1
|
Getz LJ, Maxwell KL. Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. Annu Rev Virol 2024; 11:343-362. [PMID: 38950439 DOI: 10.1146/annurev-virology-100422-125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Karen L Maxwell
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
2
|
Becker SH, Ronayne CE, Bold TD, Jenkins MK. CD4 + T cells recruit, then engage macrophages in cognate interactions to clear Mycobacterium tuberculosis from the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609198. [PMID: 39229103 PMCID: PMC11370583 DOI: 10.1101/2024.08.22.609198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IFN-γ-producing CD4 + T cells are required for protection against lethal Mycobacterium tuberculosis ( Mtb ) infections. However, the ability of CD4 + T cells to suppress Mtb growth cannot be fully explained by IFN-γ or other known T cell products. In this study, we show that CD4 + T cell-derived IFN-γ promoted the recruitment of monocyte-derived macrophages (MDMs) to the lungs of Mtb -infected mice. Although the recruited MDMs became quickly and preferentially infected with Mtb , CD4 + T cells rapidly disinfected the MDMs. Clearance of Mtb from MDMs was not explained by IFN-γ, but rather by MHCII-mediated cognate interactions with CD4 + T cells. These interactions promoted MDM expression of glycolysis genes essential for Mtb control. Thus, by recruiting MDMs, CD4 + T cells initiate a cycle of bacterial phagocytosis, Mtb antigen presentation and disinfection in an attempt to clear the bacteria from the lungs.
Collapse
|
3
|
Chong Qui E, Habtehyimer F, Germroth A, Grant J, Kosanovic L, Singh I, Hancock SP. Mycobacteriophage Alexphander Gene 94 Encodes an Essential dsDNA-Binding Protein during Lytic Infection. Int J Mol Sci 2024; 25:7466. [PMID: 39000573 PMCID: PMC11242194 DOI: 10.3390/ijms25137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen P. Hancock
- Department of Chemistry, Towson University, Towson, MD 21252, USA; (E.C.Q.); (F.H.); (A.G.); (J.G.); (L.K.); (I.S.)
| |
Collapse
|
4
|
Won HI, Zinga S, Kandror O, Akopian T, Wolf ID, Schweber JTP, Schmid EW, Chao MC, Waldor M, Rubin EJ, Zhu J. Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy. Nat Commun 2024; 15:4065. [PMID: 38744895 PMCID: PMC11094019 DOI: 10.1038/s41467-024-48506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a new therapeutic modality involving selectively directing disease-causing proteins for degradation through proteolytic systems. Our ability to exploit targeted protein degradation (TPD) for antibiotic development remains nascent due to our limited understanding of which bacterial proteins are amenable to a TPD strategy. Here, we use a genetic system to model chemically-induced proximity and degradation to screen essential proteins in Mycobacterium smegmatis (Msm), a model for the human pathogen M. tuberculosis (Mtb). By integrating experimental screening of 72 protein candidates and machine learning, we find that drug-induced proximity to the bacterial ClpC1P1P2 proteolytic complex leads to the degradation of many endogenous proteins, especially those with disordered termini. Additionally, TPD of essential Msm proteins inhibits bacterial growth and potentiates the effects of existing antimicrobial compounds. Together, our results provide biological principles to select and evaluate attractive targets for future Mtb PROTAC development, as both standalone antibiotics and potentiators of existing antibiotic efficacy.
Collapse
Affiliation(s)
- Harim I Won
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Samuel Zinga
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Olga Kandror
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tatos Akopian
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jessica T P Schweber
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ernst W Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | - Michael C Chao
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Maya Waldor
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Guerrero-Bustamante CA, Hatfull GF. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny. mBio 2024; 15:e0326023. [PMID: 38236026 PMCID: PMC10865867 DOI: 10.1128/mbio.03260-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Bacteriophages are large and diverse components of the biosphere, and many phages are temperate. Upon infection, temperate phages can establish lysogeny in which a prophage is typically integrated into the bacterial chromosome. Here, we describe the phenomenon of tRNA-dependent lysogeny, a previously unrecognized behavior of some temperate phages. tRNA-dependent lysogeny is characterized by two unusual features. First, a phage-encoded tyrosine family integrase mediates site-specific recombination between a phage attP site and a bacterial attB site overlapping a host tRNA gene. However, attP and attB share only a short (~10 bp) common core such that a functional tRNA is not reconstructed upon integration. Second, the phage encodes a tRNA of the same isotype as the disrupted but essential host tRNA, complementing its loss, and consequently is required for the survival of lysogenic progeny. As expected, an integrase-defective phage mutant forms turbid plaques, and bacterial progeny are immune to superinfection, but they lack stability, and the prophage is rapidly lost. In contrast, a tRNA-defective phage mutant forms clear plaques and more closely resembles a repressor mutant, and lysogens are recovered only at very low frequency through the use of secondary attachment sites elsewhere in the host genome. Integration-proficient plasmids derived from these phages must also carry a cognate phage tRNA gene for efficient integration, and these may be useful tools for mycobacterial genetics. We show that tRNA-dependent lysogeny is used by phages within multiple different groups of related viruses and may be prevalent elsewhere in the broader phage community.IMPORTANCEBacteriophages are the most numerous biological entities in the biosphere, and a substantial proportion of phages are temperate, forming stable lysogens in which a prophage copy of the genome integrates into the bacterial chromosome. Many phages encode a variety of tRNA genes whose roles are poorly understood, although it has been proposed that they enhance translational efficiencies in lytic growth or that they counteract host defenses that degrade host tRNAs. Here, we show that phage-encoded tRNAs play key roles in the establishment of lysogeny of some temperate phages. They do so by compensating for the loss of tRNA function when phages integrate at an attB site overlapping a tRNA gene but fail to reconstruct the tRNA at the attachment junction. In this system of tRNA-dependent lysogeny, the phage-encoded tRNA is required for lysogeny, and deletion of the phage tRNA gives rise to a clear plaque phenotype and obligate lytic growth.
Collapse
Affiliation(s)
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Abad L, Gauthier CH, Florian I, Jacobs-Sera D, Hatfull GF. The heterogenous and diverse population of prophages in Mycobacterium genomes. mSystems 2023; 8:e0044623. [PMID: 37791767 PMCID: PMC10654092 DOI: 10.1128/msystems.00446-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.
Collapse
Affiliation(s)
- Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Isabella Florian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Freeman AH, Tembiwa K, Brenner JR, Chase MR, Fortune SM, Morita YS, Boutte CC. Arginine methylation sites on SepIVA help balance elongation and septation in Mycobacterium smegmatis. Mol Microbiol 2023; 119:208-223. [PMID: 36416406 PMCID: PMC10023300 DOI: 10.1111/mmi.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The growth of mycobacterial cells requires successful coordination between elongation and septation. However, it is not clear which factors mediate this coordination. Here, we studied the function and post-translational modification of an essential division factor, SepIVA, in Mycobacterium smegmatis. We find that SepIVA is arginine methylated, and that alteration of its methylation sites affects both septation and polar elongation of Msmeg. Furthermore, we show that SepIVA regulates the localization of MurG and that this regulation may impact polar elongation. Finally, we map SepIVA's two regulatory functions to different ends of the protein: the N-terminus regulates elongation while the C-terminus regulates division. These results establish SepIVA as a regulator of both elongation and division and characterize a physiological role for protein arginine methylation sites for the first time in mycobacteria.
