1
|
Wang H, Miao X, Zhai C, Chen Y, Lin Z, Zhou X, Guo M, Chai Z, Wang R, Shen W, Li H, Hu C. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensis Revealed by Single-Molecule Force Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16128-16137. [PMID: 37916685 DOI: 10.1021/acs.langmuir.3c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The Gram-negative bacteria Marinomonas primoryensis secrete an ice-binding protein (MpIBP), which is a vital bacterial adhesin facilitating the adaptation and survival of the bacteria in the harsh Antarctic environment. The C-terminal region of MpIBP, known as region V (RV), is the first domain to be exported into the Ca2+-rich extracellular environment and acts as a folding nucleus for the entire adhesin. However, the mechanisms underlying the secretion and folding of RV remain poorly understood. Here, we used optical tweezers (OT) to investigate the secretion and folding mechanisms of RV at the single-molecule level. In the absence of Ca2+, apo-RV remains unstructured, while Ca2+-bound RV folds into a mechanically stable structure. The folding of RV could occur via the formation of an intermediate state. Even though this folding intermediate is "hidden" during the folding process of wild type RV in vitro, it likely forms in vivo and plays an important role in facilitating protein secretion. Additionally, our results revealed that the N-terminal part of the RV can significantly stabilize its C-terminal structure. Our study paves the way for further investigations into the structure and functions of MpIBP that help bacteria survive in challenging environments.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Xiaopu Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Cong Zhai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yulu Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zuzeng Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaowei Zhou
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Mengdi Guo
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Zhongyan Chai
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Ruifen Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wanfu Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chunguang Hu
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Wang H, Chen G, Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat Commun 2022; 13:2784. [PMID: 35589788 PMCID: PMC9120197 DOI: 10.1038/s41467-022-30448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain. The authors use optical tweezers to show that the folding of repeats-in-toxin (RTX) block-iv in adenylate cyclase is templated by the folded RTX block-v. The findings suggest a possible mechanism for transmitting the folding signal in the RTX domain.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
3
|
Salem HM, Hussein MA, Hafez SE, Hussein MA, Sayed RM. Influence of Gamma Irradiated Steinernema carpocapsae on Some Physiological Aspects of Galleria mellonella Larvae. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Enhancing the efficacy of entomopathogenic nematodes by gamma radiation in controlling Spodoptera littoralis larvae. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2016.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Harith Fadzilah N, Abdul-Ghani I, Hassan M. Proteomics as a tool for tapping potential of entomopathogens as microbial insecticides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21520. [PMID: 30426561 DOI: 10.1002/arch.21520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biopesticides are collective pest control harnessing the knowledge of the target pest and its natural enemies that minimize the risks of synthetic pesticides. A subset of biopesticides; bioinsecticides, are specifically used in controlling insect pests. Entomopathogens (EPMs) are micro-organisms sought after as subject for bioinsecticide development. However, lack of understanding of EPM mechanism of toxicity and pathogenicity slowed the progress of bioinsecticide development. Proteomics is a useful tool in elucidating the interaction of entomopathogenic fungi, entomopathogenic bacteria, and entomopathogenic virus with their target host. Collectively, proteomics shed light onto insect host response to EPM infection, mechanism of action of EPM's toxic proteins and secondary metabolites besides characterizing secreted and membrane-bound proteins of EPM that more precisely describe relevant proteins for host recognition and mediating pathogenesis. However, proteomics requires optimized protein extraction methods to maximize the number of proteins for analysis and availability of organism's genome for a more precise protein identification.
Collapse
Affiliation(s)
| | - Idris Abdul-Ghani
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
6
|
Ost GS, Ng'ang'a PN, Lang AE, Aktories K. Photorhabdus luminescens
Tc toxin is inhibited by the protease inhibitor MG132 and activated by protease cleavage resulting in increased binding to target cells. Cell Microbiol 2018; 21:e12978. [DOI: 10.1111/cmi.12978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 11/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Gerhard Stefan Ost
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
| | - Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Faculty of Biology; University of Freiburg; Freiburg Germany
- Spemann Graduate School of Biology and Medicine (SGBM); University of Freiburg; Freiburg Germany
| | - Alexander E. Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine; University of Freiburg; Freiburg Germany
- Centre for Biological Signalling Studies (BIOSS); University of Freiburg; Freiburg Germany
| |
Collapse
|
7
|
McQuade R, Stock SP. Secretion Systems and Secreted Proteins in Gram-Negative Entomopathogenic Bacteria: Their Roles in Insect Virulence and Beyond. INSECTS 2018; 9:insects9020068. [PMID: 29921761 PMCID: PMC6023292 DOI: 10.3390/insects9020068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Many Gram-negative bacteria have evolved insect pathogenic lifestyles. In all cases, the ability to cause disease in insects involves specific bacterial proteins exported either to the surface, the extracellular environment, or the cytoplasm of the host cell. They also have several distinct mechanisms for secreting such proteins. In this review, we summarize the major protein secretion systems and discuss examples of secreted proteins that contribute to the virulence of a variety of Gram-negative entomopathogenic bacteria, including Photorhabdus, Xenorhabdus, Serratia, Yersinia, and Pseudomonas species. We also briefly summarize two classes of exported protein complexes, the PVC-like elements, and the Tc toxin complexes that were first described in entomopathogenic bacteria.
Collapse
Affiliation(s)
- Rebecca McQuade
- Center for Insect Science, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85721, USA.
| | - S Patricia Stock
- Department of Entomology and School of Animal and Comparative Biomedical Sciences, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721, USA.
| |
Collapse
|
8
|
Draft Genome Sequence of Photorhabdus luminescens HIM3 Isolated from an Entomopathogenic Nematode in Agricultural Soils. GENOME ANNOUNCEMENTS 2017; 5:5/35/e00745-17. [PMID: 28860237 PMCID: PMC5578835 DOI: 10.1128/genomea.00745-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we report the draft genome sequence of Photorhabdus luminescens strain HIM3, a symbiotic bacterium associated with the entomopathogenic nematode Heterorhabditis indica MOR03, isolated from soil sugarcane in Yautepec, Morelos, Mexico. These bacteria have a G+C content of 42.6% and genome size of 5.47 Mb.
