1
|
Characterization of inositol lipid metabolism in gut-associated Bacteroidetes. Nat Microbiol 2022; 7:986-1000. [PMID: 35725777 PMCID: PMC9246714 DOI: 10.1038/s41564-022-01152-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
Inositol lipids are ubiquitous in eukaryotes and have finely tuned roles in cellular signalling and membrane homoeostasis. In Bacteria, however, inositol lipid production is relatively rare. Recently, the prominent human gut bacterium Bacteroides thetaiotaomicron (BT) was reported to produce inositol lipids and sphingolipids, but the pathways remain ambiguous and their prevalence unclear. Here, using genomic and biochemical approaches, we investigated the gene cluster for inositol lipid synthesis in BT using a previously undescribed strain with inducible control of sphingolipid synthesis. We characterized the biosynthetic pathway from myo-inositol-phosphate (MIP) synthesis to phosphoinositol dihydroceramide, determined the crystal structure of the recombinant BT MIP synthase enzyme and identified the phosphatase responsible for the conversion of bacterially-derived phosphatidylinositol phosphate (PIP-DAG) to phosphatidylinositol (PI-DAG). In vitro, loss of inositol lipid production altered BT capsule expression and antimicrobial peptide resistance. In vivo, loss of inositol lipids decreased bacterial fitness in a gnotobiotic mouse model. We identified a second putative, previously undescribed pathway for bacterial PI-DAG synthesis without a PIP-DAG intermediate, common in Prevotella. Our results indicate that inositol sphingolipid production is widespread in host-associated Bacteroidetes and has implications for symbiosis. The pathways responsible for inositol lipid production in human gut Bacteroides are characterized and these lipids are important for capsule expression and antimicrobial peptide resistance in vitro and colonization in vivo.
Collapse
|
2
|
Characterization of the Uncommon Lipid Families in Corynebacterium glutamicum by Mass Spectrometry. Methods Mol Biol 2021. [PMID: 33954950 DOI: 10.1007/978-1-0716-1410-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
This book chapter provides readers the step-by-step instruction for cell growth, lipid isolation, and lipid analysis to obtain the lipidome of Corynebacterium glutamicum (C. glutamicum) in the genus Corynebacterium, a biotechnologically important bacterium. We separate the lipid families by preparative HPLC with an analytical C-8 column, followed by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high-resolution mass measurement to define the structures of cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), α-D-mannopyranosyl-(1 → 4)-α-D-glucuronyl diacylglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), and acyl trehalose monomycolate (acyl-TMM) whose structures have been previously mis-assigned or not defined by mass spectrometric means. We also define the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in the cell wall. The similarity of the lipidome to that in the Mycobacterium genera is consistent with the notion that Corynebacterium and Mycobacterium are gram-positive bacteria belonging to the suborder Corynebacterineae.
Collapse
|
3
|
Wang HYJ, Tatituri RVV, Goldner NK, Dantas G, Hsu FF. Unveiling the biodiversity of lipid species in Corynebacteria- characterization of the uncommon lipid families in C. glutamicum and pathogen C. striatum by mass spectrometry. Biochimie 2020; 178:158-169. [PMID: 32659445 DOI: 10.1016/j.biochi.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Uncommon lipids in biotechnologically important Corynebacterium glutamicum and pathogen Corynebacterium striatum in genus Corynebacterium are isolated and identified by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high resolution mass measurement. We redefined several lipid structures that were previously mis-assigned or not defined, including cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), (α-d-mannopyranosyl)-(1 → 4)-(α-D-glucuronyl diacyglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), acyl trehalose monomycolate (acyl-TMM). We also report the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in which many isomeric structures are present. The LIT MSn approaches afford identification of the functional group, the fatty acid substituents and their regiospecificity in the molecules, revealing the biodiversities of the lipid species in two Corynebacterium strains that have played very different and important roles in human nutrition and health.
