1
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
2
|
Mu T, Lu ZM, Wang WW, Feng H, Jin Y, Ding Q, Wang LF. Helicobacter pylori intragastric colonization and migration: Endoscopic manifestations and potential mechanisms. World J Gastroenterol 2023; 29:4616-4627. [PMID: 37662858 PMCID: PMC10472897 DOI: 10.3748/wjg.v29.i30.4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
After being ingested and entering the human stomach, Helicobacter pylori (H. pylori) adopts several effective strategies to adhere to and colonize the gastric mucosa and move to different regions of the stomach to obtain more nutrients and escape from the harsher environments of the stomach, leading to acute infection and chronic gastritis, which is the basis of malignant gastric tumors. The endoscopic manifestations and pathological features of H. pylori infection are diverse and vary with the duration of infection. In this review, we describe the endoscopic manifestations of each stage of H. pylori gastritis and then reveal the potential mechanisms of bacterial intragastric colonization and migration from the perspective of endoscopists to provide direction for future research on the effective therapy and management of H. pylori infection.
Collapse
Affiliation(s)
- Tong Mu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Zhi-Ming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Wen-Wen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Hua Feng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yan Jin
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Li-Fen Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
3
|
Somiah T, Gebremariam HG, Zuo F, Smirnova K, Jonsson AB. Lactate causes downregulation of Helicobacter pylori adhesin genes sabA and labA while dampening the production of proinflammatory cytokines. Sci Rep 2022; 12:20064. [PMID: 36414643 PMCID: PMC9681763 DOI: 10.1038/s41598-022-24311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation induced by Helicobacter pylori is strongly associated with gastric cancer development, which is influenced by both bacterial virulence and host genetics. The sialic acid-binding adhesin SabA and the MUC5AC-binding adhesin LabA are important H. pylori virulence factors that facilitate adhesion of the bacterium, which is a crucial step in colonization. Lactate utilization has been reported to play a key role in the pathogenicity of different bacterial species. However, this is poorly understood in H. pylori. In this study, we investigated the effect of lactate on H. pylori adhesin gene expression and the regulation of host inflammatory cytokines. We show that the bacterial adhesins SabA and LabA were downregulated at the transcriptional level during incubation of H. pylori with lactate. Downregulation of sabA required the involvement of the two-component system ArsRS, while labA was regulated via the CheA/CheY system, indicating differences in the regulation of these genes in response to lactate. The levels of the proinflammatory cytokines TNF and IL-6 in H. pylori-stimulated macrophages were reduced when lactate was present. Interestingly, glucose did not prevent the secretion of these cytokines. Taken together, our data suggest that lactate affects H. pylori adhesin gene expression and the host response upon infection.
Collapse
Affiliation(s)
- Tanvi Somiah
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Hanna G. Gebremariam
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Fanglei Zuo
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Ksenija Smirnova
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Ann-Beth Jonsson
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| |
Collapse
|
4
|
Teng KW, Hsieh KS, Hung JS, Wang CJ, Liao EC, Chen PC, Lin YH, Wu DC, Lin CH, Wang WC, Chan HL, Huang SK, Kao MC. Helicobacter pylori employs a general protein glycosylation system for the modification of outer membrane adhesins. Gut Microbes 2022; 14:2130650. [PMID: 36206406 PMCID: PMC9553153 DOI: 10.1080/19490976.2022.2130650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Helicobacter pylori infection is associated with the development of several gastric diseases including gastric cancer. To reach a long-term colonization in the host stomach, H. pylori employs multiple outer membrane adhesins for binding to the gastric mucosa. However, due to the redundancy of adhesins that complement the adhesive function of bacteria, targeting each individual adhesin alone usually achieves nonideal outcomes for preventing bacterial adhesion. Here, we report that key adhesins AlpA/B and BabA/B in H. pylori are modified by glycans and display a two-step molecular weight upshift pattern from the cytoplasm to the inner membrane and from the inner membrane to the outer membrane. Nevertheless, this upshift pattern is missing when the expression of some enzymes related to lipopolysaccharide (LPS) biosynthesis, including the LPS O-antigen assembly and ligation enzymes WecA, Wzk, and WaaL, is disrupted, indicating that the underlying mechanisms and the involved enzymes for the adhesin glycosylation are partially shared with the LPS biosynthesis. Loss of the adhesin glycosylation not only reduces the protease resistance and the stability of the tested adhesins but also changes the adhesin-binding ability. In addition, mutations in the LPS biosynthesis cause a significant reduction in bacterial adhesion in the in vitro cell-line model. The current findings reveal that H. pylori employs a general protein glycosylation system related to LPS biosynthesis for adhesin modification and its biological significance. The enzymes required for adhesin glycosylation rather than the adhesins themselves are potentially better drug targets for preventing or treating H. pylori infection.
Collapse
Affiliation(s)
- Kai-Wen Teng
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Siang Hsieh
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ji-Shiuan Hung
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Jen Wang
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Chun Chen
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Hsuan Lin
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Medical Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,Department of Life Science, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan,CONTACT Mou-Chieh Kao Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Casado J, Lanas Á, González A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front Cell Infect Microbiol 2022; 12:977944. [PMID: 36093179 PMCID: PMC9449129 DOI: 10.3389/fcimb.2022.977944] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory systems (TCRS) are ubiquitous signal transduction mechanisms evolved by bacteria for sensing and adapting to the constant changes that occur in their environment. Typically consisting of two types of proteins, a membrane sensor kinase and an effector cytosolic response regulator, the TCRS modulate via transcriptional regulation a plethora of key physiological processes, thereby becoming essential for bacterial viability and/or pathogenicity and making them attractive targets for novel antibacterial drugs. Some members of the phylum Campylobacterota (formerly Epsilonproteobacteria), including Helicobacter pylori and Campylobacter jejuni, have been classified by WHO as “high priority pathogens” for research and development of new antimicrobials due to the rapid emergence and dissemination of resistance mechanisms against first-line antibiotics and the alarming increase of multidrug-resistant strains worldwide. Notably, these clinically relevant pathogens express a variety of TCRS and orphan response regulators, sometimes unique among its phylum, that control transcription, translation, energy metabolism and redox homeostasis, as well as the expression of relevant enzymes and virulence factors. In the present mini-review, we describe the signalling mechanisms and functional diversity of TCRS in H. pylori and C. jejuni, and provide an overview of the most recent findings in the use of these microbial molecules as potential novel therapeutic targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- *Correspondence: Andrés González,
| |
Collapse
|
6
|
Loh JT, Shuman JHB, Lin AS, Favret N, Piazuelo MB, Mallal S, Chopra A, McClain MS, Cover TL. Positive Selection of Mutations in the Helicobacter pylori katA 5' Untranslated Region in a Mongolian Gerbil Model of Gastric Disease. Infect Immun 2022; 90:e0000422. [PMID: 35652648 PMCID: PMC9302185 DOI: 10.1128/iai.00004-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.