Collapse
|
9
|
An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis. Appl Microbiol Biotechnol 2016; 100:3637-54. [PMID: 26782747 DOI: 10.1007/s00253-015-7259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/13/2015] [Accepted: 12/19/2015] [Indexed: 01/05/2023]
Abstract
In the present work, the local isolate Bacillus pumilus 15.1 has been morphologically and biochemically characterized in order to gain a better understanding of this novel entomopathogenic strain active against Ceratitis capitata. This strain could represent an interesting biothechnological tool for the control of this pest. Here, we report on its nutrient preferences, extracellular enzyme production, motility mechanism, biofilm production, antibiotic suceptibility, natural resistance to chemical and physical insults, and morphology of the vegetative cells and spores. The pathogen was found to be β-hemolytic and susceptible to penicillin, ampicillin, chloramphenicol, gentamicin, kanamycin, rifampicin, tetracycline, and streptomycin. We also report a series of biocide, thermal, and UV treatments that reduce the viability of B. pumilus 15.1 by several orders of magnitude. Heat and chemical treatments kill at least 99.9 % of vegetative cells, but spores were much more resistant. Bleach was the only chemical that was able to completely eliminate B. pumilus 15.1 spores. Compared to the B. subtilis 168 spores, B. pumilus 15.1 spores were between 2.67 and 350 times more resistant to UV radiation while the vegetative cells of B. pumilus 15.1 were almost up to 3 orders of magnitude more resistant than the model strain. We performed electron microscopy for morphological characterization, and we observed geometric structures resembling the parasporal crystal inclusions synthesized by Bacillus thuringiensis. Some of the results obtained here such as the parasporal inclusion bodies produced by B. pumilus 15.1 could potentially represent virulence factors of this novel and potentially interesting strain.
Collapse
|
10
|
Kenney E, Eleftherianos I. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture. Int J Parasitol 2016; 46:13-9. [PMID: 26527129 PMCID: PMC4707073 DOI: 10.1016/j.ijpara.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/22/2022]
Abstract
Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens.
Collapse
Affiliation(s)
- Eric Kenney
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Washington DC 20052, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, 800 22nd Street NW, Washington DC 20052, United States.
| |
Collapse
|
11
|
Insect Immunity to Entomopathogenic Nematodes and Their Mutualistic Bacteria. Curr Top Microbiol Immunol 2016; 402:123-156. [PMID: 27995342 DOI: 10.1007/82_2016_52] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomopathogenic nematodes are important organisms for the biological control of insect pests and excellent models for dissecting the molecular basis of the insect immune response against both the nematode parasites and their mutualistic bacteria. Previous research involving the use of various insects has found distinct differences in the number and nature of immune mechanisms that are activated in response to entomopathogenic nematode parasites containing or lacking their associated bacteria. Recent studies using model insects have started to reveal the identity of certain molecules with potential anti-nematode or antibacterial activity as well as the molecular components that nematodes and their bacteria employ to evade or defeat the insect immune system. Identification and characterization of the genes that regulate the insect immune response to nematode-bacteria complexes will contribute significantly to the development of improved practices to control insects of agricultural and medical importance, and potentially nematode parasites that infect mammals, perhaps even humans.
Collapse
|
12
|
Murfin KE, Whooley AC, Klassen JL, Goodrich-Blair H. Comparison of Xenorhabdus bovienii bacterial strain genomes reveals diversity in symbiotic functions. BMC Genomics 2015; 16:889. [PMID: 26525894 PMCID: PMC4630870 DOI: 10.1186/s12864-015-2000-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Xenorhabdus bacteria engage in a beneficial symbiosis with Steinernema nematodes, in part by providing activities that help kill and degrade insect hosts for nutrition. Xenorhabdus strains (members of a single species) can display wide variation in host-interaction phenotypes and genetic potential indicating that strains may differ in their encoded symbiosis factors, including secreted metabolites. METHODS To discern strain-level variation among symbiosis factors, and facilitate the identification of novel compounds, we performed a comparative analysis of the genomes of 10 Xenorhabdus bovienii bacterial strains. RESULTS The analyzed X. bovienii draft genomes are broadly similar in structure (e.g. size, GC content, number of coding sequences). Genome content analysis revealed that general classes of putative host-microbe interaction functions, such as secretion systems and toxin classes, were identified in all bacterial strains. In contrast, we observed diversity of individual genes within families (e.g. non-ribosomal peptide synthetase clusters and insecticidal toxin components), indicating the specific molecules secreted by each strain can vary. Additionally, phenotypic analysis indicates that regulation of activities (e.g. enzymes and motility) differs among strains. CONCLUSIONS The analyses presented here demonstrate that while general mechanisms by which X. bovienii bacterial strains interact with their invertebrate hosts are similar, the specific molecules mediating these interactions differ. Our data support that adaptation of individual bacterial strains to distinct hosts or niches has occurred. For example, diverse metabolic profiles among bacterial symbionts may have been selected by dissimilarities in nutritional requirements of their different nematode hosts. Similarly, factors involved in parasitism (e.g. immune suppression and microbial competition factors), likely differ based on evolution in response to naturally encountered organisms, such as insect hosts, competitors, predators or pathogens. This study provides insight into effectors of a symbiotic lifestyle, and also highlights that when mining Xenorhabdus species for novel natural products, including antibiotics and insecticidal toxins, analysis of multiple bacterial strains likely will increase the potential for the discovery of novel molecules.
Collapse
Affiliation(s)
- Kristen E Murfin
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Amy C Whooley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Jonathan L Klassen
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Pineda-Castellanos ML, Rodríguez-Segura Z, Villalobos FJ, Hernández L, Lina L, Nuñez-Valdez ME. Pathogenicity of Isolates of Serratia Marcescens towards Larvae of the Scarab Phyllophaga Blanchardi (Coleoptera). Pathogens 2015; 4:210-28. [PMID: 25984910 PMCID: PMC4493471 DOI: 10.3390/pathogens4020210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 11/16/2022] Open
Abstract
Serratia marcescens is a Gram negative bacterium (Enterobacteriaceae) often associated with infection of insects. In order to find pathogenic bacteria with the potential to control scarab larvae, several bacterial strains were isolated from the hemocoel of diseased Phyllophaga spp (Coleoptera:Scarabaeidae) larvae collected from cornfields in Mexico. Five isolates were identified as Serratia marcescens by 16S rRNA gene sequencing and biochemical tests. Oral and injection bioassays using healthy Phyllophaga blanchardi larvae fed with the S. marcescens isolates showed different degrees of antifeeding effect and mortality. No insecticidal activity was observed for Spodoptera frugiperda larvae (Lepidoptera: Noctuidae) by oral inoculation. S. marcescens (Sm81) cell-free culture supernatant caused significant antifeeding effect and mortality to P. blanchardi larvae by oral bioassay and also mortality by injection bioassay. Heat treated culture broths lost the ability to cause disease symptoms, suggesting the involvement of proteins in the toxic activity. A protein of 50.2 kDa was purified from the cell-free broth and showed insecticidal activity by injection bioassay towards P. blanchardi. Analysis of the insecticidal protein by tandem- mass spectrometry (LC-MS/MS) showed similarity to a Serralysin-like protein from S. marcescens spp. This insecticidal protein could have applications in agricultural biotechnology.
