in the airway and more invasive disease. These results demonstrate that IL-1 is an important component of the cellular network involving macrophages and epithelial cells, which facilitates CXC chemokine expression and aids neutrophil recruitment during pneumococcal pneumonia. They also highlight a potential clinical role for anti-IL-1 treatment to limit excessive neutrophilic inflammation in the lung.
Collapse
|
18
|
Kurola P, Tapiainen T, Kaijalainen T, Uhari M, Saukkoriipi A. Xylitol and capsular gene expression in Streptococcus pneumoniae. J Med Microbiol 2009; 58:1470-1473. [DOI: 10.1099/jmm.0.011700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xylitol is a sugar alcohol that inhibits the growth and adherence of Streptococcus pneumoniae. In clinical trials, xylitol has been shown to decrease the occurrence of acute otitis media in day-care children but did not decrease nasopharyngeal carriage of the pneumococci. It has also been shown that xylitol affects the ultrastructure of the pneumococcal capsule. Here, it was hypothesized that xylitol might affect the expression of pneumococcal capsular genes. Capsule gene expression levels were studied in 24 clinical pneumococcal isolates and one ATCC strain (49619) by using a real-time RT-PCR method targeting the mRNA of the second gene of the pneumococcal capsular locus, the cpsB gene. The isolates were exposed to 5 % glucose, 5 % xylitol and control medium (brain heart infusion medium containing 10 % fetal bovine serum) for 2 h. cpsB gene expression levels were measured by using a relative quantification method with calibrator normalization where the 16S rRNA gene of pneumococcus was used as a reference. Exposure to xylitol lowered cpsB gene expression levels significantly compared with those in the control (P=0.035) and glucose (P=0.011) media. This finding supports previous results where exposure to xylitol changed the ultrastructure of the pneumococcal capsule and could explain further the high clinical efficacy of xylitol in preventing otitis media.
Collapse
Affiliation(s)
- Paula Kurola
- National Institute for Health and Welfare, Oulu, Finland
| | | | | | - Matti Uhari
- University of Oulu Department of Pediatrics, Oulu, Finland
| | | |
Collapse
|
19
|
Moscoso M, García E. Transcriptional regulation of the capsular polysaccharide biosynthesis locus of streptococcus pneumoniae: a bioinformatic analysis. DNA Res 2009; 16:177-86. [PMID: 19429668 PMCID: PMC2695774 DOI: 10.1093/dnares/dsp007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is the main virulence factor, which makes the bacterium resistant to phagocytosis. Expression of capsular polysaccharide must be adjusted at different stages of pneumococcal infection, thus, their transcriptional regulation appears to be crucial. To get insight into the existence of regulatory mechanisms common to most serotypes, a bioinformatic analysis of the DNA region located upstream of the capsular locus was performed. With the exception of serotype 37, the capsular locus is located between dexB and aliA on the pneumococcal chromosome. Up to 26 different sequence organizations were found among pneumococci synthesizing their capsule through a Wzy-polymerase-dependent mechanism, mostly varying according to the presence/absence of distinct insertion elements. As a consequence, only ∼250 bp (including a 107 bp RUP_A element) was conserved in 86 sequences, although only a short (ca. 87 bp) region located immediately upstream of cpsA was strictly conserved in all the sequences analyzed. An exhaustive search for possible operator sequences was done. Interestingly, although the promoter region of serotype 3 isolates completely differs from that of other serotypes, most of the proteins proposed to regulate transcription in serotype 3 pneumococci were also predicted to function as possible regulators in non-serotype 3 S. pneumoniae isolates.
Collapse
Affiliation(s)
- Miriam Moscoso
- Centro de Investigaciones Biológicas, (CSIC) and CIBER de Enfermedades Respiratorias, Ramiro de Maeztu, Madrid 9 28040, Spain
| | | |
Collapse
|
20
|
Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus rhamnosus GG grown in de Mann-Rogosa-Sharpe broth. Lett Appl Microbiol 2009; 48:618-22. [PMID: 19416463 DOI: 10.1111/j.1472-765x.2009.02579.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AIMS To identify novel proteins secreted by the probiotic bacterium Lactobacillus rhamnosus GG after growth in de Mann-Rogosa-Sharpe broth (MRS), a complex medium often used for the culture of Lactobacillus. METHODS AND RESULTS The proteins secreted by L. rhamnosus GG strain were precipitated using a trichloroacetic acid-based protocol, resolved by SDS-PAGE, and identified by tandem mass spectrometry (MS/MS). Among the proteins secreted by this bacterium, a leukocyte elastase inhibitor, already present in the MRS broth, was identified. Other proteins such as cell wall hydrolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase, and an extracellular transcriptional regulator have been also identified. CONCLUSIONS Lactobacillus rhamnosus GG secretes several proteins during its growth in MRS, some of them with assigned functions in the prevention of the molecular mechanisms that lead to damage in the epithelial barrier (cell wall hydrolase) and in adhesion (GAPDH). The rest of the proteins require further genetic analysis in order to establish their precise roles. None of the proteins bound to mucin or fibronectin. SIGNIFICANCE AND IMPACT OF THE STUDY Some of these secreted proteins could be involved in the probiotic effects exerted by L. rhamnosus GG strain, their identification being the first step towards in depth functional studies.