Collapse
Affiliation(s)
- John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer H. B. Shuman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie Favret
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon Mallal
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennesse, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Sijmons D, Guy AJ, Walduck AK, Ramsland PA. Helicobacter pylori and the Role of Lipopolysaccharide Variation in Innate Immune Evasion. Front Immunol 2022; 13:868225. [PMID: 35634347 PMCID: PMC9136243 DOI: 10.3389/fimmu.2022.868225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori is an important human pathogen that infects half the human population and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several mechanisms to overcome the innate and adaptive immune systems. H. pylori can modulate interleukin (IL) secretion and innate immune cell function by the action of several virulence factors such as VacA, CagA and the type IV secretion system. Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the function of these cells, reducing the secretion of immune signaling molecules, and influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells. Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase variation and contains human blood group carbohydrate determinants such as the Lewis system antigens, which are proposed to be involved in molecular mimicry of the host. Lastly, the H. pylori group of outer membrane proteins such as BabA play an important role in attachment and interaction with host Lewis and other carbohydrate antigens. This review examines the various mechanisms that H. pylori utilises to evade the innate immune system as well as discussing how the structure of the H. pylori LPS plays a role in immune evasion.
Collapse
Affiliation(s)
- Daniel Sijmons
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Andrew J. Guy
- School of Science, RMIT University, Melbourne, VIC, Australia
- ZiP Diagnostics, Collingwood, VIC, Australia
| | - Anna K. Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Paul A. Ramsland
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
- *Correspondence: Paul A. Ramsland,
| |
Collapse
|
8
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6570571. [DOI: 10.1093/femsle/fnac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022] Open
|
9
|
Valdez-Salazar HA, Ares MA, Fernández FJ, Ibarra JA, Torres J, Bustamante VH, De la Cruz MA. Long-chain fatty acids alter transcription of Helicobacter pylori virulence and regulatory genes. PeerJ 2021; 9:e12270. [PMID: 34760355 PMCID: PMC8567857 DOI: 10.7717/peerj.12270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Infection with Helicobacter pylori is one of the most important risk factors for developing gastric cancer (GC). The type IV secretion system (T4SS) encoded in the cag pathogenicity island is the main virulence factor of H. pylori associated with GC. Additionally, other virulence factors have been shown to play a role in the H. pylori virulence, such as vacuolizing cytotoxin (VacA), urease, flagella, and adhesins. Long-chain fatty acids (LCFAs) are signaling molecules that affect the transcription of virulence genes in several pathogenic bacteria such as Salmonella enterica, Vibrio cholerae, Pseudomonas aeruginosa and Mycobacterium tuberculosis. However, the effect of LCFAs on the transcription of H. pylori virulence and regulatory genes remains unknown. Here we analyzed whether the transcription of virulence genes that encode T4SS and cellular envelope components, flagellins, adhesins, toxins, urease, as well as the transcription of different regulatory genes of the H. pylori strain 26695, are altered by the presence of five distinct LCFAs: palmitic, stearic, oleic, linoleic, and linolenic acids. Palmitic and oleic acids up-regulated the transcription of most of the virulence genes tested, including cagL, cagM, flaB, sabA, mraY and vacA, as well as that of the genes encoding the transcriptional regulators NikR, Fur, CheY, ArsR, FlgR, HspR, HsrA, Hup, and CrdR. In contrast, the other LCFAs differentially affected the transcription of the virulence and regulatory genes assessed. Our data show that LCFAs can act as signaling molecules that control the transcription of the H. pylori virulome.
Collapse
Affiliation(s)
- Hilda A Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS., Universidad Autónoma Metropolitana (UAM) Iztapalapa, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco J Fernández
- Laboratorio de Ingeniería Genética y Metabolismo Secundario, Departamento de Biotecnología, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - J Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
10
|
Helicobacter pylori BabA-SabA Key Roles in the Adherence Phase: The Synergic Mechanism for Successful Colonization and Disease Development. Toxins (Basel) 2021; 13:toxins13070485. [PMID: 34357957 PMCID: PMC8310295 DOI: 10.3390/toxins13070485] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Helicobacter pylori is a pathogenic microorganism that successfully inhabits the human stomach, colonizing it by producing several virulence factors responsible for preventing host self-defense mechanisms. The adherence mechanism to gastric mucosal tissue is one of the most important processes for effective colonization in the stomach. The blood group antigen-binding adhesion (BabA) and sialic acid-binding adherence (SabA) are two H. pylori outer membrane proteins able to interact with antigens in the gastroduodenal tract. H. pylori possesses several mechanisms to control the regulation of both BabA and SabA in either the transcriptional or translational level. BabA is believed to be the most important protein in the early infection phase due to its ability to interact with various Lewis antigens, whereas SabA interaction with sialylated Lewis antigens may prove important for the adherence process in the inflamed gastric mucosal tissue in the ongoing-infection phase. The adherence mechanisms of BabA and SabA allow H. pylori to anchor in the gastric mucosa and begin the colonization process.
Collapse
|
11
|
Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infect Immun 2021; 89:IAI.00597-20. [PMID: 33526561 DOI: 10.1128/iai.00597-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Collapse
|
12
|
Xu X, Chen J, Huang X, Feng S, Zhang X, She F, Wen Y. The Role of a Dipeptide Transporter in the Virulence of Human Pathogen, Helicobacter pylori. Front Microbiol 2021; 12:633166. [PMID: 33732225 PMCID: PMC7959749 DOI: 10.3389/fmicb.2021.633166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori harbors a dipeptide (Dpp) transporter consisting of a substrate-binding protein (DppA), two permeases (DppB and C), and two ATPases (DppD and F). The Dpp transporter is responsible for the transportation of dipeptides and short peptides. We found that its expression is important for the growth of H. pylori. To understand the role of the Dpp transporter in the pathogenesis of H. pylori, the expression of virulence factors and H. pylori-induced IL-8 production were investigated in H. pylori wild-type and isogenic H. pylori Dpp transporter mutants. We found that expression of CagA was downregulated, while expression of type 4 secretion system (T4SS) components was upregulated in Dpp transporter mutants. The DppA mutant strain expressed higher levels of outer membrane proteins (OMPs), including BabA, HopZ, OipA, and SabA, and showed a higher adhesion level to gastric epithelial AGS cells compared with the H. pylori 26695 wild-type strain. After infection of AGS cells, H. pylori ΔdppA induced a higher level of NF-κB activation and IL-8 production compared with wild-type. These results suggested that in addition to supporting the growth of H. pylori, the Dpp transporter causes bacteria to alter the expression of virulence factors and reduces H. pylori-induced NF-κB activation and IL-8 production in gastric epithelial cells.
Collapse
Affiliation(s)
- Xiaohong Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Junwei Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoxing Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori. Mol Cell 2020; 80:210-226.e7. [PMID: 33002424 DOI: 10.1016/j.molcel.2020.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens regulate their virulence genes via phase variation, whereby length-variable simple sequence repeats control the transcription or coding potential of those genes. Here, we have exploited this relationship between DNA structure and physiological function to discover a globally acting small RNA (sRNA) regulator of virulence in the gastric pathogen Helicobacter pylori. Our study reports the first sRNA whose expression is affected by a variable thymine (T) stretch in its promoter. We show the sRNA post-transcriptionally represses multiple major pathogenicity factors of H. pylori, including CagA and VacA, by base pairing to their mRNAs. We further demonstrate transcription of the sRNA is regulated by the nickel-responsive transcriptional regulator NikR (thus named NikS for nickel-regulated sRNA), thereby linking virulence factor regulation to nickel concentrations. Using in-vitro infection experiments, we demonstrate NikS affects host cell internalization and epithelial barrier disruption. Together, our results show NikS is a phase-variable, post-transcriptional global regulator of virulence properties in H. pylori.