Collapse
Affiliation(s)
- Mónica L Pineda-Castellanos
- Centro de Investigación en Dinámica Celular, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209, Cuernavaca, Morelos, Mexico.
| | - Zitlhally Rodríguez-Segura
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico.
| | - Francisco J Villalobos
- El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n Barrio María Auxiliadora, CP 29290, San Cristóbal de Las Casas, Chiapas, Mexico.
| | - Luciano Hernández
- Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico D.F., Mexico.
| | - Laura Lina
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico.
| | - M Eugenia Nuñez-Valdez
- Centro de Investigación en Dinámica Celular, Instituto de Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
14
|
Functional type 1 secretion system involved in Legionella pneumophila virulence. J Bacteriol 2014; 197:563-71. [PMID: 25422301 DOI: 10.1128/jb.02164-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila is a Gram-negative pathogen found mainly in water, either in a free-living form or within infected protozoans, where it replicates. This bacterium can also infect humans by inhalation of contaminated aerosols, causing a severe form of pneumonia called legionellosis or Legionnaires' disease. The involvement of type II and IV secretion systems in the virulence of L. pneumophila is now well documented. Despite bioinformatic studies showing that a type I secretion system (T1SS) could be present in this pathogen, the functionality of this system based on the LssB, LssD, and TolC proteins has never been established. Here, we report the demonstration of the functionality of the T1SS, as well as its role in the infectious cycle of L. pneumophila. Using deletion mutants and fusion proteins, we demonstrated that the repeats-in-toxin protein RtxA is secreted through an LssB-LssD-TolC-dependent mechanism. Moreover, fluorescence monitoring and confocal microscopy showed that this T1SS is required for entry into the host cell, although it seems dispensable to the intracellular cycle. Together, these results underline the active participation of L. pneumophila, via its T1SS, in its internalization into host cells.
Collapse
|
15
|
Petersen LM, Tisa LS. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence. J Bacteriol 2014; 196:3923-36. [PMID: 25182493 PMCID: PMC4248818 DOI: 10.1128/jb.01908-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023] Open
Abstract
A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex.
Collapse
Affiliation(s)
- Lauren M Petersen
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| |
Collapse
|
16
|
Identification of a Serratia marcescens virulence factor that promotes hemolymph bleeding in the silkworm, Bombyx mori. J Invertebr Pathol 2014; 117:61-7. [DOI: 10.1016/j.jip.2014.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/14/2022]
|
17
|
Ishii K, Adachi T, Hamamoto H, Sekimizu K. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells. J Biol Chem 2014; 289:5876-88. [PMID: 24398686 DOI: 10.1074/jbc.m113.544536] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.
Collapse
Affiliation(s)
- Kenichi Ishii
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
18
|
Chang YT, Hsieh C, Wu LC, Chang HC, Kao SS, Meng M, Hsieh FC. Purification and properties of an insecticidal metalloprotease produced by Photorhabdus luminescens strain 0805-P5G, the entomopathogenic nematode symbiont. Int J Mol Sci 2012; 14:308-21. [PMID: 23344035 PMCID: PMC3565265 DOI: 10.3390/ijms14010308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/03/2022] Open
Abstract
A total of 13 Photorhabdus luminescens strains were screened for proteolytic activity. The P. luminescens strain 0805-P5G had the highest activity on both skim milk and gelatin plates. The protease was purified to electrophoretical homogeneity by using a two-step column chromatographic procedure. It had a molecular weight of 51.8 kDa, as determined by MALDI-TOF mass spectrometry. The optimum pH, temperature, as well as pH and thermal stabilities were 8, 60 °C, 5–10, and 14–60 °C, respectively. It was completely inhibited by EDTA and 1,10-phenanthroline. Bioassay of the purified protease against Galleria mellonella by injection showed high insecticidal activity. The protease also showed high oral toxicity to the diamondback moth (Plutella xylostella) of a Taiwan field-collected strain, but low toxicity to an American strain. To our knowledge, this is the first report to demonstrate that the purified protease of P. luminescens has direct toxicity to P. xylostella and biopesticide potentiality.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- Institute of Biotechnology and Bioinformatics, Asia University, Wufeng, Taichung 413, Taiwan; E-Mails: (Y.T.C.); (H.C.C.)
| | - Chienyan Hsieh
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 824, Taiwan; E-Mail:
| | - Li-Ching Wu
- Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Wufeng, Taichung 413, Taiwan; E-Mails: (L.-C.W.); (S.-S.K.)
| | - Hebron C. Chang
- Institute of Biotechnology and Bioinformatics, Asia University, Wufeng, Taichung 413, Taiwan; E-Mails: (Y.T.C.); (H.C.C.)
| | - Suey-Sheng Kao
- Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Wufeng, Taichung 413, Taiwan; E-Mails: (L.-C.W.); (S.-S.K.)
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (M.M.); (F.-C.H.); Tel.: +886-4-22840328 (ext. 636) (M.M.); +886-4-23302101 (ext. 813) (F.-C.H.); Fax: +886-4-22853527 (M.M.); +886-4-23323073 (F.-C.H.)
| | - Feng-Chia Hsieh
- Biopesticides Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Wufeng, Taichung 413, Taiwan; E-Mails: (L.-C.W.); (S.-S.K.)