Collapse
Affiliation(s)
- Hay-Yan J Wang
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Raju V V Tatituri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Nicholas K Goldner
- The Edison Family Center for Genome Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Klatt S, Brammananth R, O'Callaghan S, Kouremenos KA, Tull D, Crellin PK, Coppel RL, McConville MJ. Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry. J Lipid Res 2018; 59:1190-1204. [PMID: 29724782 PMCID: PMC6027913 DOI: 10.1194/jlr.m082784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
The complex cell envelopes of Corynebacterineae contribute to the virulence of pathogenic species (such as Mycobacterium tuberculosis and Corynebacterium diphtheriae) and capacity of nonpathogenic species (such as Corynebacterium glutamicum) to grow in diverse niches. The Corynebacterineae cell envelope comprises an asymmetric outer membrane that overlays the arabinogalactan-peptidoglycan complex and the inner cell membrane. Dissection of the lipid composition of the inner and outer membrane fractions is important for understanding the biogenesis of this multilaminate wall structure. Here, we have undertaken the first high-resolution analysis of C. glutamicum inner and outer membrane lipids. We identified 28 lipid (sub)classes (>233 molecular species), including new subclasses of acylated/acetylated trehalose mono/dicorynomycolic acids, using high-resolution LC/MS/MS coupled with mass spectral library searches in MS-DIAL. All lipid subclasses exhibited polarized distributions across the inner and outer membrane fractions generated by differential solvent extraction. Strikingly, deletion of the TmaT protein, which is required for transport of trehalose corynomycolates across the inner membrane, led to the accumulation of triacylglycerols in the inner membrane and to suppressed synthesis of phosphatidylglycerol and alanylated lipids. These analyses indicate unanticipated connectivity in the synthesis and/or transport of different lipid classes in C. glutamicum.
Collapse
Affiliation(s)
- Stephan Klatt
- Department of Biochemistry and Molecular Biology University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rajini Brammananth
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, 3800 Australia
| | - Sean O'Callaghan
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul K Crellin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, 3800 Australia
| | - Ross L Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, 3800 Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology University of Melbourne, Parkville, Victoria 3010, Australia
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Corynebacterium spp. clinical isolates and update of their susceptibility. J Glob Antimicrob Resist 2018; 14:246-252. [PMID: 29782954 DOI: 10.1016/j.jgar.2018.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Although Corynebacterium spp. are part of the microbiota of the skin and mucous membranes, human infections caused by Corynebacterium spp. have been reported and the multidrug resistance pattern of the recovered isolates was emphasised. Due to the usefulness of disk diffusion in daily practice, the purpose of this study was to compare disk diffusion with agar dilution to determine disk diffusion breakpoints and to review the antimicrobial susceptibility of the most frequent Corynebacterium spp. isolated in clinical samples. METHODS Susceptibility to 20 antimicrobial agents of 143 Corynebacterium spp. isolates recovered from relevant clinical samples was determined. Comparison between the disk diffusion and agar dilution methods for eight antimicrobial agents was performed to establish new breakpoints using simple linear regression analysis. RESULTS All of the isolates tested were susceptible to vancomycin, minocycline and linezolid. A typical susceptibility profile to β-lactam antibiotics among the different species included was not observed. Almost all isolates showed resistance to macrolides and lincosamides. Using a simple linear regression method, it was possible to establish breakpoints for penicillin, erythromycin, clindamycin, gentamicin and ciprofloxacin. However, the low correlation coefficient obtained for vancomycin, minocycline and trimethoprim/sulfamethoxazole did not allow establishment of breakpoints for the disk diffusion method. CONCLUSION The disk diffusion method could only be used to evaluate susceptibility to penicillin, erythromycin, clindamycin, gentamicin and ciprofloxacin. These data show that the presence of a Corynebacterium spp. isolate in a clinical sample demands the performance of antimicrobial susceptibility testing since the susceptibility profile is not predictable.
Collapse
|
6
|
Yassin AF, Lapidus A, Han J, Reddy TBK, Huntemann M, Pati A, Ivanova N, Markowitz V, Woyke T, Klenk HP, Kyrpides NC. High quality draft genome sequence of Corynebacterium ulceribovis type strain IMMIB-L1395(T) (DSM 45146(T)). Stand Genomic Sci 2015; 10:50. [PMID: 26380638 PMCID: PMC4572677 DOI: 10.1186/s40793-015-0036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/07/2015] [Indexed: 01/21/2023] Open
Abstract
Corynebacterium ulceribovis strain IMMIB L-1395(T) (= DSM 45146(T)) is an aerobic to facultative anaerobic, Gram-positive, non-spore-forming, non-motile rod-shaped bacterium that was isolated from the skin of the udder of a cow, in Schleswig Holstein, Germany. The cell wall of C. ulceribovis contains corynemycolic acids. The cellular fatty acids are those described for the genus Corynebacterium, but tuberculostearic acid is not present. Here we describe the features of C. ulceribovis strain IMMIB L-1395(T), together with genome sequence information and its annotation. The 2,300,451 bp long genome containing 2,104 protein-coding genes and 54 RNA-encoding genes and is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.