Collapse
Affiliation(s)
- Sara K Eisenbart
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Mona Alzheimer
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sandy R Pernitzsch
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stephanie Stahl
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Cynthia M Sharma
- Chair of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
14
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Sancho J, Lanas Á. Small Molecule Inhibitors of the Response Regulator ArsR Exhibit Bactericidal Activity against Helicobacter pylori. Microorganisms 2020; 8:E503. [PMID: 32244717 PMCID: PMC7232201 DOI: 10.3390/microorganisms8040503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is considered the most prevalent bacterial pathogen in humans. The increasing antibiotic resistance evolved by this microorganism has raised alarm bells worldwide due to the significant reduction in the eradication rates of traditional standard therapies. A major challenge in this antibiotic resistance crisis is the identification of novel microbial targets whose inhibitors can overcome the currently circulating resistome. In the present study, we have validated the use of the essential response regulator ArsR as a novel and promising therapeutic target against H. pylori infections. A high-throughput screening of a repurposing chemical library using a fluorescence-based thermal shift assay identified several ArsR binders. At least four of these low-molecular weight compounds noticeably inhibited the DNA binding activity of ArsR and showed bactericidal effects against antibiotic-resistant strains of H. pylori. Among the ArsR inhibitors, a human secondary bile acid, lithocholic acid, quickly destroyed H. pylori cells and exhibited partial synergistic action in combination with clarithromycin or levofloxacin, while the antimicrobial effect of this compound against representative members of the normal human microbiota such as Escherichia coli and Staphylococcus epidermidis appeared irrelevant. Our results enhance the battery of novel therapeutic tools against refractory infections caused by multidrug-resistant H. pylori strains.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
15
|
Ansari S, Yamaoka Y. Helicobacter pylori Virulence Factors Exploiting Gastric Colonization and its Pathogenicity. Toxins (Basel) 2019; 11:E677. [PMID: 31752394 PMCID: PMC6891454 DOI: 10.3390/toxins11110677] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori colonizes the gastric epithelial cells of at least half of the world's population, and it is the strongest risk factor for developing gastric complications like chronic gastritis, ulcer diseases, and gastric cancer. To successfully colonize and establish a persistent infection, the bacteria must overcome harsh gastric conditions. H. pylori has a well-developed mechanism by which it can survive in a very acidic niche. Despite bacterial factors, gastric environmental factors and host genetic constituents together play a co-operative role for gastric pathogenicity. The virulence factors include bacterial colonization factors BabA, SabA, OipA, and HopQ, and the virulence factors necessary for gastric pathogenicity include the effector proteins like CagA, VacA, HtrA, and the outer membrane vesicles. Bacterial factors are considered more important. Here, we summarize the recent information to better understand several bacterial virulence factors and their role in the pathogenic mechanism.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur 44200, Chitwan, Nepal;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Global Oita Medical Advanced Research Center for Health, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, 2002 Holcombe Blvd., Houston, TX 77030, USA
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabaru, Sabah 88400, Malaysia
| |
Collapse
|
16
|
Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem Soc Trans 2019; 47:1131-1141. [PMID: 31341035 DOI: 10.1042/bst20180633] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Phase-variation of genes is defined as the rapid and reversible switching of expression - either ON-OFF switching or the expression of multiple allelic variants. Switching of expression can be achieved by a number of different mechanisms. Phase-variable genes typically encode bacterial surface structures, such as adhesins, pili, and lipooligosaccharide, and provide an extra contingency strategy in small-genome pathogens that may lack the plethora of 'sense-and-respond' gene regulation systems found in other organisms. Many bacterial pathogens also encode phase-variable DNA methyltransferases that control the expression of multiple genes in systems called phasevarions (phase-variable regulons). The presence of phase-variable genes allows a population of bacteria to generate a number of phenotypic variants, some of which may be better suited to either colonising certain host niches, surviving a particular environmental condition and/or evading an immune response. The presence of phase-variable genes complicates the determination of an organism's stably expressed antigenic repertoire; many phase-variable genes are highly immunogenic, and so would be ideal vaccine candidates, but unstable expression due to phase-variation may allow vaccine escape. This review will summarise our current understanding of phase-variable genes that switch expression by a variety of mechanisms, and describe their role in disease and pathobiology.
Collapse
|
17
|
Gonciarz W, Walencka M, Moran AP, Hinc K, Obuchowski M, Chmiela M. Upregulation of MUC5AC production and deposition of LEWIS determinants by HELICOBACTER PYLORI facilitate gastric tissue colonization and the maintenance of infection. J Biomed Sci 2019; 26:23. [PMID: 30841890 PMCID: PMC6402143 DOI: 10.1186/s12929-019-0515-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori bacteria colonize human gastric mucosa, cause chronic inflammation, peptic ulcers and gastric cancer. Colonization is mediated by H. pylori adhesins, which preferentially bind mucin 5 (MUC5AC) and Lewis (Le) determinants. The aim of this study was to evaluate the influence of H. pylori and their components on MUC5AC production and deposition of LeX/LeY in gastric epithelial cells in relation to bacterial adhesion using Caviae porcellus primary gastric epithelial cells and an in vivo model of experimental H. pylori infection in these animals. Methods MUCA5C and LeX/LeY were induced in vitro by live H. pylori reference strain CCUG 17874 (2 × 107 CFU/ml), H. pylori glycine acid extract (GE), 10 μg/ml; cytotoxin associated gene A (CagA) protein, 1 μl/ml; UreA urease subunit, 5 μg/ml; lipopolysaccharide (LPS) 25 ng/ml and imaged by fluorescence microscopy after anti-MUC5AC or anti-LeX/LeY FITC antibody staining. Bacterial adhesion was imaged by using anti-H. pylori FITC antibodies. The animals were inoculated per os with H. pylori (3 times in 2 days intervals, 1 × 1010 CFU/ml). After 7 or 28 days an infection and inflammation were assessed by histological, serological and molecular methods. Gastric tissue sections of infected and control animals were screend for MUCA5C and LeX, and H. pylori adhesion as above. Results MUC5AC production and deposition of Lewis determinants, especially LeX were upregulated in the milieu of live H. pylori as well as GE, CagA, UreA or LPS in vitro and in vivo during infection, more effectively in the acute (7 days) than in the chronic (28 days) phase of infection. This was related to enhanced adhesion of H. pylori, which was abrogated by anti-MUC5AC and anti-LeX or anti-LeY antibody treatment. Conclusions Modulation of MUCA5C production and LeX/LeY deposition in the gastric mucosa by H. pylori can significantly increase gastric tissue colonization during H. pylori infection.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Maria Walencka
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, 80-210, Gdańsk, Poland
| | - Magdalena Chmiela
- Division of Gastroimmunology, Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Poland.
