1
|
Goldfinger V, Spohn M, Rodler JP, Sigle M, Kulik A, Cryle MJ, Rapp J, Link H, Wohlleben W, Stegmann E. Metabolic engineering of the shikimate pathway in Amycolatopsis strains for optimized glycopeptide antibiotic production. Metab Eng 2023; 78:84-92. [PMID: 37244369 DOI: 10.1016/j.ymben.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glycopeptide antibiotics (GPA) consist of a glycosylated heptapeptide backbone enriched in aromatic residues originating from the shikimate pathway. Since the enzymatic reactions within the shikimate pathway are highly feedback-regulated, this raises the question as to how GPA producers control the delivery of precursors for GPA assembly. We chose Amycolatopsis balhimycina, the producer of balhimycin, as a model strain for analyzing the key enzymes of the shikimate pathway. A. balhimycina contains two copies each of the key enzymes of the shikimate pathway, deoxy-d-arabino-heptulosonate-7-phosphate synthase (Dahp) and prephenate dehydrogenase (Pdh), with one pair (Dahpsec and Pdhsec) encoded within the balhimycin biosynthetic gene cluster and one pair (Dahpprim and Pdhprim) in the core genome. While overexpression of the dahpsec gene resulted in a significant (>4-fold) increase in balhimycin yield, no positive effects were observed after overexpression of the pdhprim or pdhsec genes. Investigation of allosteric enzyme inhibition revealed that cross-regulation between the tyrosine and phenylalanine pathways plays an important role. Tyrosine, a key precursor of GPAs, was found to be a putative activator of prephenate dehydratase (Pdt), which catalyzes the first step reaction from prephenate to phenylalanine in the shikimate pathway. Surprisingly, overexpression of pdt in A. balhimycina led to an increase in antibiotic production in this modified strain. In order to demonstrate that this metabolic engineering approach is generally applicable to GPA producers, we subsequently applied this strategy to Amycolatopsis japonicum and improved the production of ristomycin A, which is used in diagnosis of genetic disorders. Comparison of "cluster-specific" enzymes with the isoenzymes from the primary metabolism's pathway provided insights into the adaptive mechanisms used by producers to ensure adequate precursor supply and GPA yields. These insights further demonstrate the importance of a holistic approach in bioengineering efforts that takes into account not only peptide assembly but also adequate precursor supply.
Collapse
Affiliation(s)
- Valentina Goldfinger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Marius Spohn
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Jens-Peter Rodler
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Melanie Sigle
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia; EMBL Australia, Monash University, Clayton, VIC, 3800, Australia; ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC, 3800, Australia
| | - Johanna Rapp
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 25, 72076, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Bacterial Metabolomics, University of Tübingen, Auf der Morgenstelle 25, 72076, Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence CMFI, Bacterial Metabolomics University of Tübingen, Auf der Morgenstelle 25, 72076, Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany; Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Microbial Bioactive Compounds, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany; German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Hanik N, Best M, Schueller MJ, Tappero R, Ferrieri RA. Defense Priming in Nicotiana tabacum Accelerates and Amplifies 'New' C/N Fluxes in Key Amino Acid Biosynthetic Pathways. PLANTS (BASEL, SWITZERLAND) 2020; 9:E851. [PMID: 32640641 PMCID: PMC7411752 DOI: 10.3390/plants9070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in 'new' C/N utilization in the biosynthesis of key amino acids (AAs). Responses were induced by using topical application of the defense hormone jasmonic acid (JA). After a single treatment, metabolic partitioning of recently fixed carbon (designated 'new' carbon and reflected as 11C) increased through the shikimate pathway, giving rise to tyrosine, phenylalanine and tryptophan. Amplification in 'new' carbon fluxes preceded changes in the endogenous (12C) pools of these AAs. Testing after serial JA treatments revealed that fluxes of 'new' carbon were accelerated, amplified and sustained over time at this higher rate, suggesting a priming effect. Similar results were observed with recently assimilated nitrogen (designated 'new' nitrogen reflected as 13N) with its partitioning into serine, glycine and glutamine, which play important roles supporting the shikimate pathway and downstream secondary metabolism. Finally, X-ray fluorescence imaging revealed that levels of the element Mn, an important co-factor for enzyme regulation in the shikimate pathway, increased within JA treated tissues, suggesting a link between plant metal ion regulation and C/N metabolic priming.