Collapse
Affiliation(s)
- Angela H Freeman
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| | - Karen Tembiwa
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| | - James R Brenner
- Department of Microbiology, University of Massachusetts,
Amherst, Massachusetts, USA
| | - Michael R Chase
- Department of Immunology and Infectious Disease, Harvard TH
Chan School of Public Health, Boston, Massachusetts, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Disease, Harvard TH
Chan School of Public Health, Boston, Massachusetts, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts,
Amherst, Massachusetts, USA
| | - Cara C Boutte
- Department of Biology, University of Texas at Arlington,
Arlington, Texas, USA
| |
Collapse
|
8
|
Howell AA, Versoza CJ, Cerna G, Johnston T, Kakde S, Karuku K, Kowal M, Monahan J, Murray J, Nguyen T, Sanchez Carreon A, Streiff A, Su B, Youkhana F, Munig S, Patel Z, So M, Sy M, Weiss S, Pfeifer SP. Phylogenomic analyses and host range prediction of cluster P mycobacteriophages. G3 (BETHESDA, MD.) 2022; 12:jkac244. [PMID: 36094333 PMCID: PMC9635641 DOI: 10.1093/g3journal/jkac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Bacteriophages, infecting bacterial hosts in every environment on our planet, are a driver of adaptive evolution in bacterial communities. At the same time, the host range of many bacteriophages-and thus one of the selective pressures acting on complex microbial systems in nature-remains poorly characterized. Here, we computationally inferred the putative host ranges of 40 cluster P mycobacteriophages, including members from 6 subclusters (P1-P6). A series of comparative genomic analyses revealed that mycobacteriophages of subcluster P1 are restricted to the Mycobacterium genus, whereas mycobacteriophages of subclusters P2-P6 are likely also able to infect other genera, several of which are commonly associated with human disease. Further genomic analysis highlighted that the majority of cluster P mycobacteriophages harbor a conserved integration-dependent immunity system, hypothesized to be the ancestral state of a genetic switch that controls the shift between lytic and lysogenic life cycles-a temperate characteristic that impedes their usage in antibacterial applications.
Collapse
Affiliation(s)
- Abigail A Howell
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Gabriella Cerna
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Tyler Johnston
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Shriya Kakde
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Keith Karuku
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Maria Kowal
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jasmine Monahan
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jillian Murray
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Teresa Nguyen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Aurely Sanchez Carreon
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Abigail Streiff
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Blake Su
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- School of Politics and Global Studies, Arizona State University, Tempe, AZ 85281, USA
| | - Faith Youkhana
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saige Munig
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Zeel Patel
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Minerva So
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Makena Sy
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Sarah Weiss
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
10
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
11
|
Papadopoulos AO, Ealand C, Gordhan BG, VanNieuwenhze M, Kana BD. Characterisation of a putative M23-domain containing protein in Mycobacterium tuberculosis. PLoS One 2021; 16:e0259181. [PMID: 34784363 PMCID: PMC8594824 DOI: 10.1371/journal.pone.0259181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Collapse
Affiliation(s)
- Andrea Olga Papadopoulos
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna Gowan Gordhan
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Bavesh Davandra Kana
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
12
|
Hatfull GF. Wildy Prize Lecture, 2020-2021: Who wouldn't want to discover a new virus? MICROBIOLOGY-SGM 2021; 167. [PMID: 34468308 PMCID: PMC8549241 DOI: 10.1099/mic.0.001094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Innovations in science education are desperately needed to find ways to engage and interest students early in their undergraduate careers. Exposing students to authentic research experiences is highly beneficial, but finding ways to include all types of students and to do this at large scale is especially challenging. An attractive solution is the concept of an inclusive research education community (iREC) in which centralized research leadership and administration supports multiple institutions, including diverse groups of schools and universities, faculty and students. The Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) programme is an excellent example of an iREC, in which students explore viral diversity and evolution through discovery and genomic analysis of novel bacteriophages. The SEA-PHAGES programme has proven to be sustainable, to be implemented at large scale, and to enhance student persistence in science, as well as to produce substantial research advances. Discovering a new virus with the potential for new biological insights and clinical applications is inherently exciting. Who wouldn't want to discover a new virus?
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
13
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
14
|
Fleck N, Grundner C. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria. J Biol Chem 2021; 297:100990. [PMID: 34298016 PMCID: PMC8363830 DOI: 10.1016/j.jbc.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Mycobacteria are responsible for a heavy global disease burden, but their relative genetic intractability has long frustrated research efforts. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) has made gene repression in mycobacteria much more efficient, but limitations of the prototypical Cas9-based platform, for example, in multigene regulation, remain. Here, we introduce an alternative CRISPRi platform for mycobacteria that is based on the minimal type V Cas12a enzyme in combination with synthetic CRISPR arrays. This system is simple, tunable, reversible, can efficiently regulate essential genes and multiple genes simultaneously, and works as efficiently in infected macrophages as it does in vitro. Together, Cas12a-based CRISPRi provides a facile tool to probe higher-order genetic interactions in mycobacteria including Mycobacterium tuberculosis (Mtb), which will enable the development of synthetically lethal drug targets and the study of genes conditionally essential during infection.
Collapse
Affiliation(s)
- Neil Fleck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
15
|
Gordhan BG, Peters JS, McIvor A, Machowski EE, Ealand C, Waja Z, Martinson N, Kana BD. Detection of differentially culturable tubercle bacteria in sputum using mycobacterial culture filtrates. Sci Rep 2021; 11:6493. [PMID: 33753820 PMCID: PMC7985135 DOI: 10.1038/s41598-021-86054-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Rapid detection of tuberculosis (TB) infection is paramount to curb further transmission. The gold standard for this remains mycobacterial culture, however emerging evidence confirms the presence of differentially culturable tubercle bacteria (DCTB) in clinical specimens. These bacteria do not grow under standard culture conditions and require the presence of culture filtrate (CF), from axenic cultures of Mycobacterium tuberculosis (Mtb), to emerge. It has been hypothesized that molecules such as resuscitation promoting factors (Rpfs), fatty acids and cyclic-AMP (cAMP) present in CF are responsible for the growth stimulatory activity. Herein, we tested the ability of CF from the non-pathogenic bacterium Mycobacterium smegmatis (Msm) to stimulate the growth of DCTB, as this organism provides a more tractable source of CF. We also interrogated the role of Mtb Rpfs in stimulation of DCTB by creating recombinant strains of Msm that express Mtb rpf genes in various combinations. CF derived from this panel of strains was tested on sputum from individuals with drug susceptible TB prior to treatment. CF from wild type Msm did not enable detection of DCTB in a manner akin to Mtb CF preparations and whilst the addition of RpfABMtb and RpfABCDEMtb to an Msm mutant devoid of its native rpfs did improve detection of DCTB compared to the no CF control, it was not statistically different to the empty vector control. To further investigate the role of Rpfs, we compared the growth stimulatory activity of CF from Mtb, with and without Rpfs and found these to be equivalent. Next, we tested chemically diverse fatty acids and cAMP for growth stimulation and whilst some selective stimulatory effect was observed, this was not significantly higher than the media control and not comparable to CF. Together, these data indicate that the growth stimulatory effect observed with Mtb CF is most likely the result of a combination of factors. Future work aimed at identifying the nature of these growth stimulatory molecules may facilitate improvement of culture-based diagnostics for TB.