| |
Collapse
|
18
|
Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences. Curr Top Microbiol Immunol 2019; 421:53-76. [PMID: 31123885 DOI: 10.1007/978-3-030-15138-6_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection is associated with the development of a chronic inflammatory response, which may induce peptic ulcers, gastric cancer (GC), and mucosa-associated lymphoid tissue (MALT) lymphoma. Chronic H. pylori infection promotes the genetic instability of gastric epithelial cells and interferes with the DNA repair systems in host cells. Colonization of the stomach with H. pylori is an important cause of non-cardia GC and gastric MALT lymphoma. The reduction of GC development in patients who underwent anti-H. pylori eradication schemes has also been well described. Individual susceptibility to GC development depends on the host's genetic predisposition, H. pylori virulence factors, environmental conditions, and geographical determinants. Biological determinants are urgently sought to predict the clinical course of infection in individuals with confirmed H. pylori infection. Possible candidates for such biomarkers include genetic aberrations such as single-nucleotide polymorphisms (SNPs) found in various cytokines/growth factors (e.g., IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13, IL-17A/B, IFN-γ, TNF, TGF-β) and their receptors (IL-RN, TGFR), innate immunity receptors (TLR2, TLR4, CD14, NOD1, NOD2), enzymes involved in signal transduction cascades (PLCE1, PKLR, PRKAA1) as well as glycoproteins (MUC1, PSCA), and DNA repair enzymes (ERCC2, XRCC1, XRCC3). Bacterial determinants related to GC development include infection with CagA-positive (particularly with a high number of EPIYA-C phosphorylation motifs) and VacA-positive isolates (in particular s1/m1 allele strains). The combined genotyping of bacterial and host determinants suggests that the accumulation of polymorphisms favoring host and bacterial features increases the risk for precancerous and cancerous lesions in patients.
Collapse
|
19
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
20
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
21
|
Benktander J, Barone A, Johansson MM, Teneberg S. Helicobacter pylori SabA binding gangliosides of human stomach. Virulence 2018; 9:738-751. [PMID: 29473478 PMCID: PMC5955481 DOI: 10.1080/21505594.2018.1440171] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Adhesion of Helicobacter pylori to the gastric mucosa is a prerequisite for the pathogenesis of H. pylori related diseases. In this study, we investigated the ganglioside composition of human stomach as the target for attachment mediated by H. pylori SabA (sialic acid binding adhesin). Acid glycosphingolipids were isolated from human stomach and separated into subfractions, which were characterized by mass spectrometry and by binding of antibodies, bacteria, and Solanum tuberosum lectin. H. pylori SabA binding gangliosides were characterized as Neu5Acα3-neolactohexaosylceramide and Neu5Acα3-neolactooctaosylceramide, while the other acid human stomach glycosphingolipids characterized (sulfatide and the gangliosides GM3, GD3, GM1, Neu5Acα3-neolactotetraosylceramide, GD1a and GD1b) were not recognized by the bacteria. Defining H. pylori binding glycosphingolipids of the human gastric mucosa will be useful to specifically target this microbe-host interaction for therapeutic intervention.
Collapse
Affiliation(s)
- John Benktander
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Angela Barone
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Miralda Madar Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
22
|
Servetas SL, Doster RS, Kim A, Windham IH, Cha JH, Gaddy JA, Merrell DS. ArsRS-Dependent Regulation of homB Contributes to Helicobacter pylori Biofilm Formation. Front Microbiol 2018; 9:1497. [PMID: 30116222 PMCID: PMC6083042 DOI: 10.3389/fmicb.2018.01497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
One elusive area in the Helicobacter pylori field is an understanding of why some infections result in gastric cancer, yet others persist asymptomatically for the life-span of the individual. Even before the genomic era, the high level of intraspecies diversity of H. pylori was well recognized and became an intriguing area of investigation with respect to disease progression. Of interest in this regard is the unique repertoire of over 60 outer membrane proteins (OMPs), several of which have been associated with disease outcome. Of these OMPs, the association between HomB and disease outcome varies based on the population being studied. While the molecular roles for some of the disease-associated OMPs have been evaluated, little is known about the role that HomB plays in the H. pylori lifecycle. Thus, herein we investigated homB expression, regulation, and contribution to biofilm formation. We found that in H. pylori strain G27, homB was expressed at a relatively low level until stationary phase. Furthermore, homB expression was suppressed at low pH in an ArsRS-dependent manner; mutation of arsRS resulted in increased homB transcript at all tested time-points. ArsRS regulation of homB appeared to be direct as purified ArsR was able to specifically bind to the homB promoter. This regulation, combined with our previous finding that ArsRS mutations lead to enhanced biofilm formation, led us to test the hypothesis that homB contributes to biofilm formation by H. pylori. Indeed, subsequent biofilm analysis using a crystal-violet quantification assay and scanning electron microscopy (SEM) revealed that loss of homB from hyper-biofilm forming strains resulted in reversion to a biofilm phenotype that mimicked wild-type. Furthermore, expression of homB in trans from a promoter that negated ArsRS regulation led to enhanced biofilm formation even in strains in which the chromosomal copy of homB had been deleted. Thus, homB is necessary for hyper-biofilm formation of ArsRS mutant strains and aberrant regulation of this gene is sufficient to induce a hyper-biofilm phenotype. In summary, these data suggest that the ArsRS-dependent regulation of OMPs such as HomB may be one mechanism by which ArsRS dictates biofilm development in a pH responsive manner.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ryan S Doster
- Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Aeryun Kim
- BK21 Plus Project, Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ian H Windham
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeong-Heon Cha
- BK21 Plus Project, Department of Oral Biology, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,Microbiology and Molecular Biology Laboratory, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University, Nashville, TN, United States.,Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, United States
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
23
|
Horridge DN, Begley AA, Kim J, Aravindan N, Fan K, Forsyth MH. Outer inflammatory protein a (OipA) of Helicobacter pylori is regulated by host cell contact and mediates CagA translocation and interleukin-8 response only in the presence of a functional cag pathogenicity island type IV secretion system. Pathog Dis 2018; 75:4494363. [PMID: 29040466 DOI: 10.1093/femspd/ftx113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
OipA is a phase-variable virulence factor of Helicobacter pylori. Mutations in oipA to turn the gene phase on in a cag pathogenicity island (PAI)-negative strain of H. pylori (J68) or phase off in a cag PAI-positive strain (26695) demonstrated that phase on oipA alleles in both strains had both increased oipA mRNA and human gastric adenocarcinoma (AGS) cell adherence compared to isogenic oipA phase off mutants. An oipA phase off mutant of H. pylori 26695 demonstrated decreased IL-8 secretion by AGS cells and failure to translocate the cag PAI effector CagA. Increased attachment by OipA expressing cag PAI-negative H. pylori J68 failed to alter secreted IL-8 levels. Thus, OipA is necessary but not sufficient for the induction of IL-8; however, it is necessary for translocation of the oncoprotein CagA. Perhaps the nearly invariant phase on status of oipA alleles among cag PAI-positive H. pylori isolates relates to the role of this outer membrane protein in effective translocation of CagA. oipA mRNA comparisons between AGS cell-adherent and non-adherent H. pylori 26695 revealed significantly greater levels in the adherent cells. This may allow H. pylori to adapt to conditions of host cell contact by altering expression of this virulence factor.