Collapse
Affiliation(s)
- Atteyet F Yassin
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Bonn, Germany
| | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St. Petersburg, Russia
| | - James Han
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - T B K Reddy
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Marcel Huntemann
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Amrita Pati
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute, Genome Biology Program, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Dutta A, Shetty P, Bhat S, Ramachandra Y, Hegde S. A mass spectrometric study for comparative analysis and evaluation of metabolite recovery from plasma by various solvent systems. J Biomol Tech 2013. [PMID: 23204928 DOI: 10.7171/jbt.12-2304-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A solvent system that extracts a maximum number of metabolites belonging to diverse chemical classes from complex biofluids, such as plasma, may offer useful inputs to understand the metabolic and physiological state of an individual. The present study compared seven solvent systems for extraction of metabolites from plasma. The extracts were analyzed by mass spectrometry (MS) and MS/MS (MS2) using a quadrupole time-of-flight liquid chromatography/MS system in positive and negative modes of ionization. Metabolites with molecular mass below 400 were identified using Human Metabolome Database MS2 and MS search interfaces. The acetone/isopropanol (2:1) system yielded promising results in positive ionization mode, as the maximum number of MS and MS2 features was detected in the extract. It was found to be superior in extraction of various classes of metabolites, especially organic acids, nucleosides and nucleoside derivatives, and heterocyclic molecules. Glycerophosphocholines in the mass range of 400-700 were found to be efficiently extracted by the methanol/chloroform/water (8:1:1) system. In negative mode as well, the maximum number of MS2 features was detected in methanol/chloroform/water and acetone/isopropanol extracts. The fingerprints of molecular features obtained in the negative and positive modes differed from each other to a significant extent.
Collapse
Affiliation(s)
- Anwesha Dutta
- Department of Biotechnology, Manipal Life Sciences Centre, Manipal, India.
| | | | | | | | | |
Collapse
|
8
|
Rontani JF, Zabeti N, Aubert C. Double bond migration to methylidene positions during electron ionization mass spectrometry of branched monounsaturated fatty acid derivatives. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1997-2005. [PMID: 19747846 DOI: 10.1016/j.jasms.2009.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
Electron ionization mass spectra of several monounsaturated methyl-branched fatty acid methyl and trimethylsilyl esters were examined. These spectra exhibited some intensive fragment ions, whose formation could be explained after double-bond migration to methylidene position. This preferential migration (substantiated by deuterium labeling) acts significantly in the case of monounsaturated fatty acid methyl and trimethylsilyl esters possessing a methyl branch localized between the penultimate and the C(4) positions (relative to the ester group), whatever the position of the double-bond. Allylic cleavage and gamma-hydrogen rearrangement of the ionized methylidene group thus formed afforded very interesting fragment ions, which could be particularly useful to determine branching positions of monounsaturated methyl-branched fatty acid methyl and trimethylsilyl esters without additional treatment.
Collapse
Affiliation(s)
- Jean-François Rontani
- Laboratoire de Microbiologie de Géochimie et d'Ecologie Marines (UMR-CNRS 6117), Centre d'Océanologie de Marseille (OSU), Marseille, France.