Collapse
Affiliation(s)
- Bhavna G Gordhan
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Julian S Peters
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Amanda McIvor
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Edith E Machowski
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Christopher Ealand
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa
| | - Ziyaad Waja
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.,Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
| | - Bavesh D Kana
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, P. O. Box 1038, Johannesburg, 2000, South Africa.
| |
Collapse
|
16
|
Justen AM, Hodges HL, Kim LM, Sadecki PW, Porfirio S, Ultee E, Black I, Chung GS, Briegel A, Azadi P, Kiessling LL. Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility. SCIENCE ADVANCES 2020; 6:eaba4015. [PMID: 32938674 PMCID: PMC7494350 DOI: 10.1126/sciadv.aba4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 05/04/2023]
Abstract
Bacteria control the length of their polysaccharides, which can control cell viability, physiology, virulence, and immune evasion. Polysaccharide chain length affects immunomodulation, but its impact on bacterial physiology and antibiotic susceptibility was unclear. We probed the consequences of truncating the mycobacterial galactan, an essential linear polysaccharide of about 30 residues. Galactan covalently bridges cell envelope layers, with the outermost cell wall linkage point occurring at residue 12. Reducing galactan chain length by approximately half compromises fitness, alters cell morphology, and increases the potency of hydrophobic antibiotics. Systematic variation of the galactan chain length revealed that it determines periplasm size. Thus, glycan chain length can directly affect cellular physiology and antibiotic activity, and mycobacterial glycans, not proteins, regulate periplasm size.
Collapse
Affiliation(s)
- Alexander M Justen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Heather L Hodges
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Lili M Kim
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Patric W Sadecki
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Sara Porfirio
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Eveline Ultee
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Ian Black
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Grace S Chung
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | - Ariane Briegel
- Institute of Biology, University of Leiden, 2333 BE Leiden, Netherlands
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Laura L Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Rep 2020; 27:2468-2479.e3. [PMID: 31116989 PMCID: PMC6538288 DOI: 10.1016/j.celrep.2018.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/14/2018] [Accepted: 12/13/2018] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, withstands diverse environmental stresses in the host. The periplasmic protease HtrA is required only to survive extreme conditions in most bacteria but is predicted to be essential for normal growth in mycobacteria. We confirm that HtrA is indeed essential in Mycobacterium smegmatis and interacts with another essential protein of unknown function, LppZ. However, the loss of any of three unlinked genes, including those encoding Ami3, a peptidoglycan muramidase, and Pmt, a mannosyltransferase, suppresses the essentiality of both HtrA and LppZ, indicating the functional relevance of these genes' protein products. Our data indicate that HtrA-LppZ is required to counteract the accumulation of active Ami3, which is toxic under the stabilizing influence of Pmt-based mannosylation. This suggests that HtrA-LppZ blocks the toxicity of a cell wall enzyme to maintain mycobacterial homeostasis.
Collapse
|
18
|
Assessment of Clofazimine and TB47 Combination Activity against Mycobacterium abscessus Using a Bioluminescent Approach. Antimicrob Agents Chemother 2020; 64:AAC.01881-19. [PMID: 31843996 DOI: 10.1128/aac.01881-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium abscessus is intrinsically resistant to most antimicrobial agents. The emerging infections caused by M. abscessus and the lack of effective treatment call for rapid attention. Here, we intended to construct a selectable marker-free autoluminescent M. abscessus strain (designated UAlMab) as a real-time reporter strain to facilitate the discovery of effective drugs and regimens for treating M. abscessus The UAlMab strain was constructed using the dif/Xer recombinase system. In vitro and in vivo activities of several drugs, including clofazimine and TB47, a recently reported cytochrome bc 1 inhibitor, were assessed using UAlMab. Furthermore, the efficacy of multiple drug combinations, including the clofazimine and TB47 combination, were tested against 20 clinical M. abscessus isolates. The UAlMab strain enabled us to evaluate drug efficacy both in vitro and in live BALB/c mice in a real-time, noninvasive fashion. Importantly, although TB47 showed marginal activity either alone or in combination with clarithromycin, amikacin, or roxithromycin, the drug markedly potentiated the activity of clofazimine, both in vitro and in vivo This study demonstrates that the use of the UAlMab strain can significantly facilitate rapid evaluation of new drugs and regimens. The clofazimine and TB47 combination is effective against M. abscessus, and dual/triple electron transport chain (ETC) targeting can be an effective therapeutic approach for treating mycobacterial infections.
Collapse
|
19
|
Manina G, Griego A, Singh LK, McKinney JD, Dhar N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J 2019; 38:e101876. [PMID: 31583725 PMCID: PMC6856624 DOI: 10.15252/embj.2019101876] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/09/2022] Open
Abstract
Clonal microbial populations are inherently heterogeneous, and this diversification is often considered as an adaptation strategy. In clinical infections, phenotypic diversity is found to be associated with drug tolerance, which in turn could evolve into genetic resistance. Mycobacterium tuberculosis, which ranks among the top ten causes of mortality with high incidence of drug-resistant infections, exhibits considerable phenotypic diversity. In this study, we quantitatively analyze the cellular dynamics of DNA damage responses in mycobacteria using microfluidics and live-cell fluorescence imaging. We show that individual cells growing under optimal conditions experience sporadic DNA-damaging events manifested by RecA expression pulses. Single-cell responses to these events occur as transient pulses of fluorescence expression, which are dependent on the gene-network structure but are triggered by extrinsic signals. We demonstrate that preexisting subpopulations, with discrete levels of DNA damage response, are associated with differential susceptibility to fluoroquinolones. Our findings reveal that the extent of DNA integrity prior to drug exposure impacts the drug activity against mycobacteria, with conceivable therapeutic implications.