- Authors to whom correspondence should be addressed; E-Mails: (M.M.); (F.-C.H.); Tel.: +886-4-22840328 (ext. 636) (M.M.); +886-4-23302101 (ext. 813) (F.-C.H.); Fax: +886-4-22853527 (M.M.); +886-4-23323073 (F.-C.H.)
| |
Collapse
|
19
|
Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA. A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 2012; 337:88-93. [PMID: 22767929 PMCID: PMC4006969 DOI: 10.1126/science.1216641] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial populations stochastically generate variants with strikingly different properties, such as virulence or avirulence and antibiotic tolerance or sensitivity. Photorhabdus luminescens bacteria have a variable life history in which they alternate between pathogens to a wide variety of insects and mutualists to their specific host nematodes. Here, we show that the P. luminescens pathogenic variant (P form) switches to a smaller-cell variant (M form) to initiate mutualism in host nematode intestines. A stochastic promoter inversion causes the switch between the two distinct forms. M-form cells are much smaller (one-seventh the volume), slower growing, and less bioluminescent than P-form cells; they are also avirulent and produce fewer secondary metabolites. Observations of form switching by individual cells in nematodes revealed that the M form persisted in maternal nematode intestines, were the first cells to colonize infective juvenile (IJ) offspring, and then switched to P form in the IJ intestine, which armed these nematodes for the next cycle of insect infection.
Collapse
Affiliation(s)
- Vishal S. Somvanshi
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Rudolph E. Sloup
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Jason M. Crawford
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R. Martin
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Anthony J. Heidt
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Kwi-suk Kim
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Todd A. Ciche
- Department of Microbiology and Molecular Genetics and Center for Microbial Pathogenesis, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|
21
|
Jallouli W, Jaoua S, Zouari N. Overcoming the production limitations of Photorhabdus temperata ssp. temperata strain K122 bioinsecticides in low-cost medium. Bioprocess Biosyst Eng 2011; 34:1039-47. [PMID: 21656156 DOI: 10.1007/s00449-011-0554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
For low-cost production of Photorhabdus temperata ssp. temperata strain K122 bioinsecticide, a cheap complex medium was optimized. Diluted seawater was used as the source of micronutrients, especially sodium chloride, involved in the improvement of cell density, culturability and oral toxicity of the bacterium P. temperata against Ephestia kuehniella larvae. Thus, the new formulated medium was composed only of 10 g/l of soya bean meal, used as the carbon and nitrogen main source, mixed in sevenfold diluted seawater. At such conditions, several limitations of P. temperata bioinsecticide productions were shown to be overcome. The appearance of variants small colony polymorphism was completely avoided. Thus, the strain K122 was maintained at the primary form even after prolonged incubation. Moreover, the viable but nonculturable state was partially overcome, since the ability of P. temperata cells to form colonies on the solid medium was prolonged until 78 h of incubation. In addition, when cultured in the complex medium, P. temperata cells were produced at high cell density of 12 × 10(8) cells/ml and exhibited 81.48% improvement of oral toxicity compared to those produced in the optimized medium. With such medium, the large-scale bioinsecticides production into 3-l fully controlled fermenter improved the total cell counts, CFU counts and oral toxicity by 20, 5.81 and 16.73%, respectively. This should contribute to a significant reduction of production cost of highly potent P. temperata strain K122 cells, useful as a bioinsecticide.
Collapse
Affiliation(s)
- Wafa Jallouli
- Laboratoire de Protection et Amélioration des Plantes Team of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, PO Box 1177, 3018 Sfax, Tunisia
| | | | | |
Collapse
|
22
|
Abstract
The two hemolysin gene clusters previously identified in Vibrio anguillarum, the vah1 cluster and the rtxACHBDE cluster, are responsible for the hemolytic and cytotoxic activities of V. anguillarum in fish. In this study, we used degenerate PCR to identify a positive hemolysin regulatory gene, hlyU, from the unsequenced V. anguillarum genome. The hlyU gene of V. anguillarum encodes a 92-amino-acid protein and is highly homologous to other bacterial HlyU proteins. An hlyU mutant was constructed, which exhibited an ∼5-fold decrease in hemolytic activity on sheep blood agar with no statistically significant decrease in cytotoxicity of the wild-type strain. Complementation of the hlyU mutation restored both hemolytic activity and cytotoxic activity. Both semiquantitative reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR (qRT-PCR) were used to examine expression of the hemolysin genes under exponential and stationary-phase conditions in wild-type, hlyU mutant, and hlyU complemented strains. Compared to the wild-type strain, expression of rtx genes decreased in the hlyU mutant, while expression of vah1 and plp was not affected in the hlyU mutant. Complementation of the hlyU mutation restored expression of the rtx genes and increased vah1 and plp expression to levels higher than those in the wild type. The transcriptional start sites in both the vah1-plp and rtxH-rtxB genes' intergenic regions were determined using 5' random amplification of cDNA ends (5'-RACE), and the binding sites for purified HlyU were discovered using DNA gel mobility shift experiments and DNase protection assays.
Collapse
|
23
|
Massaoud MK, Marokházi J, Venekei I. Enzymatic characterization of a serralysin-like metalloprotease from the entomopathogen bacterium, Xenorhabdus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1333-9. [PMID: 21635975 DOI: 10.1016/j.bbapap.2011.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022]
Abstract
We investigated the enzymatic properties of a serralysin-type metalloenzyme, provisionally named as protease B, which is secreted by Xenorhabdus bacterium, and probably is the ortholog of PrA peptidase of Photorhabdus bacterium. Testing the activity on twenty-two oligopeptide substrates we found that protease B requires at least three amino acids N-terminal to the scissile bond for detectable hydrolysis. On such substrate protease B was clearly specific for positively charged residues (Arg and Lys) at the P1 substrate position and was rather permissive in the others. Interestingly however, it preferred Ser at P1 in the oligopeptide substrate which contained amino acids also C-terminal to the scissile bond, and was cleaved with the highest k(cat)/K(M) value. The pH profile of activity, similarly to other serralysins, has a wide peak with high values between pH 6.5 and 8.0. The activity was slightly increased by Cu(2+) and Co(2+) ions, it was not sensitive for serine protease inhibitors, but it was inhibited by 1,10-phenanthroline, features shared by many Zn-metalloproteases. At the same time, EDTA inhibited the activity only partially even either after long incubation or in excess amount, and Zn(2+) was inhibitory (both are unusual among serralysins). The 1,10-phenanthroline inhibited activity could be restored with the addition of Mn(2+), Cu(2+) and Co(2+) up to 90-200% of its original value, while Zn(2+) was inefficient. We propose that both the Zn inhibition of protease B activity and its resistance to EDTA inhibition might be caused by an Asp in position 191 where most of the serralysins contain Asn.