Collapse
Affiliation(s)
- Nils Hanik
- Fachbereich Chemie, Johannes Gutenberg Universität, 55099 Mainz, Germany; (N.H.); (M.B.)
| | - Marcel Best
- Fachbereich Chemie, Johannes Gutenberg Universität, 55099 Mainz, Germany; (N.H.); (M.B.)
| | - Michael J. Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA;
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Ryan Tappero
- Brookhaven National Laboratory, National Synchrotron Light Source Division, Upton, NY 11973, USA;
| | - Richard A. Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA;
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Braesel J, Lee JH, Arnould B, Murphy BT, Eustáquio AS. Diazaquinomycin Biosynthetic Gene Clusters from Marine and Freshwater Actinomycetes. JOURNAL OF NATURAL PRODUCTS 2019; 82:937-946. [PMID: 30896942 PMCID: PMC6902439 DOI: 10.1021/acs.jnatprod.8b01028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tuberculosis is an infectious disease of global concern. Members of the diazaquinomycin (DAQ) class of natural products have shown potent and selective activity against drug-resistant Mycobacterium tuberculosis. However, poor solubility has prevented further development of this compound class. Understanding DAQ biosynthesis may provide a viable route for the generation of derivatives with improved properties. We have sequenced the genomes of two actinomycete bacteria that produce distinct DAQ derivatives. While software tools for automated biosynthetic gene cluster (BGC) prediction failed to detect DAQ BGCs, comparative genomics using MAUVE alignment led to the identification of putative BGCs in the marine Streptomyces sp. F001 and in the freshwater Micromonospora sp. B006. Deletion of the identified daq BGC in strain B006 using CRISPR-Cas9 genome editing abolished DAQ production, providing experimental evidence for BGC assignment. A complete model for DAQ biosynthesis is proposed based on the genes identified. Insufficient knowledge of natural product biosynthesis is one of the major challenges of productive genome mining approaches. The results reported here fill a gap in knowledge regarding the genetic basis for the biosynthesis of DAQ antibiotics. Moreover, identification of the daq BGC shall enable future generations of improved derivatives using biosynthetic methods.
Collapse
Affiliation(s)
- Jana Braesel
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jung-Ho Lee
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benoit Arnould
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Brian T. Murphy
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Gavrilov KN, Mikhel IS, Zheglov SV, Gavrilov VK, Chuchelkin IV, Firsin ID, Birin KP, Pytskii IS, Paseshnichenko KA, Tafeenko VA, Chernyshev VV, Shiryaev AA. Oxalamide-based bisdiamidophosphites: synthesis, coordination, and application in asymmetric metallocatalysis. Org Chem Front 2019. [DOI: 10.1039/c9qo00237e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new group of P*-chiral bisdiamidophosphites has been developed for Pd- and Rh-catalyzed asymmetric reactions with good to excellent enantioselectivities.
Collapse
|
5
|
Braga A, Ferreira P, Oliveira J, Rocha I, Faria N. Heterologous production of resveratrol in bacterial hosts: current status and perspectives. World J Microbiol Biotechnol 2018; 34:122. [PMID: 30054757 DOI: 10.1007/s11274-018-2506-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The polyphenol resveratrol (3,5,4'-trihydroxystilbene) is a well-known plant secondary metabolite, commonly used as a medical ingredient and a nutritional supplement. Due to its health-promoting properties, the demand for resveratrol is expected to continue growing. This stilbene can be found in different plants, including grapes, berries (blackberries, blueberries and raspberries), peanuts and their derived food products, such as wine and juice. The commercially available resveratrol is usually extracted from plants, however this procedure has several drawbacks such as low concentration of the product of interest, seasonal variation, risk of plant diseases and product stability. Alternative production processes are being developed to enable the biotechnological production of resveratrol by genetically engineering several microbial hosts, such as Escherichia coli, Corynebacterium glutamicum, Lactococcus lactis, among others. However, these bacterial species are not able to naturally synthetize resveratrol and therefore genetic modifications have been performed. The application of emerging metabolic engineering offers new possibilities for strain and process optimization. This mini-review will discuss the recent progress on resveratrol biosynthesis in engineered bacteria, with a special focus on the metabolic engineering modifications, as well as the optimization of the production process. These strategies offer new tools to overcome the limitations and challenges for microbial production of resveratrol in industry.