Collapse
Affiliation(s)
- Giulia Manina
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Anna Griego
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
- Université Paris DescartesSorbonne Paris CitéParisFrance
| | - Lalit Kumar Singh
- Microbial Individuality and Infection GroupCell Biology and Infection DepartmentInstitut PasteurParisFrance
| | - John D McKinney
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| | - Neeraj Dhar
- School of Life SciencesSwiss Federal Institute of Technology in Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
20
|
Abstract
Many aspects regarding superinfection, immunity, virulence, and the evolution of immune specificities are poorly understood due to the lack of large collections of isolated and sequenced phages with a spectrum of genetic diversity. Using a genetically diverse collection of Cluster A phages, we show that the classical and relatively straightforward patterns of homoimmunity, heteroimmunity, and virulence result from interactions between homotypic and heterotypic phages at the extreme edges of an evolutionary continuum of immune specificities. Genetic interactions between mesotypic phages result in more complex mesoimmunity phenotypes and virulence profiles. These results highlight that the evolution of immune specificities can be shaped by homotypic and mesotypic interactions and may be more dynamic than previously considered. Temperate phages encode an immunity system to control lytic gene expression during lysogeny. This gene regulatory circuit consists of multiple interacting genetic elements, and although it is essential for controlling phage growth, it is subject to conflicting evolutionary pressures. During superinfection of a lysogen, the prophage’s circuit interacts with the superinfecting phage’s circuit and prevents lytic growth if the two circuits are closely related. The circuitry is advantageous since it provides the prophage with a defense mechanism, but the circuitry is also disadvantageous since it limits the phage’s host range during superinfection. Evolutionarily related phages have divergent, orthogonal immunity systems that no longer interact and are heteroimmune, but we do not understand how immunity systems evolve new specificities. Here, we use a group of Cluster A mycobacteriophages that exhibit a spectrum of genetic diversity to examine how immunity system evolution impacts superinfection immunity. We show that phages with mesotypic (i.e., genetically related but distinct) immunity systems exhibit asymmetric and incomplete superinfection phenotypes. They form complex immunity networks instead of well-defined immunity groups, and mutations conferring escape (i.e., virulence) from homotypic or mesotypic immunity have various escape specificities. Thus, virulence and the evolution of new immune specificities are shaped by interactions with homotypic and mesotypic immunity systems.
Collapse
|
21
|
Boldrin F, Anoosheh S, Serafini A, Cioetto Mazzabò L, Palù G, Provvedi R, Manganelli R. Improving the stability of the TetR/Pip-OFF mycobacterial repressible promoter system. Sci Rep 2019; 9:5783. [PMID: 30962489 PMCID: PMC6453970 DOI: 10.1038/s41598-019-42319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated gene expression systems are powerful tools to study essential genes and characterize potential drug targets. In a past work we reported the construction of a very stringent and versatile repressible promoter system for Mycobacterium tuberculosis based on two different repressors (TetR/Pip-OFF system). This system, causing the repression of the target gene in response to anhydrotetracycline (ATc), has been successfully used in several laboratories to characterize essential genes in different mycobacterial species both in vitro and in vivo. One of the limits of this system was its instability, leading to the selection of mutants in which the expression of the target gene was no longer repressible. In this paper we demonstrated that the instability was mainly due either to the loss of the integrative plasmid carrying the genes encoding the two repressors, or to the selection of a frameshift mutation in the gene encoding the repressors Pip. To solve these problems, we (i) constructed a new integrative vector in which the gene encoding the integrase was deleted to increase its stability, and (ii) developed a new integrative vector carrying the gene encoding Pip to introduce a second copy of this gene in the chromosome. The use of these new tools was shown to reduce drastically the selection of escape mutants.
Collapse
Affiliation(s)
- Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Saber Anoosheh
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town UCT, Cape Town, South Africa
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | |
Collapse
|
22
|
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. A large number of mycobacteriophages have been isolated and genomically characterized, providing insights into viral diversity and evolution, as well as fueling development of tools for mycobacterial genetics. Mycobacteriophages have intimate relationships with their hosts and provide insights into the genetics and physiology of the mycobacteria and tools for potential clinical applications such as drug development, diagnosis, vaccines, and potentially therapy.
Collapse
|
23
|
Puffal J, Mayfield JA, Moody DB, Morita YS. Demethylmenaquinone Methyl Transferase Is a Membrane Domain-Associated Protein Essential for Menaquinone Homeostasis in Mycobacterium smegmatis. Front Microbiol 2018; 9:3145. [PMID: 30619211 PMCID: PMC6305584 DOI: 10.3389/fmicb.2018.03145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
The intracellular membrane domain (IMD) in mycobacteria is a spatially distinct region of the plasma membrane with diverse functions. Previous comparative proteomic analysis of the IMD suggested that menaquinone biosynthetic enzymes are associated with this domain. In the present study, we determined the subcellular site of these enzymes using sucrose density gradient fractionation. We found that the last two enzymes, the methyltransferase MenG, and the reductase MenJ, are associated with the IMD in Mycobacterium smegmatis. MenA, the prenyltransferase that mediates the first membrane-associated step of the menaquinone biosynthesis, is associated with the conventional plasma membrane. For MenG, we additionally showed the polar enrichment of the fluorescent protein fusion colocalizing with an IMD marker protein in situ. To start dissecting the roles of IMD-associated enzymes, we further tested the physiological significance of MenG. The deletion of menG at the endogenous genomic loci was possible only when an extra copy of the gene was present, indicating that it is an essential gene in M. smegmatis. Using a tetracycline-inducible switch, we achieved gradual and partial depletion of MenG over three consecutive 24 h sub-cultures. This partial MenG depletion resulted in progressive slowing of growth, which corroborated the observation that menG is an essential gene. Upon MenG depletion, there was a significant accumulation of MenG substrate, demethylmenaquinone, even though the cellular level of menaquinone, the reaction product, was unaffected. Furthermore, the growth retardation was coincided with a lower oxygen consumption rate and ATP accumulation. These results imply a previously unappreciated role of MenG in regulating menaquinone homeostasis within the complex spatial organization of mycobacterial plasma membrane.