Collapse
Affiliation(s)
- Mustafa K Massaoud
- Department of Biochemistry, Eotovos Lorand University, Budapest, Hungary.
| | | | | |
Collapse
|
24
|
Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev 2011; 25:203-43. [PMID: 21412357 DOI: 10.5661/bger-25-203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prokaryotic microorganisms are widespread in all environments on Earth, establishing diverse interactions with many eukaryotic taxa, including insects. These associations may be symbiotic, pathogenic and vectoring. Independently of the type of interaction, each association starts with the adhesion of the microorganism to the host, entry and "invasion" of the host, then progresses to establishment and dissemination within the host, by avoiding host immune responses, and concludes with transmission back to the environment or to a new host. Advances in genomics and genetics have allowed the dissection of these processes and provided important information on the elements driving the shaping of the members of each association. Furthermore, many mechanisms involved in the establishment of the associations have been scrutinised, along with the development of new methods for the management of insect populations.
Collapse
|
25
|
Felföldi G, Eleftherianos I, Ffrench-Constant RH, Venekei I. A serine proteinase homologue, SPH-3, plays a central role in insect immunity. THE JOURNAL OF IMMUNOLOGY 2011; 186:4828-34. [PMID: 21398604 DOI: 10.4049/jimmunol.1003246] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Numerous vertebrate and invertebrate genes encode serine proteinase homologues (SPHs) similar to members of the serine proteinase family, but lacking one or more residues of the catalytic triad. These SPH proteins are thought to play a role in immunity, but their precise functions are poorly understood. In this study, we show that SPH-3 (an insect non-clip domain-containing SPH) is of central importance in the immune response of a model lepidopteran, Manduca sexta. We examine M. sexta infection with a virulent, insect-specific, Gram-negative bacterium Photorhabdus luminescens. RNA interference suppression of bacteria-induced SPH-3 synthesis severely compromises the insect's ability to defend itself against infection by preventing the transcription of multiple antimicrobial effector genes, but, surprisingly, not the transcription of immune recognition genes. Upregulation of the gene encoding prophenoloxidase and the activity of the phenoloxidase enzyme are among the antimicrobial responses that are severely attenuated on SPH-3 knockdown. These findings suggest the existence of two largely independent signaling pathways controlling immune recognition by the fat body, one governing effector gene transcription, and the other regulating genes encoding pattern recognition proteins.
Collapse
Affiliation(s)
- Gabriella Felföldi
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | | | | | | |
Collapse
|
26
|
Lanois A, Pages S, Bourot S, Canoy AS, Givaudan A, Gaudriault S. Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects. Appl Environ Microbiol 2011; 77:1009-20. [PMID: 21131515 PMCID: PMC3028736 DOI: 10.1128/aem.01696-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/20/2010] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H(2)O(2) and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects.
Collapse
Affiliation(s)
- A. Lanois
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Pages
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Bourot
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A.-S. Canoy
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A. Givaudan
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Gaudriault
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| |
Collapse
|
27
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jones RT, Sanchez-Contreras M, Vlisidou I, Amos MR, Yang G, Muñoz-Berbel X, Upadhyay A, Potter UJ, Joyce SA, Ciche TA, Jenkins ATA, Bagby S, Ffrench-Constant RH, Waterfield NR. Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment. BMC Microbiol 2010; 10:141. [PMID: 20462430 PMCID: PMC2878306 DOI: 10.1186/1471-2180-10-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 05/12/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. RESULTS A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. CONCLUSIONS We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite its abundance and conservation in the genus, we find no evidence for a role of Pam in either virulence or symbiosis.
Collapse
Affiliation(s)
- Robert T Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Identification of natural target proteins indicates functions of a serralysin-type metalloprotease, PrtA, in anti-immune mechanisms. Appl Environ Microbiol 2009; 75:3120-6. [PMID: 19304826 DOI: 10.1128/aem.02271-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serralysins are generally thought to function as pathogenicity factors of bacteria, but so far no hard evidence of this (e.g., specific substrate proteins that are sensitive to the cleavage by these proteases) has been found. We have looked for substrate proteins to a serralysin-type proteinase, PrtA, in a natural host-pathogen molecular interaction system involving Manduca sexta and Photorhabdus luminescens. The exposure in vitro of hemolymph to PrtA digestion resulted in selective cleavage of 16 proteins, provisionally termed PAT (PrtA target) proteins. We could obtain sequence information for nine of these PrtA sensitive proteins, and by searching databases, we could identify six of them. Each has immune-related function involving every aspect of the immune defense: beta-1,3 glucan recognition protein 2 (immune recognition), hemocyte aggregation inhibitor protein (HAIP), serine proteinase homolog 3, six serpin-1 variants, including serpin-1I (immune signaling and regulation), and scolexins A and B (coagulation cascade effector function). The functions of the identified PrtA substrate proteins shed new light on a possible participation of a serralysin in the virulence mechanism of a pathogen. Provided these proteins are targets of PrtA in vivo, this might represent, among others, a complex suppressive role on the innate immune response via interference with both the recognition and the elimination of the pathogen during the first, infective stage of the host-pathogen interaction. Our results also raise the possibility that the natural substrate proteins of serralysins of vertebrate pathogens might be found among the components of the innate immune system.
Collapse
|
30
|
Hinchliffe SJ, Howard SL, Huang YH, Clarke DJ, Wren BW. The importance of the Rcs phosphorelay in the survival and pathogenesis of the enteropathogenic yersiniae. Microbiology (Reading) 2008; 154:1117-1131. [DOI: 10.1099/mic.0.2007/012534-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Stewart J. Hinchliffe
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sarah L. Howard
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Yahui H. Huang
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, UK
| | - David J. Clarke
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, UK
| | - Brendan W. Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
31
|
Abstract
Recent genetic and molecular analyses have revealed how several strategies enable bacteria to persist and overcome insect immune defences. Genetic and genomic tools that can be used with Drosophila melanogaster have enabled the characterization of the pathways that are used by insects to detect bacterial invaders and combat infection. Conservation of bacterial virulence factors and insect immune repertoires indicates that there are common strategies of host invasion and pathogen eradication. Long-term interactions of bacteria with insects might ensure efficient dissemination of pathogens to other hosts, including humans.