| | | | | |
Collapse
|
9
|
Soriano F, Tauch A. Microbiological and clinical features of Corynebacterium urealyticum: urinary tract stones and genomics as the Rosetta Stone. Clin Microbiol Infect 2008; 14:632-43. [PMID: 18558935 DOI: 10.1111/j.1469-0691.2008.02023.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Corynebacterium urealyticum, formerly known as coryneform CDC group D2, was first recognized to be involved in human infections 30 years ago. It is a slow-growing, lipophilic, asaccharolytic and usually multidrug-resistant organism with potent urease activity. Its cell wall peptidoglycan, menaquinone, mycolic and cellular fatty acid composition is consistent with that of the genus Corynebacterium. DNA-DNA hybridization studies and 16S rDNA sequencing analysis have been used to determine the degree of relatedness of C. urealyticum to other corynebacterial species. The genome of the type strain consists of a circular chromosome with a size of 2 369 219 bp and a mean G + C content of 64.2%, and analysis of its genome explains the bacterium's lifestyle. C. urealyticum is a common skin colonizer of hospitalized elderly individuals who are receiving broad-spectrum antibiotics. It is an opportunistic pathogen causing mainly acute cystitis, pyelonephritis, encrusted cystitis, and encrusted pyelitis. More infrequently, it causes other infections, but mainly in patients with urological diseases. Infections are more common in males than in females, and treatment requires administration of antibiotics active against the organism in vitro, mainly glycopeptides, as well as surgical intervention, the latter mostly in cases of chronic infection. Mortality directly associated with infection by this organism is not frequent, but encrusted pyelitis in kidney-recipient patients may cause graft loss. The outcome of infection by this organism is reasonably good if the microbiological diagnosis is made and patients are treated appropriately.
Collapse
Affiliation(s)
- F Soriano
- Department of Medical Microbiology and Antimicrobial Chemotherapy, Fundación Jiménez Díaz, Madrid, Spain.
| | | |
Collapse
|
10
|
Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, Goesmann A, Arnold W, Bekel T, Brinkrolf K, Brune I, Götker S, Kalinowski J, Kamp PB, Lobo FP, Viehoever P, Weisshaar B, Soriano F, Dröge M, Pühler A. The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 2008; 136:11-21. [PMID: 18367281 DOI: 10.1016/j.jbiotec.2008.02.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/11/2007] [Accepted: 02/07/2008] [Indexed: 01/11/2023]
Abstract
Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hsu FF, Turk J, Owens RM, Rhoades ER, Russell DG. Structural characterization of phosphatidyl-myo-inositol mannosides from Mycobacterium bovis Bacillus Calmette Gúerin by multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. II. Monoacyl- and diacyl-PIMs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:479-92. [PMID: 17141525 PMCID: PMC2044505 DOI: 10.1016/j.jasms.2006.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/19/2006] [Accepted: 10/20/2006] [Indexed: 05/10/2023]
Abstract
The multiple-stage ion-trap mass spectrometric approaches towards to the structural characterization of the monoacyl-PIM (triacylated PIM) and the diacyl-PIM (tetracylated PIM), namely, the PIM (diacylated PIM) consisting of one or two additional fatty acid substituents attached to the glycoside, respectively, were described. While the assignment and confirmation of the fatty acid substituents on the glycerol backbone can be easily achieved by the methods described in the previous article, the identity of the glycoside moiety and its acylation state can be determined by the observation of a prominent acylglycoside ion arising from cleavage of the diacylglycerol moiety ([M - H - diacylglycerol](-)) in the MS(2)-spectra of monoacyl-PIM and diacyl-PIM. The distinction of the fatty acid substituents on the 2-O-mannoside (i.e., R(3)CO(2)H) from that on the inositol (i.e., R(4)CO(2)H) is based on the findings that the MS(3)-spectrum of [M - H - diacylglycerol](-) contains a prominent ion arising from further loss of the fatty acid at the 2-O-mannoside (i.e., the [M - H - diacylglycerol - R(3)CO(2)H](-) ion), while the ion arising from loss of the fatty acid substituent at the inositol (i.e., the [M - H - diacylglycerol - R(4)CO(2)H](-) ion) is of low abundance. The fatty acyl moiety on the inositol can also be identified by the product-ion spectrum from MS(4) of the [M - H - diacylglycerol - R(3)CO(2)H](-) ion, which gives rise to a prominent ion corresponding to loss of R(4)CO(2)H. An [M - H - acylmannose](-) ion was also observed in the MS(2)-spectra and, thus, the identity of the fatty acid substituent attached to 2-O-mannoside can be confirmed. The combined information obtained from the multiple-stage product-ion spectra from MS(2), MS(3), and MS(4) permit the assignment of the complex structures of monoacyl-PIMs and diacyl-PIMs in a mixture isolated from M. bovis Bacillus Calmette Guérin.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
13
|
Mormann S, Lömker A, Rückert C, Gaigalat L, Tauch A, Pühler A, Kalinowski J. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 2006; 7:205. [PMID: 16901339 PMCID: PMC1590026 DOI: 10.1186/1471-2164-7-205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/10/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. RESULTS A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC 3.1.3.15) in C. glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria, including mycobacteria and streptomycetes. CONCLUSION The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-spectrum of IS6100.