Collapse
Affiliation(s)
- Julia Puffal
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| | - Jacob A. Mayfield
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
24
|
Murphy KC, Nelson SJ, Nambi S, Papavinasasundaram K, Baer CE, Sassetti CM. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes. mBio 2018; 9:e01467-18. [PMID: 30538179 PMCID: PMC6299477 DOI: 10.1128/mbio.01467-18] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022] Open
Abstract
Two efficient recombination systems were combined to produce a versatile method for chromosomal engineering that obviates the need to prepare double-stranded DNA (dsDNA) recombination substrates. A synthetic "targeting oligonucleotide" is incorporated into the chromosome via homologous recombination mediated by the phage Che9c RecT annealase. This oligonucleotide contains a site-specific recombination site for the directional Bxb1 integrase (Int), which allows the simultaneous integration of a "payload plasmid" that contains a cognate recombination site and a selectable marker. The targeting oligonucleotide and payload plasmid are cotransformed into a RecT- and Int-expressing strain, and drug-resistant homologous recombinants are selected in a single step. A library of reusable target-independent payload plasmids is available to generate gene knockouts, promoter replacements, or C-terminal tags. This new system is called ORBIT (for "oligonucleotide-mediated recombineering followed by Bxb1 integrase targeting") and is ideally suited for the creation of libraries consisting of large numbers of deletions, insertions, or fusions in a bacterial chromosome. We demonstrate the utility of this "drag and drop" strategy by the construction of insertions or deletions in over 100 genes in Mycobacteriumtuberculosis and M. smegmatisIMPORTANCE We sought to develop a system that could increase the usefulness of oligonucleotide-mediated recombineering of bacterial chromosomes by expanding the types of modifications generated by an oligonucleotide (i.e., insertions and deletions) and by making recombinant formation a selectable event. This paper describes such a system for use in M. smegmatis and M. tuberculosis By incorporating a single-stranded DNA (ssDNA) version of the phage Bxb1 attP site into the oligonucleotide and coelectroporating it with a nonreplicative plasmid that carries an attB site and a drug selection marker, we show both formation of a chromosomal attP site and integration of the plasmid in a single transformation. No target-specific dsDNA substrates are required. This system will allow investigators studying mycobacterial diseases, including tuberculosis, to easily generate multiple mutants for analysis of virulence factors, identification of new drug targets, and development of new vaccines.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samantha J Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Ko CC, Hatfull GF. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol Microbiol 2018; 108:443-460. [PMID: 29488662 DOI: 10.1111/mmi.13946] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 01/04/2023]
Abstract
Bacteriophages engage in complex dynamic interactions with their bacterial hosts and with each other. Bacteria have numerous mechanisms to resist phage infection, and phages must co-evolve by overcoming bacterial resistance or by choosing an alternative host. Phages also compete with each other, both during lysogeny by prophage-mediated defense against viral attack and by superinfection exclusion during lytic replication. Phages are enormously diverse genetically and are replete with small genes of unknown function, many of which are not required for lytic growth, but which may modulate these bacteria-phage and phage-phage dynamics. Using cellular toxicity of phage gene overexpression as an assay, we identified the 93-residue protein gp52 encoded by Cluster F mycobacteriophage Fruitloop. The toxicity of Fruitloop gp52 overexpression results from interaction with and inactivation of Wag31 (DivIVA), an essential Mycobacterium smegmatis protein organizing cell wall biosynthesis at the growing cellular poles. Fruitloop gene 52 is expressed early in lytic growth and is not required for normal Fruitloop lytic replication but interferes with Subcluster B2 phages such as Hedgerow and Rosebush. We conclude that Hedgerow and Rosebush are Wag31-dependent phages and that Fruitloop gp52 confers heterotypic superinfection exclusion by inactivating Wag31.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
27
|
Characterization of Conserved and Novel Septal Factors in Mycobacterium smegmatis. J Bacteriol 2018; 200:JB.00649-17. [PMID: 29311277 DOI: 10.1128/jb.00649-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Septation in bacteria requires coordinated regulation of cell wall biosynthesis and hydrolysis enzymes so that new septal cross-wall can be appropriately constructed without compromising the integrity of the existing cell wall. Bacteria with different modes of growth and different types of cell wall require different regulators to mediate cell growth and division processes. Mycobacteria have both a cell wall structure and a mode of growth that are distinct from well-studied model organisms and use several different regulatory mechanisms. Here, using Mycobacterium smegmatis, we identify and characterize homologs of the conserved cell division regulators FtsL and FtsB, and show that they appear to function similarly to their homologs in Escherichia coli We identify a number of previously undescribed septally localized factors which could be involved in cell wall regulation. One of these, SepIVA, has a DivIVA domain, is required for mycobacterial septation, and is localized to the septum and the intracellular membrane domain. We propose that SepIVA is a regulator of cell wall precursor enzymes that contribute to construction of the septal cross-wall, similar to the putative elongation function of the other mycobacterial DivIVA homolog, Wag31.IMPORTANCE The enzymes that build bacterial cell walls are essential for cell survival but can cause cell lysis if misregulated; thus, their regulators are also essential. The number and nature of these regulators is likely to vary in bacteria that grow in different ways. The mycobacteria are a genus that have a cell wall whose composition and construction vary greatly from those of well-studied model organisms. In this work, we identify and characterize some of the proteins that regulate the mycobacterial cell wall. We find that some of these regulators appear to be functionally conserved with their structural homologs in evolutionarily distant species such as Escherichia coli, but other proteins have critical regulatory functions that may be unique to the actinomycetes.
Collapse
|
28
|
PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis. PLoS Pathog 2017; 13:e1006399. [PMID: 28545104 PMCID: PMC5448819 DOI: 10.1371/journal.ppat.1006399] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/30/2017] [Accepted: 05/04/2017] [Indexed: 11/19/2022] Open
Abstract
Sensing and response to changes in nutrient availability are essential for the lifestyle of environmental and pathogenic bacteria. Serine/threonine protein kinase G (PknG) is required for virulence of the human pathogen Mycobacterium tuberculosis, and its putative substrate GarA regulates the tricarboxylic acid cycle in M. tuberculosis and other Actinobacteria by protein-protein binding. We sought to understand the stimuli that lead to phosphorylation of GarA, and the roles of this regulatory system in pathogenic and non-pathogenic bacteria. We discovered that M. tuberculosis lacking garA was severely attenuated in mice and macrophages and furthermore that GarA lacking phosphorylation sites failed to restore the growth of garA deficient M. tuberculosis in macrophages. Additionally we examined the impact of genetic disruption of pknG or garA upon protein phosphorylation, nutrient utilization and the intracellular metabolome. We found that phosphorylation of GarA requires PknG and depends on nutrient availability, with glutamate and aspartate being the main stimuli. Disruption of pknG or garA caused opposing effects on metabolism: a defect in glutamate catabolism or depletion of intracellular glutamate, respectively. Strikingly, disruption of the phosphorylation sites of GarA was sufficient to recapitulate defects caused by pknG deletion. The results suggest that GarA is a cellular target of PknG and the metabolomics data demonstrate that the function of this signaling system is in metabolic regulation. This function in amino acid homeostasis is conserved amongst the Actinobacteria and provides an example of the close relationship between metabolism and virulence.