Collapse
|
32
|
Krin E, Derzelle S, Bedard K, Adib-Conquy M, Turlin E, Lenormand P, Hullo MF, Bonne I, Chakroun N, Lacroix C, Danchin A. Regulatory role of UvrY in adaptation of Photorhabdus luminescens growth inside the insect. Environ Microbiol 2008; 10:1118-34. [PMID: 18248456 DOI: 10.1111/j.1462-2920.2007.01528.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report global expression profiling of a uvrY-deficient mutant of Photorhabdus luminescens. We found that the regulator moiety of the two-component regulatory system BarA/UvrY regulated more than 500 target genes coding for functions involved in the synthesis of major compartments and metabolic pathways of the cell. This regulation appeared to be in part indirect as UvrY affected the expression of several regulators. Indeed, the flagellum biosynthesis transcription activator FlhC and the flagella regulon were induced in the absence of UvrY, leading to a hyperflagellated phenotype and an increase in motility and biofilm formation. Two major regulatory systems were also altered: the type 2 quorum-sensing inducer AI-2 was activated by UvrY, and the CsrA regulator function appeared to be repressed by the increase of the small-untranslated RNA csrB, the CsrA activity inhibitor TldD and the chaperonin GroESL. Both through and independently of these systems, UvrY regulated oxidative stress resistance; bioluminescence; iron, sugar and peptide transport; proteases; polyketide synthesis enzymes and nucleobases recycling, related to insect degradation and assimilation by bacteria. As a consequence, the uvrY-deficient strain exhibited a decreased killing of insect cells and a reduced growth on insect cells culture, suggesting a UvrY role in the adaptation of P. luminescens inside the insect.
Collapse
Affiliation(s)
- Evelyne Krin
- Unite de Genetique des Genomes Bacteriens (URA2171), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ffrench-Constant RH, Eleftherianos I, Reynolds SE. A nematode symbiont sheds light on invertebrate immunity. Trends Parasitol 2007; 23:514-7. [PMID: 17964855 DOI: 10.1016/j.pt.2007.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 11/16/2022]
Abstract
Photorhabdus bacteria live in a 'symbiosis of pathogens' with nematodes that invade and kill insects. Recent work has begun to use the power of the model insect Drosophila to dissect the molecular basis of the invertebrate immune response to the combined insult of the worms and their symbiotic bacterial pathogens. By using RNA interference, it is now also possible to dissect this complex tripartite interaction in a range of both model and non-model hosts.
Collapse
|
34
|
A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 2007; 73:7622-8. [PMID: 17933944 DOI: 10.1128/aem.01000-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens is a gram-negative insect pathogen that enters the hemocoel of infected hosts and produces a number of secreted proteins that promote colonization and subsequent death of the insect. In initial studies to determine the exact role of individual secreted proteins in insect pathogenesis, concentrated culture supernatants from various P. luminescens strains were injected into the tobacco hornworm Manduca sexta. Culture supernatants from P. luminescens TT01, the genome-sequenced strain, stimulated a rapid melanization reaction in M. sexta. Comparison of the profiles of secreted proteins from the various Photorhabdus strains revealed a single protein of approximately 37 kDa that was significantly overrepresented in the TT01 culture supernatant. This protein was purified by DEAE ion-exchange and Superdex 75 gel filtration chromatography and identified by matrix-assisted laser desorption ionization-time of flight analysis as the product of the TT01 gene plu1382 (NCBI accession number NC_005126); we refer to it here as PrtS. PrtS is a member of the M4 metalloprotease family. Injection of PrtS into larvae of M. sexta and Galleria mellonella and into adult Drosophila melanogaster and D. melanogaster melanization mutants (Bc) confirmed that the purified protein induced the melanization reaction. The prtS gene was transcribed by P. luminescens injected into M. sexta before death of the insect, suggesting that the protein was produced during infection. The exact function of this protease during infection is not clear. The bacteria might survive inside the insect despite the melanization process, or it might be that the bacterium is specifically activating melanization in an attempt to circumvent this innate immune response.
Collapse
|
35
|
Hallem EA, Rengarajan M, Ciche TA, Sternberg PW. Nematodes, bacteria, and flies: a tripartite model for nematode parasitism. Curr Biol 2007; 17:898-904. [PMID: 17475494 DOI: 10.1016/j.cub.2007.04.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/04/2007] [Accepted: 04/10/2007] [Indexed: 11/21/2022]
Abstract
More than a quarter of the world's population is infected with nematode parasites, and more than a hundred species of nematodes are parasites of humans [1-3]. Despite extensive morbidity and mortality caused by nematode parasites, the biological mechanisms of host-parasite interactions are poorly understood, largely because of the lack of genetically tractable model systems. We have demonstrated that the insect parasitic nematode Heterorhabditis bacteriophora, its bacterial symbiont Photorhabdus luminescens, and the fruit fly Drosophila melanogaster constitute a tripartite model for nematode parasitism and parasitic infection. We find that infective juveniles (IJs) of Heterorhabditis, which contain Photorhabdus in their gut, can infect and kill Drosophila larvae. We show that infection activates an immune response in Drosophila that results in the temporally dynamic expression of a subset of antimicrobial peptide (AMP) genes, and that this immune response is induced specifically by Photorhabdus. We also investigated the cellular and molecular mechanisms underlying IJ recovery, the developmental process that occurs in parasitic nematodes upon host invasion and that is necessary for successful parasitism. We find that the chemosensory neurons and signaling pathways that control dauer recovery in Caenorhabditis elegans also control IJ recovery in Heterorhabditis, suggesting conservation of these developmental processes across free-living and parasitic nematodes.