Collapse
Affiliation(s)
- Danielle N Horridge
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA
| | - Allison A Begley
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA.,The Governor's School of Science and Technology. Hampton, VA 23666, USA
| | - June Kim
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA
| | - Neeraja Aravindan
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA
| | - Kexin Fan
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA
| | - Mark H Forsyth
- Department of Biology, The College of William and Mary, Williamsburg VA 23187, USA
| |
Collapse
|
24
|
Marcus EA, Sachs G, Scott DR. Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 2018; 23:e12490. [PMID: 29696729 PMCID: PMC5980792 DOI: 10.1111/hel.12490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The pathogen Helicobacter pylori encounters many stressors as it transits to and infects the gastric epithelium. Gastric acidity is the predominate stressor encountered by the bacterium during initial infection and establishment of persistent infection. H. pylori initiates a rapid response to acid to maintain intracellular pH and proton motive force appropriate for a neutralophile. However, acid sensing by H. pylori may also serve as a transcriptional trigger to increase the levels of other pathogenic factors needed to subvert host defenses such as acid acclimation, antioxidants, flagellar synthesis and assembly, and CagA secretion. MATERIALS AND METHODS Helicobacter pylori were acid challenged at pH 3.0, 4.5, 6.0 vs nonacidic pH for 4 hours in the presence of urea, followed by RNA-seq analysis and qPCR. Cytoplasmic pH was monitored under the same conditions. RESULTS About 250 genes were induced, and an equal number were repressed at acidic pHs. Genes encoding for antioxidant proteins, flagellar structural proteins, particularly class 2 genes, T4SS/Cag-PAI, Fo F1 -ATPase, and proteins involved in acid acclimation were highly expressed at acidic pH. Cytoplasmic pH decreased from 7.8 at pHout of 8.0 to 6.0 at pHout of 3.0. CONCLUSIONS These results suggest that increasing extracellular or intracellular acidity or both are detected by the bacterium and serve as a signal to initiate increased production of protective and pathogenic factors needed to counter host defenses for persistent infection. These changes are dependent on degree of acidity and time of acid exposure, triggering a coordinated response to the environment required for colonization.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department Medicine, David Geffen School of Medicine at UCLA,Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA,Corresponding author: David R. Scott, Department of Physiology, DGSOM at UCLA, VA GLAHS, Bldg 113, Rm 324, 11301 Wilshire Blvd, Los Angeles, CA 90073, , phone: 310-478-3711 x42046; Fax: 310-312-9478
| |
Collapse
|
25
|
Debraekeleer A, Remaut H. Future perspective for potentialHelicobacter pylorieradication therapies. Future Microbiol 2018; 13:671-687. [DOI: 10.2217/fmb-2017-0115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ayla Debraekeleer
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Department of Structural & Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Department of Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
26
|
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 2018; 86:IAI.00626-17. [PMID: 29229727 DOI: 10.1128/iai.00626-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating H. pylori gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of H. pylori grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of sabA, hopA, and hopQ are increased under high-salt conditions, whereas transcript levels of fecA2 and fecA3 are decreased under high-salt conditions. Transcription of sabA, hopA, hopQ, and fecA3 is derepressed in an arsS mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of H. pylori transcriptional alterations that occur in response to high-salt environmental conditions.
Collapse
|
27
|
Srikhanta YN, Gorrell RJ, Power PM, Tsyganov K, Boitano M, Clark TA, Korlach J, Hartland EL, Jennings MP, Kwok T. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci Rep 2017; 7:16140. [PMID: 29170397 PMCID: PMC5700931 DOI: 10.1038/s41598-017-15721-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The Helicobacter pylori phase variable gene modH, typified by gene HP1522 in strain 26695, encodes a N6-adenosine type III DNA methyltransferase. Our previous studies identified multiple strain-specific modH variants (modH1 – modH19) and showed that phase variation of modH5 in H. pylori P12 influenced expression of motility-associated genes and outer membrane protein gene hopG. However, the ModH5 DNA recognition motif and the mechanism by which ModH5 controls gene expression were unknown. Here, using comparative single molecule real-time sequencing, we identify the DNA site methylated by ModH5 as 5′-Gm6ACC-3′. This motif is vastly underrepresented in H. pylori genomes, but overrepresented in a number of virulence genes, including motility-associated genes, and outer membrane protein genes. Motility and the number of flagella of H. pylori P12 wild-type were significantly higher than that of isogenic modH5 OFF or ΔmodH5 mutants, indicating that phase variable switching of modH5 expression plays a role in regulating H. pylori motility phenotypes. Using the flagellin A (flaA) gene as a model, we show that ModH5 modulates flaA promoter activity in a GACC methylation-dependent manner. These findings provide novel insights into the role of ModH5 in gene regulation and how it mediates epigenetic regulation of H. pylori motility.
Collapse
Affiliation(s)
- Yogitha N Srikhanta
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Rebecca J Gorrell
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia.,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia
| | - Peter M Power
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kirill Tsyganov
- Bioinformatics Platform, Monash University, Clayton, 3800, Victoria, Australia
| | | | | | | | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Victoria, Australia.,Department of Molecular and Translational Science, Hudson Institute of Medical Research, Monash University, Clayton, 3800, Victoria, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| | - Terry Kwok
- Department of Microbiology, Monash University, Clayton, 3800, Victoria, Australia. .,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia. .,Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
28
|
George G, Kombrabail M, Raninga N, Sau AK. Arginase of Helicobacter Gastric Pathogens Uses a Unique Set of Non-catalytic Residues for Catalysis. Biophys J 2017; 112:1120-1134. [PMID: 28355540 DOI: 10.1016/j.bpj.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/26/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori arginase, a bimetallic enzyme, is crucial for pathogenesis of the bacterium in human stomach. Despite conservation of the signature motifs in all arginases, the H. pylori homolog has a non-conserved motif (153ESEEKAWQKLCSL165), whose role was recently shown to be critical for its stability and function. The sequence analysis also reveals the presence of this motif with critical residues in the homolog of other Helicobacter gastric pathogens. However, the underlying mechanism for its significance in catalytic function is not clearly understood. Using H. pylori arginase, our studies reveal that the interactions of His122 and Tyr125 with Trp159 are indispensable for tertiary structural intactness through optimal positioning of the motif and thus for the catalytic function. The single and double mutants of His122 and Tyr125 not only enhanced the solvent accessibility and conformational flexibility of Trp159 in the holo protein, but also showed complete loss of catalytic activity. An intact bimetallic center and unaltered substrate binding indicate that proper positioning of the motif by aromatic-aromatic contact is vital for the generation of a catalytically active conformation. Additionally, the metal ions provide higher stability to the holo protein. We also identified the presence of these two residues exclusively in arginase of other Helicobacter gastric pathogens, which may have similar function. Therefore, to the best of our knowledge, these findings highlight for the first time that arginase of all Helicobacter gastric pathogens utilizes a unique non-catalytic triad for catalysis, which could be exploited for therapeutics.