Collapse
Affiliation(s)
- B Sánchez
- Université de Bordeaux, UMR 5248 CNRS, UBX1-ENITAB, ENITAB, Gradignan Cedex, France.
| | | | | |
Collapse
|
21
|
Rückinger S, von Kries R, Siedler A, van der Linden M. Association of serotype of Streptococcus pneumoniae with risk of severe and fatal outcome. Pediatr Infect Dis J 2009; 28:118-22. [PMID: 19116604 DOI: 10.1097/inf.0b013e318187e215] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Invasive pneumococcal disease (IPD) in children may manifest as bacteremia/sepsis, bacteremic pneumonia, or meningitis, with serious outcomes that include hospitalization, neurologic sequelae, or death. The risk of severe or fatal outcome of disease is associated with host-related factors, such as age or comorbid conditions. Furthermore, there is an ongoing discussion about organism-related factors, such as the pneumococcal serotype. METHODS Data on 494 children aged <16 years hospitalized for IPD between 1997 and 2003 in pediatric hospitals in Germany were analyzed. Serotype specific case-fatality rates and rates of severe outcome were compared using standardized mortality ratios (SMR). The risk of severe or fatal outcome for the serotype with the highest case-fatality rate was further analyzed using multivariate logistic regression adjusting for age younger than 1 year, meningitis, sex, and immunocompromised status as potential confounders. RESULTS The overall case-fatality rate was 5.3% and the rate of severe outcome was 17.0%. Serotype 7F had the highest case-fatality rate (14.8%, SMR 3.1), followed by serotypes 23F (8.3%, SMR 1.7) and 3 (8.3%, SMR 1.7). The highest rate of severe outcome was also observed for 7F (40.7%, SMR 2.4). Multivariate analysis showed an odds ratio of 4.3 (1.3-14.7) for fatal outcome and 4.0 (1.6-10.4) for severe outcome comparing 7F to all other serotypes. CONCLUSIONS In this study population, serotype 7F accounted for a higher risk of severe and fatal outcome than other serotypes of Streptococcus pneumoniae. In describing the epidemiology of IPD, the serotype-specific risk for severe or fatal outcome is an important complement to other serotype-specific aspects like incidence and antibiotic resistance pattern.
Collapse
Affiliation(s)
- Simon Rückinger
- Institute of Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | | | |
Collapse
|
22
|
Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, Mershon WJ, Johnson C, Hu FZ, Stoodley P, Ehrlich GD, Post JC. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol 2008; 8:173. [PMID: 18842140 PMCID: PMC2600794 DOI: 10.1186/1471-2180-8-173] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/08/2008] [Indexed: 11/14/2022] Open
Abstract
Background Streptococcus pneumoniae is a common respiratory pathogen and a major causative agent of respiratory infections, including otitis media (OM). Pneumococcal biofilms have been demonstrated on biopsies of the middle ear mucosa in children receiving tympanostomy tubes, supporting the hypothesis that chronic OM may involve biofilm development by pathogenic bacteria as part of the infectious process. To better understand pneumococcal biofilm formation six low-passage encapsulated nasopharyngeal isolates of S. pneumoniae were assessed over a six-eight day period in vitro. Results Multiparametric analysis divided the strains into two groups. Those with a high biofilm forming index (BFI) were structurally complex, exhibited greater lectin colocalization and were more resistant to azithromycin. Those with a low BFI developed less extensive biofilms and were more susceptible to azithromycin. dsDNA was present in the S. pneumoniae biofilm matrix in all strains and treatment with DNase I significantly reduced biofilm biomass. Since capsule expression has been hypothesized to be associated with decreased biofilm development, we also examined expression of cpsA, the first gene in the pneumococcal capsule operon. Interestingly, cpsA was downregulated in biofilms in both high and low BFI strains. Conclusion All pneumococcal strains developed biofilms that exhibited extracellular dsDNA in the biofilm matrix, however strains with a high BFI correlated with greater carbohydrate-associated structural complexity and antibiotic resistance. Furthermore, all strains of S. pneumoniae showed downregulation of the cpsA gene during biofilm growth compared to planktonic culture, regardless of BFI ranking, suggesting downregulation of capsule expression occurs generally during adherent growth.
Collapse
Affiliation(s)
- Luanne Hall-Stoodley
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|