Collapse
|
29
|
Dedrick RM, Jacobs-Sera D, Guerrero Bustamante CA, Garlena RA, Mavrich TN, Pope WH, Reyes JCC, Russell DA, Adair T, Alvey R, Bonilla JA, Bricker JS, Brown BR, Byrnes D, Cresawn SG, Davis WB, Dickson LA, Edgington NP, Findley AM, Golebiewska U, Grose JH, Hayes CF, Hughes LE, Hutchison KW, Isern S, Johnson AA, Kenna MA, Klyczek KK, Mageeney CM, Michael SF, Molloy SD, Montgomery MT, Neitzel J, Page ST, Pizzorno MC, Poxleitner MK, Rinehart CA, Robinson CJ, Rubin MR, Teyim JN, Vazquez E, Ware VC, Washington J, Hatfull GF. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2017; 2:16251. [PMID: 28067906 PMCID: PMC5508108 DOI: 10.1038/nmicrobiol.2016.251] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 01/22/2023]
Abstract
Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
Collapse
Affiliation(s)
- Rebekah M. Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Travis N. Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Tamarah Adair
- Department of Biology, Baylor University, Waco, TX 76798
| | - Richard Alvey
- Biology Department, Illinois-Wesleyan University, Bloomington, IL 61702
| | - J. Alfred Bonilla
- Biology Department University of Wisconsin-River Falls, River Falls, WI 54016
| | | | - Bryony R. Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Deanna Byrnes
- Biology Department, Carthage College, Kenosha, WI53140
| | - Steven G. Cresawn
- Biology Department, James Madison University, Harrisonburg, VA 22807
| | - William B. Davis
- School of Molecular Biosciences, Washington State University Pullman, WA 99164
| | - Leon A. Dickson
- Department of Biology, Howard University, Washington, DC 20059
| | | | - Ann M. Findley
- Biology, School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209
| | - Urszula Golebiewska
- Biological Sciences and Geology, Queensborough Community College, Bayside, NY 11364
| | | | - Cory F. Hayes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lee E. Hughes
- Biological Sciences, University of North Texas, Denton, TX 76203
| | - Keith W. Hutchison
- Molecular and Biomedical Sciences, University of Maine, Honors College, Orono, ME 04469
| | - Sharon Isern
- Dept. of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965
| | - Allison A. Johnson
- Biology Department, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Karen K. Klyczek
- Biology Department University of Wisconsin-River Falls, River Falls, WI 54016
| | | | - Scott F. Michael
- Dept. of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965
| | - Sally D. Molloy
- Molecular and Biomedical Sciences, University of Maine, Honors College, Orono, ME 04469
| | | | - James Neitzel
- Biology Department, The Evergreen State College, Olympia, WA 98502
| | - Shallee T. Page
- Division of Environmental and, Biological Sciences, University of Maine-Machias, Machias, ME 04654
| | | | | | - Claire A. Rinehart
- Biology Department, Western Kentucky University, Bowling Green, KY 42101
| | | | - Michael R. Rubin
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736
| | | | - Edwin Vazquez
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736
| | - Vassie C. Ware
- Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
30
|
Botella H, Vaubourgeix J, Lee MH, Song N, Xu W, Makinoshima H, Glickman MS, Ehrt S. Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 2017; 36:536-548. [PMID: 28057704 DOI: 10.15252/embj.201695028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with supravital chemical probes that facilitate imaging of nascent peptidoglycan to demonstrate that during acid stress MarP cleaves the peptidoglycan hydrolase RipA, a process required for RipA's activation. Failure of RipA processing in MarP-deficient cells leads to cell elongation and chain formation, a hallmark of progeny cell separation arrest. Our results suggest that sustaining peptidoglycan hydrolysis, a process required for cell elongation, separation of progeny cells, and cell wall homeostasis in growing cells, may also be essential for Mtb's survival in acidic conditions.
Collapse
Affiliation(s)
- Helene Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Myung Hee Lee
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Naomi Song
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Weizhen Xu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hideki Makinoshima
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael S Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
31
|
Boutte CC, Baer CE, Papavinasasundaram K, Liu W, Chase MR, Meniche X, Fortune SM, Sassetti CM, Ioerger TR, Rubin EJ. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. eLife 2016; 5. [PMID: 27304077 PMCID: PMC4946905 DOI: 10.7554/elife.14590] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance.
Collapse
Affiliation(s)
- Cara C Boutte
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Weiru Liu
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Michael R Chase
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Thomas R Ioerger
- Department of Computer Science, Texas A and M University, Texas, United States
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
32
|
pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol 2016; 1:15019. [PMID: 27571976 DOI: 10.1038/nmicrobiol.2015.19] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis is a major, globally spread, aerosol-transmitted human pathogen, thought to have evolved by clonal expansion from a Mycobacterium canettii-like progenitor. In contrast, extant M. canettii strains are rare, genetically diverse, and geographically restricted mycobacteria of only marginal epidemiological importance. Here, we show that the contrasting evolutionary success of these two groups is linked to loss of lipooligosaccharide biosynthesis and subsequent morphotype changes. Spontaneous smooth-to-rough M. canettii variants were found to be mutated in the polyketide-synthase-encoding pks5 locus and deficient in lipooligosaccharide synthesis, a phenotype restored by complementation. Importantly, these rough variants showed an altered host-pathogen interaction and increased virulence in cellular- and animal-infection models. In one variant, lipooligosaccharide deficiency occurred via homologous recombination between two pks5 genes and removal of the intervening acyltransferase-encoding gene. The resulting single pks5 configuration is similar to that fixed in M. tuberculosis, which is known to lack lipooligosaccharides. Our results suggest that pks5-recombination-mediated bacterial surface remodelling increased virulence, driving evolution from putative generalist mycobacteria towards professional pathogens of mammalian hosts.
Collapse
|
33
|
Petrova ZO, Broussard GW, Hatfull GF. Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection. MICROBIOLOGY-SGM 2015; 161:1539-1551. [PMID: 26066798 DOI: 10.1099/mic.0.000120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of Mycobacterium tuberculosis. Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent M. tuberculosis strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene (43) was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene 43 that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia 43 or the previously identified BPs repressor 33 can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both Mycobacterium smegmatis and M. tuberculosis.
Collapse
Affiliation(s)
- Zaritza O Petrova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory W Broussard
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
34
|
Jastrab JB, Wang T, Murphy JP, Bai L, Hu K, Merkx R, Huang J, Chatterjee C, Ovaa H, Gygi SP, Li H, Darwin KH. An adenosine triphosphate-independent proteasome activator contributes to the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015; 112:E1763-72. [PMID: 25831519 PMCID: PMC4394314 DOI: 10.1073/pnas.1423319112] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required to cause lethal infections in animals. The only pathway known to target proteins for proteasomal degradation in bacteria is pupylation, which is functionally analogous to eukaryotic ubiquitylation. However, evidence suggests that the M. tuberculosis proteasome contributes to pupylation-independent pathways as well. To identify new proteasome cofactors that might contribute to such pathways, we isolated proteins that bound to proteasomes overproduced in M. tuberculosis and found a previously uncharacterized protein, Rv3780, which formed rings and capped M. tuberculosis proteasome core particles. Rv3780 enhanced peptide and protein degradation by proteasomes in an adenosine triphosphate (ATP)-independent manner. We identified putative Rv3780-dependent proteasome substrates and found that Rv3780 promoted robust degradation of the heat shock protein repressor, HspR. Importantly, an M. tuberculosis Rv3780 mutant had a general growth defect, was sensitive to heat stress, and was attenuated for growth in mice. Collectively, these data demonstrate that ATP-independent proteasome activators are not confined to eukaryotes and can contribute to the virulence of one the world's most devastating pathogens.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Tong Wang
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973
| | - J Patrick Murphy
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Lin Bai
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Kuan Hu
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Remco Merkx
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | - Jessica Huang
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
35
|
Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2014; 477:144-154. [PMID: 25466308 DOI: 10.1016/j.virol.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Lynnwood Road, Pretoria 0028, South Africa
| | - Rob Edwards
- Geology, Mathematics, and Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - John H E Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4
| | | | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, KasteelparkArenberg 21 - b2462, Heverlee 3001, Belgium.
| | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2A1.
| |
Collapse
|
36
|
Abstract
Virology encompasses a broad spectrum of topics touching upon many aspects of our everyday lives. However, appreciation of this impact is too often restricted to those who have specialized training and participate in virology research. The Phage Hunters Integrating Research and Education (PHIRE) program and the This Week in Virology (TWiV) podcast seek to bring virology to new audiences through two different approaches—direct involvement of undergraduates in discovering and genomically characterizing bacteriophages (PHIRE) and clear, accessible, and free discussions among experts of all topics in virology (TWiV). Here we discuss these two high-impact programs, the audiences that they serve, their broader impacts, and their future potential.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Vincent Racaniello
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032
| |
Collapse
|
37
|
Marinelli LJ, Hatfull GF, Piuri M. Recombineering: A powerful tool for modification of bacteriophage genomes. BACTERIOPHAGE 2014; 2:5-14. [PMID: 22666652 PMCID: PMC3357384 DOI: 10.4161/bact.18778] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recombineering, a recently developed technique for efficient genetic manipulation of bacteria, is facilitated by phage-derived recombination proteins and has the advantage of using DNA substrates with short regions of homology. This system was first developed in E. coli but has since been adapted for use in other bacteria. It is now widely used in a number of different systems for a variety of purposes, and the construction of chromosomal gene knockouts, deletions, insertions, point mutations, as well as in vivo cloning, mutagenesis of bacterial artificial chromosomes and phasmids, and the construction of genomic libraries has been reported. However, these methods also can be effectively applied to the genetic modification of bacteriophage genomes, in both their prophage and lytically growing states. The ever-growing collection of fully sequenced bacteriophages raises more questions than they answer, including the unknown functions of vast numbers of genes with no known homologs and of unknown function. Recombineering of phage genomes is central to addressing these questions, enabling the simple construction of mutants, determination of gene essentiality, and elucidation of gene function. In turn, advances in our understanding of phage genomics should present similar recombineering tools for dissecting a multitude of other genetically naïve bacterial systems.
Collapse
|
38
|
Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J Bacteriol 2014; 196:3589-97. [PMID: 25092027 DOI: 10.1128/jb.01801-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical -10 hexamer recognized by SigA, and mutants with mutations to the sequence 5'-TATAMT had the greatest activities. It does not contain a 5'-TGN-extended -10 sequence, although mutants with mutations creating an extended -10 sequence had substantially increased promoter activity. Mutations in the -35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the -35 hexamer differentially affected promoter activity, depending on the -10 and extended -10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.
Collapse
|
39
|
Yang F, Tan Y, Liu J, Liu T, Wang B, Cao Y, Qu Y, Lithgow T, Tan S, Zhang T. Efficient construction of unmarked recombinant mycobacteria using an improved system. J Microbiol Methods 2014; 103:29-36. [DOI: 10.1016/j.mimet.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
40
|
Abstract
ABSTRACT
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
|
41
|
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr 2014; 2:1-36. [PMID: 25328854 PMCID: PMC4199240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
42
|
Singh S, Rockenbach K, Dedrick RM, VanDemark AP, Hatfull GF. Cross-talk between diverse serine integrases. J Mol Biol 2013; 426:318-31. [PMID: 24161951 DOI: 10.1016/j.jmb.2013.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/06/2023]
Abstract
Phage-encoded serine integrases are large serine recombinases that mediate integrative and excisive site-specific recombination of temperate phage genomes. They are well suited for use in heterologous systems and for synthetic genetic circuits as the attP and attB attachment sites are small (<50 bp), there are no host factor or DNA supercoiling requirements, and they are strongly directional, doing only excisive recombination in the presence of a recombination directionality factor. Combining different recombinases that function independently and without cross-talk to construct complex synthetic circuits is desirable, and several different serine integrases are available. However, we show here that these functions are not reliably predictable, and we describe a pair of serine integrases encoded by mycobacteriophages Bxz2 and Peaches with unusual and unpredictable specificities. The integrases share only 59% amino acid sequence identity and the attP sites have fewer than 50% shared bases, but they use the same attB site and there is non-reciprocal cross-talk between the two systems. The DNA binding specificities do not result from differences in specific DNA contacts but from the constraints imposed by the configuration of the component half-sites within each of the attachment site DNAs.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15241, USA
| | - Kate Rockenbach
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15241, USA
| | - Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15241, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15241, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15241, USA.
| |
Collapse
|
43
|
Suppressor analysis reveals a role for SecY in the SecA2-dependent protein export pathway of Mycobacteria. J Bacteriol 2013; 195:4456-65. [PMID: 23913320 DOI: 10.1128/jb.00630-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic membrane, with the SecA ATPase playing a central role in the process. Mycobacteria are part of a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, specialized SecA (SecA2). The SecA2-dependent pathway exports a small subset of proteins and is required for Mycobacterium tuberculosis virulence. The mechanism by which SecA2 drives export of proteins across the cytoplasmic membrane remains poorly understood. Here we performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the model mycobacterium Mycobacterium smegmatis to better understand the pathway used by SecA2 to export proteins. Two extragenic suppressor mutations were identified as mapping to the promoter region of secY, which encodes the central component of the canonical Sec export channel. These suppressor mutations increased secY expression, and this effect was sufficient to alleviate the secA2 K129R phenotype. We also discovered that the level of SecY protein was greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors. Furthermore, the level of SecY in a suppressor strongly correlated with the degree of suppression. Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an integrated system in which SecA2 works with SecY and the canonical Sec translocase to export proteins.
Collapse
|
44
|
Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol 2013. [PMID: 23851082 DOI: 10.1128/aem.01016-13; 10.1128/aem.01016-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of affinity tags to bacteriophage particles facilitates a variety of applications, including vaccine construction and diagnosis of bacterial infections. Addition of tags to phage capsids is desirable, as modification of the tails can lead to poor adsorption and loss of infectivity. Although tags can readily be included as fusions to head decoration proteins, many phages do not have decoration proteins as virion components. The addition of a small (10-amino-acid) Strep-tag II (STAG II) to the mycobacteriophage TM4 capsid subunit, gp9, was not tolerated as a genetically homogenous recombinant phage but could be incorporated into the head by growth of wild-type phage on a host expressing the capsid-STAG fusion. Particles with capsids composed of wild-type and STAG-tagged subunit mixtures could be grown to high titers, showed good infectivities, and could be used to isolate phage-bacterium complexes. Preparation of a STAG-labeled fluoromycobacteriophage enabled capture of bacterial complexes and identification of infected bacteria by fluorescence.