Collapse
Affiliation(s)
- Ginto George
- National Institute of Immunology, New Delhi, India
| | - Mamata Kombrabail
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|
29
|
Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization. World J Gastroenterol 2017; 23:4158-4169. [PMID: 28694656 PMCID: PMC5483490 DOI: 10.3748/wjg.v23.i23.4158] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) as a causative agent of gastric complications, is well adapted for the colonization of gastric mucosa. Although the infectious process depends on several factors, the adhesion to the gastric mucosa is the first and important step. Among several outer membrane proteins, BabA is one of the significant protein involving in many inflammatory processes in addition to its role in the attachment for the persistent colonization. We performed a PubMed search using the key words: “babA”, “pylori”, “gastric complications”, “homologous recombination”, “slipped strand mispairing”; a total of 249 articles were displayed. Of these we mainly focused on articles with the full text in English and published between 2005 and 2016. H. pylori BabA is involved in binding with receptors; however, its synthesis is regulated by phase variation. In this review we confirm that H. pylori babA can be modulated at the molecular and functional levels to adapt to the stress within the gastro-intestinal tract.
Collapse
|
30
|
Acio-Pizzarello CR, Acio AA, Choi EJ, Bond K, Kim J, Kenan AC, Chen J, Forsyth MH. Determinants of the regulation of Helicobacter pylori adhesins include repeat sequences in both promoter and coding regions as well as the two-component system ArsRS. J Med Microbiol 2017; 66:798-807. [PMID: 28598306 DOI: 10.1099/jmm.0.000491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We investigated the transcription of adhesin-encoding genes sabA, hopZ and labA in Helicobacter pylori strain J99. Each possesses a repeating homopolymeric nucleotide tract within their promoter regions, and sabA and hopZ possess repeats within their 5' coding regions. METHODOLOGY We altered the repeat lengths associated with the adhesin genes and quantified mRNA levels by real-time quantitative PCR. Using adherence to AGS cells and IL-8 assays, we examined the effects of altered transcript levels. We assessed the role of ArsRS in transcription using an arsS null mutant and by examining ArsR binding to promoter regions via electrophoretic mobility shift assays. RESULTS Extensions or truncations of promoter region repeats in hopZ and labA increased transcript levels, mirroring results shown by our lab and others for mutations in the sabA promoter. Altered lengths of the poly-cytosine thymine tract within the 5' coding region of sabA demonstrated that switching from phase-off to phase-on significantly increased mRNA levels. However, mutations in the poly-thymine tract of sabA, which increased mRNA levels, do not behave synergistically with phase-on mutations. Phase-on mutations of sabA resulted in increased H. pylori adherence to AGS cells, but only a modest effect on IL-8. hopZ and labA, and sabA paralogue sabB, transcript levels were increased in an arsS mutant and ArsR bound the promoter regions for each of these genes in vitro. CONCLUSION This work highlights the complex nature of adhesin regulation, its impact on H. pylori attachment and the pervasive role of ArsRS in adhesin expression. Such regulation may help facilitate the decades-long persistence of infection.
Collapse
Affiliation(s)
- Catherine R Acio-Pizzarello
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.,Present address: University of Rochester School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Abigail A Acio
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.,Present address: Department of Forensic Science, Pennsylvania State University, State College, PA, USA
| | - Edward J Choi
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Kimberly Bond
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - June Kim
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Anna C Kenan
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Jiajia Chen
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
31
|
Dynamic Expression of the BabA Adhesin and Its BabB Paralog during Helicobacter pylori Infection in Rhesus Macaques. Infect Immun 2017; 85:IAI.00094-17. [PMID: 28396320 DOI: 10.1128/iai.00094-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Most Helicobacter pylori strains express the BabA adhesin, which binds to ABO/Leb blood group antigens on gastric mucin and epithelial cells and is found more commonly in strains that cause peptic ulcers or gastric cancer, rather than asymptomatic infection. We and others have previously reported that in mice, gerbils, and rhesus macaques, expression of babA is lost, either by phase variation or by gene conversion, in which the babB paralog recombines into the babA locus. The functional significance of loss of babA expression is unknown. Here we report that in rhesus monkeys, there is independent selective pressure for loss of babA and for overexpression of BabB, which confers a fitness advantage. Surprisingly, loss of babA by phase variation or gene conversion is not dependent on the capacity of BabA protein to bind Leb, which suggests that it may have other, unrecognized functions. These findings have implications for the role of outer membrane protein diversity in persistent H. pylori infection.
Collapse
|
32
|
Matsuo Y, Kido Y, Yamaoka Y. Helicobacter pylori Outer Membrane Protein-Related Pathogenesis. Toxins (Basel) 2017; 9:toxins9030101. [PMID: 28287480 PMCID: PMC5371856 DOI: 10.3390/toxins9030101] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori colonizes the human stomach and induces inflammation, and in some cases persistent infection can result in gastric cancer. Attachment to the gastric mucosa is the first step in establishing bacterial colonization, and outer membrane proteins (OMPs) play a pivotal role in binding to human cells. Some OMP interaction molecules are known in H. pylori, and their associated host cell responses have been gradually clarified. Many studies have demonstrated that OMPs are essential to CagA translocation into gastric cells via the Type IV secretion system of H. pylori. This review summarizes the mechanisms through which H. pylori utilizes OMPs to colonize the human stomach and how OMPs cooperate with the Type IV secretion system.
Collapse
Affiliation(s)
- Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-Machi, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
BabA dependent binding of Helicobacter pylori to human gastric mucins cause aggregation that inhibits proliferation and is regulated via ArsS. Sci Rep 2017; 7:40656. [PMID: 28106125 PMCID: PMC5247751 DOI: 10.1038/srep40656] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/09/2016] [Indexed: 01/25/2023] Open
Abstract
Mucins in the gastric mucus layer carry a range of glycan structures, which vary between individuals, can have antimicrobial effect or act as ligands for Helicobacter pylori. Mucins from various individuals and disease states modulate H. pylori proliferation and adhesin gene expression differently. Here we investigate the relationship between adhesin mediated binding, aggregation, proliferation and adhesin gene expression using human gastric mucins and synthetic adhesin ligand conjugates. By combining measurements of optical density, bacterial metabolic activity and live/dead stains, we could distinguish bacterial aggregation from viability changes, enabling elucidation of mechanisms behind the anti-prolific effects that mucins can have. Binding of H. pylori to Leb-glycoconjugates inhibited the proliferation of the bacteria in a BabA dependent manner, similarly to the effect of mucins carrying Leb. Furthermore, deletion of arsS lead to a decrease in binding to Leb-glycoconjugates and Leb-decorated mucins, accompanied by decreased aggregation and absence of anti-prolific effect of mucins and Leb-glycoconjugates. Inhibition of proliferation caused by adhesin dependent binding to mucins, and the subsequent aggregation suggests a new role of mucins in the host defense against H. pylori. This aggregating trait of mucins may be useful to incorporate into the design of adhesin inhibitors and other disease intervention molecules.