Collapse
Affiliation(s)
- Elissa A Hallem
- Howard Hughes Medical Institute, Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
36
|
Marokházi J, Mihala N, Hudecz F, Fodor A, Gráf L, Venekei I. Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate. FEBS J 2007; 274:1946-56. [PMID: 17355285 DOI: 10.1111/j.1742-4658.2007.05739.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was the development of a sensitive and specific substrate for protease A (PrtA), a serralysin-like metzincin from the entomopathogenic microorganism, Photorhabdus. First, cleavage of three biological peptides, the A and B chains of insulin and beta-lipotropin, and of 15 synthetic peptides, was investigated. In the biological peptides, a preference for the hydrophobic residues Ala, Leu and Val was observed at three substrate positions, P2, P1' and P2'. At these positions in the synthetic peptides the preferred residues were Val, Ala and Val, respectively. They contributed to the efficiency of hydrolysis in the order P1' > P2 > P2'. Six amino acids of the synthetic peptides were sufficient to reach the maximum rate of hydrolysis, in accordance with the ability of PrtA to cleave three amino acids from both the N- and the C-terminus of some fragments of biological peptides. Using the best synthetic peptide, a fluorescence-quenched substrate, N-(4-[4'(dimethylamino)phenylazo]benzoyl-EVYAVES-5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was prepared. The approximately 4 x 10(6) M(-1) x s(-1) specificity constant of PrtA (at K(m) approximately 5 x 10(-5) M and k(cat) approximately 2 x 10(2) s(-1)) on this substrate was the highest activity for a serralysin-type enzyme, allowing precise measurement of the effects of several inhibitors and pH on PrtA activity. These showed the characteristics of a metalloenzyme and a wide range of optimum pH, similar to other serralysins. PrtA activity could be measured in biological samples (Photorhabdus-infected insect larvae) without interference from other enzymes, which indicates that substrate selectivity is high towards PrtA. The substrate sensitivity allowed early (14 h post infection) detection of PrtA, which might indicate PrtA's participation in the establishment of infection and not only, as it has been supposed, in bioconversion.
Collapse
Affiliation(s)
- Judit Marokházi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
37
|
Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas A. Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella. Infect Immun 2006; 75:175-83. [PMID: 17074843 PMCID: PMC1828416 DOI: 10.1128/iai.01385-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermolysin-like metalloproteinases such as aureolysin, pseudolysin, and bacillolysin represent virulence factors of diverse bacterial pathogens. Recently, we discovered that injection of thermolysin into larvae of the greater wax moth, Galleria mellonella, mediated strong immune responses. Thermolysin-mediated proteolysis of hemolymph proteins yielded a variety of small-sized (<3 kDa) protein fragments (protfrags) that are potent elicitors of innate immune responses. In this study, we report the activation of a serine proteinase cascade by thermolysin, as described for bacterial lipopolysaccharides (LPS), that results in subsequent prophenoloxidase activation leading to melanization, an elementary immune defense reaction of insects. Quantitative real-time reverse transcription-PCR analyses of the expression of immune-related genes encoding the inducible metalloproteinase inhibitor, gallerimycin, and lysozyme demonstrated increased transcriptional rates after challenge with purified protfrags similar to rates after challenge with LPS. Additionally, we determined the induction of a similar spectrum of immune-responsive proteins that were secreted into the hemolymph by using comparative proteomic analyses of hemolymph proteins from untreated larvae and from larvae that were challenged with either protfrags or LPS. Since G. mellonella was recently established as a valuable pathogenicity model for Cryptococcus neoformans infection, the present results add to our understanding of the mechanisms of immune responses in G. mellonella. The obtained results support the proposed danger model, which suggests that the immune system senses endogenous alarm signals during infection besides recognition of microbial pattern molecules.
Collapse
Affiliation(s)
- Boran Altincicek
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
38
|
Song JK, Kim HS, Ahn HJ, Song BK, Rhee JS. Heterologous ABC exporter-based cloning of gram-negative bacterial type I secretion pathway-dependent metalloproteases from an Erwinia genomic DNA library in Escherichia coli. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Park D, Forst S. Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 2006; 61:1397-412. [PMID: 16889644 DOI: 10.1111/j.1365-2958.2006.05320.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenorhabdus nematophila is an emerging model for both mutualism and pathogenicity in different invertebrate hosts. Here we conduct a mutant study of the EnvZ-OmpR two-component system and the flagella sigma factor, FliA (sigma28). Both ompR and envZ strains displayed precocious swarming behaviour, elevated flhD and fliA mRNA levels and early production of lipase, protease, haemolysin and antibiotic activity. Inactivation of fliA eliminated exoenzyme production which was restored by complementation with the fliAZ operon. Inactivation of flhA, a gene encoding a component of the flagella export apparatus, eliminated lipase but not protease or haemolysin production indicating these enzymes are secreted by different export pathways. FliA-regulated lipase (xlpA) and protease (xrtA) genes were identified. Their expression and level of production were elevated in the ompR and envZ strains and markedly reduced in the fliA strain while both were expressed normally in the flhA strain. We also found that expression of nrps1 which encodes a non-ribosomal peptide synthetase was elevated in the ompR and envZ strains. The fliA strain was pathogenic towards the insect host indicating that motility and FliA-regulated exoenzyme production were not essential for virulence. These findings support a model in which the EnvZ-OmpR-FlhDC-FliA regulatory network co-ordinately controls flagella synthesis, and exoenzyme and antibiotic production in X. nematophila.
Collapse
Affiliation(s)
- Dongjin Park
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | |
Collapse
|
40
|
Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2006; 2:e56. [PMID: 16789834 PMCID: PMC1475658 DOI: 10.1371/journal.ppat.0020056] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/28/2006] [Indexed: 01/22/2023] Open
Abstract
Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens. Normal feeding and digestion involves the ingestion of many microorganisms. Many are innocuous, some are commensal, and others may be pathogenic. Eukaryotes have thus evolved complex mechanisms to detect, control, and if necessary, eliminate intestinal microbes. Insects are no exception, and the fruit fly, Drosophila, employs a physical barrier within the intestinal lumen and the peritrophic matrix, and an innate immune response which exhibits similarities to the mammalian counterpart. Pseudomonas entomophila was identified as a novel entomopathogenic bacterium that can infect and colonize the gut of Drosophila. In this paper, Liehl et al. describe one specific secreted virulence factor of P. entomophila, the zinc metalloprotease, AprA, which they demonstrate to be required for defense against the host gut epithelial immune response. AprA defends P. entomophila against the Drosophila antimicrobial peptides, produced by the gut innate immune response. P. entomophila aprA mutants are attenuated for virulence in wild-type Drosophila but are equally infective as wild-type bacteria in immune-deficient mutant flies that do not express these antimicrobial peptides. Although secreted proteases have previously been described as a potentially important defense against host immune proteins, this is one of the rare examples of an in vivo demonstration of such a specific role against insect antimicrobial peptides.