Collapse
Affiliation(s)
- Sascha Mormann
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alexander Lömker
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Christian Rückert
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Lars Gaigalat
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| |
Collapse
|
14
|
Valero-Guillén PL, Yagüe G, Segovia M. Characterization of acyl-phosphatidylinositol from the opportunistic pathogen Corynebacterium amycolatum. Chem Phys Lipids 2005; 133:17-26. [PMID: 15589223 DOI: 10.1016/j.chemphyslip.2004.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 07/20/2004] [Accepted: 08/23/2004] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to characterize a new lipid detected in the opportunistic pathogen Corynebacterium amycolatum. It was identified as acyl-phosphatidylinositol (acyl-PI), and revealed as a mixture of homologues compounds by electrospray ionization mass spectrometry, with pseudomolecular ions, (M-H)-, observed at 1099 (the major one) 1113, and 1127. Acyl-PI exclusively contained octadecenoyl on the inositol moiety (as 3-O-acyl), an unsaturated fatty acyl (mostly octadecenoyl) at sn-1 position of the glycerol and a saturated fatty acyl (mainly hexadecanoyl) at the sn-2 position. Acyl-PI constitutes a new natural substance and seems to be unique among the phospholipids of C. amycolatum. Other more complex molecules, previously undetected, and assigned in this work to several acyl forms of phosphatidylinositol trimannosides, lacked octadecenoyl in their polar heads. The present study reveals the existence of acyl-PI in C. amycolatum as rather unexpected finding and, additionally, gives evidence for the ability of this species to synthesize a great variety of inositol-containing phospholipids.
Collapse
Affiliation(s)
- Pedro L Valero-Guillén
- Departamento de Genética y Microbiología, Facultad de Medicina, Universidad de Murcia, Campus Universitario de Espinardo, Apartado 4021, 30100 Murcia, Spain.
| | | | | |
Collapse
|
15
|
Mazzella N, Molinet J, Syakti AD, Barriol A, Dodi A, Bertrand JC, Doumenq P. Effects of pure n-alkanes and crude oil on bacterial phospholipid classes and molecular species determined by electrospray ionization mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 822:40-53. [PMID: 15979419 DOI: 10.1016/j.jchromb.2005.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 05/04/2005] [Accepted: 05/21/2005] [Indexed: 11/30/2022]
Abstract
Phospholipids are major components of bacterial membrane. Furthermore, the growth in vitro on xenobiotics such as n-alkanes, aromatic compounds or alkanols bring about to a bacterial membrane adaptive response. Concerning this work, we studied the membrane lipid composition of a hydrocarbon-degrading gram-positive bacterium (Corynebacterium sp.) on a soluble substrate and we detected four different phospholipid classes: phosphatidylglycerol, phosphatidylinositol, cardiolipin and acyl phosphatidylglycerol. In addition, a study of the lipid composition was performed after an in vitro culture on either pure n-alkane or crude oil. The growths on such hydrophobic substrates showed major qualitative and quantitative modifications. In the case of a growth on either heneicosane or crude oil, an increase of odd-numbered fatty acids was observed. Furthermore, the phospholipid polar head group composition was highly influenced by the crude oil addition. These modifications were, respectively, interpreted as the consequence of hydrocarbon assimilation and membrane fluidity adaptation. Finally, Corynebacterium sp. was taken back on the initial ammonium acetate substrate in order to determine its restoration abilities after a petroleum contamination.