Collapse
|
34
|
Chen YL, Mo XQ, Huang GR, Huang YQ, Xiao J, Zhao LJ, Wei HY, Liang Q. Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal diseases. World J Gastroenterol 2016; 22:9718-9726. [PMID: 27956795 PMCID: PMC5124976 DOI: 10.3748/wjg.v22.i44.9718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a kind of chronic infectious pathogen which can cause chronic gastritis, peptic ulcer, gastric cancer and other diseases. The genetic structure of the pathogenic genes of H. pylori varies largely, which contributes to the differences in virulence among various strains, and in clinical symptoms. Virulence genes of H. pylori can be categorized into three main classes: those related to adhesion and colonization, those related to gastric mucosal injury, and others. This review focuses on the relationship between genetic polymorphisms of the three classes of virulence genes of H. pylori and diseases. Most of the genetic polymorphisms of the main virulence factors of H. pylori are summarized in this paper.
Collapse
|
35
|
Helicobacter pylori outer membrane protein, HomC, shows geographic dependent polymorphism that is influenced by the Bab family. J Microbiol 2016; 54:846-852. [DOI: 10.1007/s12275-016-6434-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
|
36
|
Huang Y, Wang QL, Cheng DD, Xu WT, Lu NH. Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol 2016; 6:159. [PMID: 27921009 PMCID: PMC5118847 DOI: 10.3389/fcimb.2016.00159] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is the main pathogenic bacterium involved in chronic gastritis and peptic ulcer and a class 1 carcinogen in gastric cancer. Current research focuses on the pathogenicity of H. pylori and the mechanism by which it colonizes the gastric mucosa. An increasing number of in vivo and in vitro studies demonstrate that H. pylori can invade and proliferate in epithelial cells, suggesting that this process might play an important role in disease induction, immune escape and chronic infection. Therefore, to explore the process and mechanism of adhesion and invasion of gastric mucosa epithelial cells by H. pylori is particularly important. This review examines the relevant studies and describes evidence regarding the adhesion to and invasion of gastric mucosa epithelial cells by H. pylori.
Collapse
Affiliation(s)
- Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Qi-Long Wang
- Department of General Surgery, Tianjin Haihe Hospital Tianjin, China
| | - Dan-Dan Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Wen-Ting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University Nanchang, China
| |
Collapse
|
37
|
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA. Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules 2016; 6:E33. [PMID: 27409642 PMCID: PMC5039419 DOI: 10.3390/biom6030033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Daniela Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Catarina Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Joana Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Ana Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Celso A Reis
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
- Medical Faculty, University of Porto, Alameda Prof Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
38
|
Lactobacilli Reduce Helicobacter pylori Attachment to Host Gastric Epithelial Cells by Inhibiting Adhesion Gene Expression. Infect Immun 2016; 84:1526-1535. [PMID: 26930708 DOI: 10.1128/iai.00163-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
The human gastrointestinal tract, including the harsh environment of the stomach, harbors a large variety of bacteria, of which Lactobacillus species are prominent members. The molecular mechanisms by which species of lactobacilli interfere with pathogen colonization are not fully characterized. In this study, we aimed to study the effect of lactobacillus strains upon the initial attachment of Helicobacter pylori to host cells. Here we report a novel mechanism by which lactobacilli inhibit adherence of the gastric pathogen H. pylori In a screen with Lactobacillus isolates, we found that only a few could reduce adherence of H. pylori to gastric epithelial cells. Decreased attachment was not due to competition for space or to lactobacillus-mediated killing of the pathogen. Instead, we show that lactobacilli act on H. pylori directly by an effector molecule that is released into the medium. This effector molecule acts on H. pylori by inhibiting expression of the adhesin-encoding gene sabA Finally, we verified that inhibitory lactobacilli reduced H. pylori colonization in an in vivo model. In conclusion, certain Lactobacillus strains affect pathogen adherence by inhibiting sabA expression and thereby reducing H. pylori binding capacity.
Collapse
|
39
|
Magalhães A, Marcos-Pinto R, Nairn AV, Dela Rosa M, Ferreira RM, Junqueira-Neto S, Freitas D, Gomes J, Oliveira P, Santos MR, Marcos NT, Xiaogang W, Figueiredo C, Oliveira C, Dinis-Ribeiro M, Carneiro F, Moremen KW, David L, Reis CA. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1928-39. [PMID: 26144047 DOI: 10.1016/j.bbadis.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.
Collapse
Affiliation(s)
- Ana Magalhães
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Ricardo Marcos-Pinto
- Centro Hospitalar do Porto (CHP), Gastroenterology Department, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal
| | - Alison V Nairn
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Mitche Dela Rosa
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rui M Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Susana Junqueira-Neto
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Joana Gomes
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Patrícia Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Marta R Santos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Nuno T Marcos
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Section of Health Sciences, University of Aveiro, Portugal
| | - Wen Xiaogang
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal; Centro Hospitalar Vila Nova de Gaia/Espinho, Portugal
| | - Céu Figueiredo
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Carla Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Mário Dinis-Ribeiro
- Medical Faculty, University of Porto, Portugal; Gastroenterology Department, IPO Porto, Portugal; CIDES/CINTESIS, University of Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Leonor David
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Celso A Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal.
| |
Collapse
|
40
|
Carpenter BM, West AL, Gancz H, Servetas SL, Pich OQ, Gilbreath JJ, Hallinger DR, Forsyth MH, Merrell DS, Michel SLJ. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription. Front Microbiol 2015; 6:558. [PMID: 26124751 PMCID: PMC4464171 DOI: 10.3389/fmicb.2015.00558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at neutral pH has been demonstrated.
Collapse
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Abby L West
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| | - Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Oscar Q Pich
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Daniel R Hallinger
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| |
Collapse
|
41
|
Skindersoe ME, Rasmussen L, Andersen LP, Krogfelt KA. A Novel Assay for Easy and Rapid Quantification of Helicobacter pylori Adhesion. Helicobacter 2015; 20:199-205. [PMID: 25603836 DOI: 10.1111/hel.12191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Reducing adhesion of Helicobacter pylori to gastric epithelial cells could be a new way to counteract infections with this organism. We here present a novel method for quantification of Helicobacter pylori adhesion to cells. METHODS Helicobacter pylori is allowed to adhere to AGS or MKN45g cells in a 96-well microtiter plate. Then wells are added saponin, which lyses the cells without affecting the bacteria. After addition of alamarBlue(®) (resazurin) and 1- to 2-hour incubation, fluorescence measurements can be used to quantify the number of adherent bacteria. RESULTS By use of the method, we demonstrate that adhesion of both a sabA and babA deletion mutant of H. pylori is significantly reduced compared to the wild type. CONCLUSION The method offers a number of applications and may be used to compare the adherence potential of different strains of H. pylori to either cells or different materials or to screen for potential anti-adhesive compounds. The results presented here suggest that this easy and reproducible assay is well suited for quantitative investigation of H. pylori adhesion.
Collapse
Affiliation(s)
- Mette E Skindersoe
- Microbiology and Infection Control, Statens Serum Institute, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - Lone Rasmussen
- Department of Clinical Microbiology 9321, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Infection Control 9101, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Leif P Andersen
- Department of Clinical Microbiology 9321, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.,Department of Infection Control 9101, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Karen A Krogfelt
- Microbiology and Infection Control, Statens Serum Institute, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| |
Collapse
|
42
|
Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription. J Bacteriol 2014; 196:3421-9. [PMID: 25022855 DOI: 10.1128/jb.01956-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.