Collapse
Affiliation(s)
- Peter Liehl
- Centre de Génétique Moléculaire, Centre National de la Rercheche Scientifique, Gif-sur-Yvette, France
| | - Mark Blight
- Centre de Génétique Moléculaire, Centre National de la Rercheche Scientifique, Gif-sur-Yvette, France
| | - Nicolas Vodovar
- Centre de Génétique Moléculaire, Centre National de la Rercheche Scientifique, Gif-sur-Yvette, France
| | - Frédéric Boccard
- Centre de Génétique Moléculaire, Centre National de la Rercheche Scientifique, Gif-sur-Yvette, France
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire, Centre National de la Rercheche Scientifique, Gif-sur-Yvette, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Styer KL, Hopkins GW, Bartra SS, Plano GV, Frothingham R, Aballay A. Yersinia pestis kills Caenorhabditis elegans by a biofilm-independent process that involves novel virulence factors. EMBO Rep 2006; 6:992-7. [PMID: 16170309 PMCID: PMC1369189 DOI: 10.1038/sj.embor.7400516] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/19/2005] [Accepted: 08/02/2005] [Indexed: 11/08/2022] Open
Abstract
It is known that Yersinia pestis kills Caenorhabditis elegans by a biofilm-dependent mechanism that is similar to the mechanism used by the pathogen to block food intake in the flea vector. Using Y. pestis KIM 5, which lacks the genes that are required for biofilm formation, we show that Y. pestis can kill C. elegans by a biofilm-independent mechanism that correlates with the accumulation of the pathogen in the intestine. We used this novel Y. pestis-C. elegans pathogenesis system to show that previously known and unknown virulence-related genes are required for full virulence in C. elegans. Six Y. pestis mutants with insertions in genes that are not related to virulence before were isolated using C. elegans. One of the six mutants carried an insertion in a novel virulence gene and showed significantly reduced virulence in a mouse model of Y. pestis pathogenesis. Our results indicate that the Y. pestis-C. elegans pathogenesis system that is described here can be used to identify and study previously uncharacterized Y. pestis gene products required for virulence in mammalian systems.
Collapse
Affiliation(s)
- Katie L Styer
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tao K, Long Z, Liu K, Tao Y, Liu S. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr Microbiol 2005; 52:45-9. [PMID: 16391997 DOI: 10.1007/s00284-005-0089-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 07/07/2005] [Indexed: 11/24/2022]
Abstract
One or more proteinaceous factors with insecticidal activities in the locust pathogen Serratia marcescens HR-3 culture filtrates were found to cause the death of grassland locusts. A novel insecticidal protein was purified to homogeneity. It was a monomer of 61 kDa. The purified protein showed a strong insecticidal effect with a median lethal dosage of 12.1 microg locust(-1) and contained a high level of protease activity (101 U ml(-1)). Insecticidal activity was significantly decreased when the protein was pretreated with ethylene diamine tetraacetic acid and 1-10-phenanthroline, and it was restored when the treated protein was incubated with Zn(2+). The N-terminal amino acid sequence of insecticidal protein showed sequence similarity with metalloprotease from S. marcescens SM6 and Serratia spp. E15. Our results suggested that the factor primarily responsible for insecticidal activity toward locusts was a zinc-dependent 61-kDa metalloprotease.
Collapse
Affiliation(s)
- Ke Tao
- National Laboratory of Grassland Biocontrol Engineering, College of Life Science, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Marokházi J, Lengyel K, Pekár S, Felföldi G, Patthy A, Gráf L, Fodor A, Venekei I. Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes. Appl Environ Microbiol 2004; 70:7311-20. [PMID: 15574931 PMCID: PMC535150 DOI: 10.1128/aem.70.12.7311-7320.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 08/01/2004] [Indexed: 11/20/2022] Open
Abstract
Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (approximately 74, approximately 55, approximately 54, and approximately 37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokhazi, G. Koczan, F. Hudecz, L. Graf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.
Collapse
Affiliation(s)
- Judit Marokházi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cabral CM, Cherqui A, Pereira A, Simões N. Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Appl Environ Microbiol 2004; 70:3831-8. [PMID: 15240252 PMCID: PMC444805 DOI: 10.1128/aem.70.7.3831-3838.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10 degrees C the activity was highest and remained constant for over 7 days, whereas at 23 and 28 degrees C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50 degrees C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80 degrees C and was optimal at pH 7 and 50 degrees C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.
Collapse
Affiliation(s)
- C M Cabral
- CIRN and Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Azores, Portugal
| | | | | | | |
Collapse
|
45
|
Meslet-Cladiere LM, Pimenta A, Duchaud E, Holland IB, Blight MA. In vivo expression of the mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. J Bacteriol 2004; 186:611-22. [PMID: 14729685 PMCID: PMC321496 DOI: 10.1128/jb.186.3.611-622.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus temperata K122 is an entomopathogenic bacterium symbiotically associated with nematodes of the family Heterorhabditidae: Surface fimbriae are important for the colonization of many pathogenic bacteria, and here we report the nucleotide sequence and analysis of the expression of a 12-kbp fragment encoding the mannose-resistant fimbriae of P. temperata (mrf). The mrf gene cluster contains 11 genes with an organization similar to that of the mrp locus from Proteus mirabilis. mrfI (encoding a putative recombinase) and mrfA (encoding pilin), the first gene in an apparent operon of nine other genes, are expressed from divergent promoters. The mrfI-mrfA intergenic region contains inverted repeats flanking the mrfA promoter. This region was shown to be capable of inversion, consistent with an ON/OFF regulation of the operon. In in vitro liquid cultures, both orientations were detected. Nevertheless, when we analyzed the expression of all of the genes in the mrf locus by semiquantitative reverse transcription-PCR during infection of Galleria mellonella (greater wax moth) larvae, expression of mrfA was not detected until 25 h postinfection, preceding the death of the larvae at 32 h. In contrast, mrfJ (a putative inhibitor of flagellar synthesis) was expressed throughout infection. Expression of mrfI was also detected only late in infection (25 to 30 h), indicating a possible increase in inversion frequency at this stage. In both in vitro liquid cultures and in vivo larval infections, the distal genes of the operon were expressed at substantially lower levels than mrfA. These results indicate the complex regulation of the mrf cluster during infection.
Collapse
Affiliation(s)
- L M Meslet-Cladiere
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Laboratoire de Pathogenèse Comparée, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|