1
|
Wang X, Yang Q, Haringa C, Wang Z, Chu J, Zhuang Y, Wang G. An industrial perspective on metabolic responses of Penicillium chrysogenum to periodic dissolved oxygen feast-famine cycles in a scale-down system. Biotechnol Bioeng 2024; 121:3076-3098. [PMID: 39382054 DOI: 10.1002/bit.28782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-down setup based on dynamic feast/famine regime (150 s) that leads to repetitive cycles with rapid changes in DO availability in glucose-limited chemostat cultures of Penicillium chrysogenum. Such DO feast/famine regime induced a stable and repetitive pattern with a reproducible metabolic response in time, and the dynamic response of intracellular metabolites featured specific differences in terms of both coverage and magnitude in comparison to other dynamic conditions, for example, substrate feast/famine cycles. Remarkably, intracellular sugar polyols were considerably increased as the hallmark metabolites along with a dynamic and higher redox state (NADH/NAD+) of the cytosol. Despite the increased availability of NADPH for penicillin production under the oscillatory DO conditions, this positive effect may be counteracted by the decreased ATP supply. Moreover, it is interesting to note that not only the penicillin productivity was reduced under such oscillating DO conditions, but also that of the unrecyclable byproduct ortho-hydroxyphenyl acetic acid and degeneration of penicillin productivity. Furthermore, dynamic flux profiles showed the most pronounced variations in central carbon metabolism, amino acid (AA) metabolism, energy metabolism and fatty acid metabolism upon the DO oscillation. Taken together, the metabolic responses of P. chrysogenum to DO gradients reported here are important for elucidating metabolic regulation mechanisms, improving bioreactor design and scale-up procedures as well as for constructing robust cell strains to cope with heterogenous industrial culture conditions.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Cees Haringa
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
García-Estrada C, Martín JF, Cueto L, Barreiro C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes (Basel) 2020; 11:E712. [PMID: 32604893 PMCID: PMC7348727 DOI: 10.3390/genes11060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Penicillin biosynthesis by Penicillium chrysogenum is one of the best-characterized biological processes from the genetic, molecular, biochemical, and subcellular points of view. Several omics studies have been carried out in this filamentous fungus during the last decade, which have contributed to gathering a deep knowledge about the molecular mechanisms underlying improved productivity in industrial strains. The information provided by these studies is extremely useful for enhancing the production of penicillin or other bioactive secondary metabolites by means of Biotechnology or Synthetic Biology.
Collapse
Affiliation(s)
- Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Juan F. Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain;
| | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain
| |
Collapse
|
3
|
Barreiro C, García-Estrada C. Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production. J Proteomics 2018; 198:119-131. [PMID: 30414515 DOI: 10.1016/j.jprot.2018.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 01/29/2023]
Abstract
Discovery, industrial production and clinical applications of penicillin, together with scientific findings on penicillin biosynthesis and its complex regulation, are model milestones of the historical evolution of the most recognized 'magic bullet' against microbial infections available in the worldwide market. Thousands of tons of penicillin produced nowadays are the result of a huge number of technical, industrial and scientific tackled and solved challenges. This combination of, sometimes unsuspected, findings has given Proteomics the chance to support the understanding of the physiology of the high-producing fungal strains and the development of enhanced mutants by means of inverse engineering. Thus, this review, which is part of the special issue entitled "A Tribute to J. Proteomics on its 10th Anniversary", describes how Proteomics has contributed to characterize different aspects related to penicillin production in Penicillium chrosogenum. It covers from global proteome characterizations (intracellular, extracellular and microbodies) to proteome-wide comparative analyses between different penicillin-producing mutant strains and conditions, paying special attention to the methodologies used, as well as to the most important outcomes. As a result, a guide of Proteomics approaches applied to the characterization of penicillin production by P. chrysogenum is detailed in the birthday of the Fleming's most relevant finding. SIGNIFICANCE: Although the discovery of penicillin is celebrating the 90th birthday and its clinical application is worldwide recognized, in fact, semisynthetic penicillins are still one of the most prescribed antibiotics, only the arrival of the post-genomic era during the first decade of the 21st century, and more precisely the Proteomics approaches, have contributed to unveil the industrial secrets behind penicillin production. This review provides relevant information, based on proteomics studies, about the molecular mechanisms responsible for increased penicillin titres, and therefore, may represent a clear model of inverse engineering in microorganisms.
Collapse
Affiliation(s)
- Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain.
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
4
|
Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor. J Proteomics 2018; 187:243-259. [DOI: 10.1016/j.jprot.2018.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
|
5
|
Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation. Appl Biochem Biotechnol 2016; 179:788-804. [DOI: 10.1007/s12010-016-2031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
6
|
Helmel M, Posch A, Herwig C, Allmaier G, Marchetti-Deschmann M. Proteome profiling illustrated by a large-scale fed-batch fermentation of Penicillium chrysogenum. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Recent advances in the biosynthesis of penicillins, cephalosporins and clavams and its regulation. Biotechnol Adv 2013; 31:287-311. [DOI: 10.1016/j.biotechadv.2012.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/23/2022]
|
8
|
Zhao Z, Kuijvenhoven K, van Gulik WM, Heijnen JJ, van Winden WA, Verheijen PJT. Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol. Appl Microbiol Biotechnol 2011; 89:63-72. [PMID: 20809073 PMCID: PMC3016204 DOI: 10.1007/s00253-010-2851-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 11/02/2022]
Abstract
The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary (13)C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602-618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD(+) dependent. Metabolic modeling shows that changing the NAD(+)-aldehyde dehydrogenase to NADP(+)-aldehyde dehydrogenase can increase the penicillin yield on substrate.
Collapse
Affiliation(s)
- Zheng Zhao
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Karel Kuijvenhoven
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | - Peter J. T. Verheijen
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| |
Collapse
|
9
|
Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 2010; 9:2729-44. [PMID: 20823121 DOI: 10.1074/mcp.m110.001412] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.
Collapse
Affiliation(s)
- Mohammad-Saeid Jami
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Gras DE, Silveira HC, Peres NT, Sanches PR, Martinez-Rossi NM, Rossi A. Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage. Microbiol Res 2009; 164:658-64. [DOI: 10.1016/j.micres.2008.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/21/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
11
|
Thykaer J, Rueksomtawin K, Noorman H, Nielsen J. Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum. J Biotechnol 2009; 139:280-2. [PMID: 19167440 DOI: 10.1016/j.jbiotec.2008.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 09/09/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
Abstract
New morphological aspects of Penicillium chrysogenum were found during physiological characterisation of two NADPH-dependent glutamate dehydrogenase mutant strains. A morphological characterisation of the previously constructed strains, together with the two beta-lactam producing industrial recipient strains, was conducted. The reference strains showed a compact structure with highly branched hyphal elements whereas the morphology of the DeltagdhA strains consisting of long elongated hyphal elements with few branches. On solid medium, the hyphal growth unit (length) increased from an average of 47 microm tip(-1) in the reference strains to 117 microm tip(-1) in the DeltagdhA strains and in submerged cultures a decrease of 18% in branching frequency was measured due to the gdhA deletion. P. chrysogenum Wis 54-1255, the ancestor of most production strains was also characterised and this strain showed morphology similar to the industrial strains. Interestingly, the constructed strains showed morphology similar to wild type Aspergillus nidulans another species carrying the penicillin biosynthetic cluster. Thus, the results showed that elimination of glutamate dehydrogenase activity in high producing strains of P. chrysogenum has a radical impact on morphology.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Building 223, DK-2800 Kgs., Lyngby, Denmark
| | | | | | | |
Collapse
|