Collapse
|
43
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
44
|
Dunne C, Dolan B, Clyne M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol 2014; 20:5610-24. [PMID: 24914320 PMCID: PMC4024769 DOI: 10.3748/wjg.v20.i19.5610] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/04/2013] [Accepted: 01/19/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.
Collapse
|
45
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
46
|
A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci U S A 2014; 111:E501-10. [PMID: 24474799 DOI: 10.1073/pnas.1315152111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phase variation of hypermutable simple sequence repeats (SSRs) is a widespread and stochastic mechanism to generate phenotypic variation within a population and thereby contributes to host adaptation of bacterial pathogens. Although several examples of SSRs that affect transcription or coding potential have been reported, we now show that a SSR also impacts small RNA-mediated posttranscriptional regulation. Based on in vitro and in vivo analyses, we demonstrate that a variable homopolymeric G-repeat in the leader of the TlpB chemotaxis receptor mRNA of the human pathogen Helicobacter pylori is directly targeted by a small RNA (sRNA), RepG (Regulator of polymeric G-repeats). Whereas RepG sRNA is highly conserved, the tlpB G-repeat length varies among diverse H. pylori strains, resulting in strain-specific RepG-mediated tlpB regulation. Based on modification of the G-repeat length within one strain, we demonstrate that the G-repeat length determines posttranscriptional regulation and can mediate both repression and activation of tlpB through RepG. In vitro translation assays show that this regulation occurs at the translational level and that RepG influences tlpB translation dependent on the G-repeat length. In contrast to the digital ON-OFF switches through frame-shift mutations within coding sequences, such modulation of posttranscriptional regulation allows for a gradual control of gene expression. This connection to sRNA-mediated posttranscriptional regulation might also apply to other genes with SSRs, which could be targeting sites of cis- or trans-encoded sRNAs, and thereby could facilitate host adaptation through sRNA-mediated fine-tuning of virulence gene expression.
Collapse
|
47
|
Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel R, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 2013; 42:2415-32. [PMID: 24302578 PMCID: PMC3936762 DOI: 10.1093/nar/gkt1201] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.
Collapse
Affiliation(s)
- Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany, German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Straße 1, 30625 Hannover, Germany, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany and Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harris PR, Smythies LE, Smith PD, Perez-Perez GI. Role of childhood infection in the sequelae of H. pylori disease. Gut Microbes 2013; 4:426-38. [PMID: 24275060 PMCID: PMC3928156 DOI: 10.4161/gmic.26943] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The persistence of Helicobacter pylori infection plays a fundamental role in the development of H. pylori-associated complications. Since the majority of infected persons acquire the bacteria during early childhood, an examination of the immunobiology of H. pylori infection in children compared with that of adults may help identify host factors that contribute to persistent infection. Therefore, we begin our review of the role of persistence in H. pylori disease with an assessment of the clinical features of H. pylori infection in children. We next review the bacterial factors that promote colonization and evasion of host defense mechanisms. We then focus our attention on the early host immunological factors that promote persistence of the infection and its complications in humans and mouse models. We also highlight topics in which further research is needed. An examination of how immunological factors cause divergent manifestations of H. pylori infection in children compared with adults may provide new insight for therapeutic modification or prevention of persistent H. pylori infection and its complications.
Collapse
Affiliation(s)
- Paul R Harris
- Division of Pediatrics; Unit of Gastroenterology and Nutrition; School of Medicine; Pontificia Universidad Catolica de Chile; Santiago, Chile
| | - Lesley E Smythies
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Phillip D Smith
- Departments of Medicine and Microbiology; University of Alabama at Birmingham; Birmingham, AL USA,VA Medical Center; Birmingham, AL USA
| | - Guillermo I Perez-Perez
- Departments of Medicine and Microbiology; Langone Medical Center; New York University School of Medicine; New York, NY USA,Correspondence to: Guillermo I Perez-Perez,
| |
Collapse
|
49
|
Posselt G, Backert S, Wessler S. The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 2013; 11:77. [PMID: 24099599 PMCID: PMC3851490 DOI: 10.1186/1478-811x-11-77] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) can lead to severe gastric diseases ranging from chronic gastritis and ulceration to neoplastic changes in the stomach. Development and progress of H. pylori-associated disorders are determined by multifarious bacterial factors. Many of them interact directly with host cells or require specific receptors, while others enter the host cytoplasm to derail cellular functions. Several adhesins (e.g. BabA, SabA, AlpA/B, or OipA) establish close contact with the gastric epithelium as an important first step in persistent colonization. Soluble H. pylori factors (e.g. urease, VacA, or HtrA) have been suggested to alter cell survival and intercellular adhesions. Via a type IV secretion system (T4SS), H. pylori also translocates the effector cytotoxin-associated gene A (CagA) and peptidoglycan directly into the host cytoplasm, where cancer- and inflammation-associated signal transduction pathways can be deregulated. Through these manifold possibilities of interaction with host cells, H. pylori interferes with the complex signal transduction networks in its host and mediates a multi-step pathogenesis.
Collapse
Affiliation(s)
- Gernot Posselt
- Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, Salzburg, Austria.
| | | | | |
Collapse
|
50
|
McDowell A, Nagy I, Magyari M, Barnard E, Patrick S. The opportunistic pathogen Propionibacterium acnes: insights into typing, human disease, clonal diversification and CAMP factor evolution. PLoS One 2013; 8:e70897. [PMID: 24058439 PMCID: PMC3772855 DOI: 10.1371/journal.pone.0070897] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
We previously described a Multilocus Sequence Typing (MLST) scheme based on eight genes that facilitates population genetic and evolutionary analysis of P. acnes. While MLST is a portable method for unambiguous typing of bacteria, it is expensive and labour intensive. Against this background, we now describe a refined version of this scheme based on two housekeeping (aroE; guaA) and two putative virulence (tly; camp2) genes (MLST4) that correctly predicted the phylogroup (IA1, IA2, IB, IC, II, III), clonal complex (CC) and sequence type (ST) (novel or described) status for 91% isolates (n = 372) via cross-referencing of the four gene allelic profiles to the full eight gene versions available in the MLST database (http://pubmlst.org/pacnes/). Even in the small number of cases where specific STs were not completely resolved, the MLST4 method still correctly determined phylogroup and CC membership. Examination of nucleotide changes within all the MLST loci provides evidence that point mutations generate new alleles approximately 1.5 times as frequently as recombination; although the latter still plays an important role in the bacterium's evolution. The secreted/cell-associated ‘virulence’ factors tly and camp2 show no clear evidence of episodic or pervasive positive selection and have diversified at a rate similar to housekeeping loci. The co-evolution of these genes with the core genome might also indicate a role in commensal/normal existence constraining their diversity and preventing their loss from the P. acnes population. The possibility that members of the expanded CAMP factor protein family, including camp2, may have been lost from other propionibacteria, but not P. acnes, would further argue for a possible role in niche/host adaption leading to their retention within the genome. These evolutionary insights may prove important for discussions surrounding camp2 as an immunotherapy target for acne, and the effect such treatments may have on commensal lineages.
Collapse
Affiliation(s)
- Andrew McDowell
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, United Kingdom
| | | | | | | | | |
Collapse
|