Collapse
|
45
|
Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol 2013; 79:5608-15. [PMID: 23851082 DOI: 10.1128/aem.01016-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of affinity tags to bacteriophage particles facilitates a variety of applications, including vaccine construction and diagnosis of bacterial infections. Addition of tags to phage capsids is desirable, as modification of the tails can lead to poor adsorption and loss of infectivity. Although tags can readily be included as fusions to head decoration proteins, many phages do not have decoration proteins as virion components. The addition of a small (10-amino-acid) Strep-tag II (STAG II) to the mycobacteriophage TM4 capsid subunit, gp9, was not tolerated as a genetically homogenous recombinant phage but could be incorporated into the head by growth of wild-type phage on a host expressing the capsid-STAG fusion. Particles with capsids composed of wild-type and STAG-tagged subunit mixtures could be grown to high titers, showed good infectivities, and could be used to isolate phage-bacterium complexes. Preparation of a STAG-labeled fluoromycobacteriophage enabled capture of bacterial complexes and identification of infected bacteria by fluorescence.
Collapse
|
46
|
Abstract
The study of mycobacteriophages provides insights into viral diversity and evolution, as well as the genetics and physiology of their pathogenic hosts. Genomic characterization of 80 mycobacteriophages reveals a high degree of genetic diversity and an especially rich reservoir of interesting genes. These include a vast number of genes of unknown function that do not match known database entries and many genes whose functions can be predicted but which are not typically found as components of phage genomes. Thus many mysteries surround these genomes, such as why the genes are there, what do they do, how are they expressed and regulated, how do they influence the physiology of the host bacterium, and what forces of evolution directed them to their genomic homes? Although the genetic diversity and novelty of these phages is full of intrigue, it is a godsend for the mycobacterial geneticist, presenting an abundantly rich toolbox that can be exploited to devise new and effective ways for understanding the genetics and physiology of human tuberculosis. As the number of sequenced genomes continues to grow, their mysteries continue to thicken, and the time has come to learn more about the secret lives of mycobacteriophages.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennslyvania, USA
| |
Collapse
|
47
|
Dedrick RM, Marinelli LJ, Newton GL, Pogliano K, Pogliano J, Hatfull GF. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 2013; 88:577-89. [PMID: 23560716 DOI: 10.1111/mmi.12210] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 01/21/2023]
Abstract
Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny.
Collapse
Affiliation(s)
- Rebekah M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
48
|
Stella EJ, Franceschelli JJ, Tasselli SE, Morbidoni HR. Analysis of novel mycobacteriophages indicates the existence of different strategies for phage inheritance in mycobacteria. PLoS One 2013; 8:e56384. [PMID: 23468864 PMCID: PMC3585329 DOI: 10.1371/journal.pone.0056384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
Mycobacteriophages have been essential in the development of mycobacterial genetics through their use in the construction of tools for genetic manipulation. Due to the simplicity of their isolation and variety of exploitable molecular features, we searched for and isolated 18 novel mycobacteriophages from environmental samples collected from several geographic locations. Characterization of these phages did not differ from most of the previously described ones in the predominant physical features (virion size in the 100–400 nm, genome size in the 50–70 kbp, morphological features compatible with those corresponding to the Siphoviridae family), however novel characteristics for propagation were noticed. Although all the mycobacteriophages propagated at 30°C, eight of them failed to propagate at 37°C. Since some of our phages yielded pinpoint plaques, we improved plaque detection by including sub-inhibitory concentrations of isoniazid or ampicillin-sulbactam in the culture medium. Thus, searches for novel mycobacteriophages at low temperature and in the presence of these drugs would allow for the isolation of novel members that would otherwise not be detected. Importantly, while eight phages lysogenized Mycobacterium smegmatis, four of them were also capable of lysogenizing Mycobacterium tuberculosis. Analysis of the complete genome sequence obtained for twelve mycobacteriophages (the remaining six rendered partial genomic sequences) allowed for the identification of a new singleton. Surprisingly, sequence analysis revealed the presence of parA or parA/parB genes in 7/18 phages including four that behaved as temperate in M. tuberculosis. In summary, we report here the isolation and preliminary characterization of mycobacteriophages that bring new information to the field.
Collapse
Affiliation(s)
- Emma J. Stella
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J. Franceschelli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sabrina E. Tasselli
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R. Morbidoni
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
49
|
Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, Warner DF. A vitamin B₁₂ transporter in Mycobacterium tuberculosis. Open Biol 2013; 3:120175. [PMID: 23407640 PMCID: PMC3603451 DOI: 10.1098/rsob.120175] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin B12-dependent enzymes function in core biochemical pathways in Mycobacterium tuberculosis, an obligate pathogen whose metabolism in vivo is poorly understood. Although M. tuberculosis can access vitamin B12in vitro, it is uncertain whether the organism is able to scavenge B12 during host infection. This question is crucial to predictions of metabolic function, but its resolution is complicated by the absence in the M. tuberculosis genome of a direct homologue of BtuFCD, the only bacterial B12 transport system described to date. We applied genome-wide transposon mutagenesis to identify M. tuberculosis mutants defective in their ability to use exogenous B12. A small proportion of these mapped to Rv1314c, identifying the putative PduO-type ATP : co(I)rrinoid adenosyltransferase as essential for B12 assimilation. Most notably, however, insertions in Rv1819c dominated the mutant pool, revealing an unexpected function in B12 acquisition for an ATP-binding cassette (ABC)-type protein previously investigated as the mycobacterial BacA homologue. Moreover, targeted deletion of Rv1819c eliminated the ability of M. tuberculosis to transport B12 and related corrinoids in vitro. Our results establish an alternative to the canonical BtuCD-type system for B12 uptake in M. tuberculosis, and elucidate a role in B12 metabolism for an ABC protein implicated in chronic mycobacterial infection.
Collapse
Affiliation(s)
- Krishnamoorthy Gopinath
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | | | | | | | | | | | | |
Collapse
|
50
|
Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Appl Environ Microbiol 2013; 79:1718-29. [PMID: 23315736 DOI: 10.1128/aem.03695-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli-mycobacterium shuttle vectors are important tools for gene expression and gene replacement in mycobacteria. However, most of the currently available vectors are limited in their use because of the lack of extended multiple cloning sites (MCSs) and convenience of appending an epitope tag(s) to the cloned open reading frames (ORFs). Here we report a new series of vectors that allow for the constitutive and regulatable expression of proteins, appended with peptide tag sequences at their N and C termini, respectively. The applicability of these vectors is demonstrated by the constitutive and induced expression of the Mycobacterium tuberculosis pknK gene, coding for protein kinase K, a serine-threonine protein kinase. Furthermore, a suicide plasmid with expanded MCS for creating gene replacements, a plasmid for chromosomal integrations at the commonly used L5 attB site, and a hypoxia-responsive vector, for expression of a gene(s) under hypoxic conditions that mimic latency, have also been created. Additionally, we have created a vector for the coexpression of two proteins controlled by two independent promoters, with each protein being in fusion with a different tag. The shuttle vectors developed in the present study are excellent tools for the analysis of gene function in mycobacteria and are a valuable addition to the existing repertoire of vectors for mycobacterial research.
Collapse
|