Collapse
Affiliation(s)
- Nicolas Mazzella
- Laboratoire de Chimie Analytique de l'Environnement, UMR 6171, IFR PMSE 112, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Pühler A. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 2005; 187:4671-82. [PMID: 15968079 PMCID: PMC1151758 DOI: 10.1128/jb.187.13.4671-4682.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium jeikeium is a "lipophilic" and multidrug-resistant bacterial species of the human skin flora that has been recognized with increasing frequency as a serious nosocomial pathogen. Here we report the genome sequence of the clinical isolate C. jeikeium K411, which was initially recovered from the axilla of a bone marrow transplant patient. The genome of C. jeikeium K411 consists of a circular chromosome of 2,462,499 bp and the 14,323-bp bacteriocin-producing plasmid pKW4. The chromosome of C. jeikeium K411 contains 2,104 predicted coding sequences, 52% of which were considered to be orthologous with genes in the Corynebacterium glutamicum, Corynebacterium efficiens, and Corynebacterium diphtheriae genomes. These genes apparently represent the chromosomal backbone that is conserved between the four corynebacteria. Among the genes that lack an ortholog in the known corynebacterial genomes, many are located close to transposable elements or revealed an atypical G+C content, indicating that horizontal gene transfer played an important role in the acquisition of genes involved in iron and manganese homeostasis, in multidrug resistance, in bacterium-host interaction, and in virulence. Metabolic analyses of the genome sequence indicated that the "lipophilic" phenotype of C. jeikeium most likely originates from the absence of fatty acid synthase and thus represents a fatty acid auxotrophy. Accordingly, both the complete gene repertoire and the deduced lifestyle of C. jeikeium K411 largely reflect the strict dependence of growth on the presence of exogenous fatty acids. The predicted virulence factors of C. jeikeium K411 are apparently involved in ensuring the availability of exogenous fatty acids by damaging the host tissue.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mazzella N, Molinet J, Syakti AD, Dodi A, Bertrand JC, Doumenq P. Use of electrospray ionization mass spectrometry for profiling of crude oil effects on the phospholipid molecular species of two marine bacteria. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3579-88. [PMID: 16276494 DOI: 10.1002/rcm.2231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We investigated the membrane lipid composition of two hydrocarbon-degrading gram-negative bacterial strains (Pseudomonas nautica IP 617 and Marinobacter hydrocarbonoclasticus) initially cultured on a soluble substrate, then on petroleum hydrocarbons, and finally taken back onto the soluble substrate. For the two strains, the growth on petroleum and the return to the initial medium showed major, but comparable, qualitative and quantitative modifications of the intact phospholipid molecular species (IPMS) composition. Furthermore, since bacterial membranes are mainly made up of phospholipids, these modifications reflected hydrocarbon assimilation, restoration abilities and membrane fluidity adaptation. The electrospray ionization mass spectrometry (ESI-MS) analysis of intact phospholipid provided some new information (e.g. sn fatty acyl chain distribution) that could not be assessed by the classical fatty acid analysis. Moreover, such information should be particularly helpful with regards to bacterial taxonomy and xenobiotic toxicity studies.
Collapse
Affiliation(s)
- Nicolas Mazzella
- Laboratoire de Chimie Analytique de l'Environnement, UMR 6171, IFR PMSE 112, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
| | | | | | | | | | | |
Collapse
|
18
|
Zink KG, Mangelsdorf K. Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC?ESI-MS?MS analysis. Anal Bioanal Chem 2004; 380:798-812. [PMID: 15480579 DOI: 10.1007/s00216-004-2828-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper presents the application of an efficient method for extraction and fractionation of intact phospholipids (PLs) from complex sediment matrices and elucidation of their molecular structure by normal-phase HPLC-ESI-MS-MS. Flow-blending extraction was tested with different solvent mixtures and the best recovery of all PLs classes from the sediment matrix was achieved by using methanol-dichloromethane-buffer, 2:1:0.8. The applied LC-ESI-MS system has linearity of R2=0.98 and a detection limit of 0.5 ng/PL, sufficient for reliable identification of complex mixtures of PLs. MS-MS analyses using a triple-quadrupole mass spectrometer enables detection of individual PL side-chain composition and, hence, characterization of the living organisms contributing to the sedimentary organic material. Parallel GC-MS analysis of the hydrolysed phospholipid fatty acids supports the characterized fatty acid patterns determined from intact PLs. The PL inventory of different investigated lacustrine surface sediments shows predominantly high abundance of phosphatidylglycerols and phosphatidylethanolamines and phosphatidyl-mono- and dimethyl-ethanolamines with fatty acyl side-chains typically known from bacteria. In a sample from Lake Baikal intense signals of bacterial 14:0-acyl-PGs were also identified, for the first time in sediments as far as we are aware.
Collapse
Affiliation(s)
- Klaus-G Zink
- GFZ Potsdam, Section 4.3, Telegrafenberg, 14473 Potsdam, Germany.
| | | |
Collapse
|