Collapse
Affiliation(s)
- A Braga
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - P Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - J Oliveira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - I Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - N Faria
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
6
|
Sharma A, Kumar V, Chatrath A, Dev A, Prasad R, Sharma AK, Tomar S, Kumar P. In vitro metal catalyzed oxidative stress in DAH7PS: Methionine modification leads to structure destabilization and induce amorphous aggregation. Int J Biol Macromol 2018; 106:1089-1106. [DOI: 10.1016/j.ijbiomac.2017.08.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022]
|
7
|
Xu T, Wu Y, Lin Z, Bertram R, Götz F, Zhang Y, Qu D. Identification of Genes Controlled by the Essential YycFG Two-Component System Reveals a Role for Biofilm Modulation in Staphylococcus epidermidis. Front Microbiol 2017; 8:724. [PMID: 28491057 PMCID: PMC5405149 DOI: 10.3389/fmicb.2017.00724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/07/2017] [Indexed: 01/11/2023] Open
Abstract
Biofilms play a crucial role in the pathogenicity of Staphylococcus epidermidis, while little is known about whether the essential YycFG two-component signal transduction system (TCS) is involved in biofilm formation. We used antisense RNA (asRNA) to silence the yycFG TCS in order to study its regulatory functions in S. epidermidis. Strain 1457 expressing asRNAyycF exhibited a significant delay (~4–5 h) in entry to log phase, which was partially complemented by overexpressing ssaA. The expression of asRNAyycF and asRNAyycG resulted in a 68 and 50% decrease in biofilm formation at 6 h, respectively, while they had no significant inhibitory effect on 12 h biofilm formation. The expression of asRNAyycF led to a ~5-fold increase in polysaccharide intercellular adhesion (PIA) production, but it did not affect the expression of accumulation-associated protein (Aap) or the release of extracellular DNA. Consistently, quantitative real-time PCR showed that silencing yycF resulted in an increased transcription of biofilm-related genes, including icaA, arlR, sarA, sarX, and sbp. An in silico search of the YycF regulon for the conserved YycF recognition pattern and a modified motif in S. epidermidis, along with additional gel shift and DNase I footprinting assays, showed that arlR, sarA, sarX, and icaA are directly regulated by YycF. Our data suggests that YycFG modulates S. epidermidis biofilm formation in an ica-dependent manner.
Collapse
Affiliation(s)
- Tao Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan UniversityShanghai, China.,Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Zhiwei Lin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Ralph Bertram
- Klinikum Nürnberg Medical School GmbH, Research Department, Paracelsus Medical UniversityNuremberg, Germany.,Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of TübingenTübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Faculty of Science, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of TübingenTübingen, Germany
| | - Ying Zhang
- Key Laboratory of Medical Molecular Virology, Huashan Hospital, Shanghai Medical College of Fudan UniversityShanghai, China.,Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins UniversityBaltimore, MD, USA
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Medical Microbiology and Parasitology, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
8
|
Allosteric properties of Geobacillus maltogenic amylase. Enzyme Microb Technol 2017; 96:36-41. [DOI: 10.1016/j.enzmictec.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022]
|
9
|
Remote Control by Inter-Enzyme Allostery: A Novel Paradigm for Regulation of the Shikimate Pathway. J Mol Biol 2016; 428:1237-1255. [DOI: 10.1016/j.jmb.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 11/16/2022]
|
10
|
Inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis: in silico screening and in vitro validation. Eur J Med Chem 2015; 105:182-93. [PMID: 26491981 DOI: 10.1016/j.ejmech.2015.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 11/20/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a serious global health threat, highlighting the urgent need for novel antituberculosis drugs. The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (mtDAH7Ps) catalyzes the first step in shikimate pathway. E-pharmacophore models for inhibitors of mtDAH7Ps - tyrosine, phenylalanine, phosphoenolpyruvate and (2S)-2,7-bis(phosphonooxy)heptanoic acid were screened against ZINC synthetic and natural compounds databases. The shortlisted compounds were subjected to induce fit docking and validated by Prime/Molecular Mechanics Generalized Born Surface Area calculation to predict ligand binding energy and ligand strain energy for ligand and receptor. The lead compounds were screened for their inhibitory activity against purified mtDAH7Ps enzyme. Lead compounds inhibited mtDAH7Ps in a concentration-dependent manner; with an IC50 value of 21 μM, 42 μM and 54 μM for α-Tocopherol, rutin and 3-Pyridine carboxyaldehyde respectively. Molecular Dynamics analysis for 50 ns of the active compounds-mtDAH7Ps complexes showed that the backbone of mtDAH7Ps was stable. These results suggest that α-tocopherol, 3 - Pyridine carboxyaldehyde and rutin could be novel drug leads to inhibit mtDAH7Ps in M. tuberculosis.
Collapse
|
11
|
Kapley A, Tanksale H, Sagarkar S, Prasad AR, Kumar RA, Sharma N, Qureshi A, Purohit HJ. Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Funct Integr Genomics 2015; 16:57-65. [PMID: 26432787 DOI: 10.1007/s10142-015-0466-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Alcaligenes sp. HPC 1271 demonstrated antibacterial activity against multidrug resistant bacteria, Enterobacter sp., resistant to sulfamethoxazole, ampicillin, azithromycin, and tetracycline, as well as against Serratia sp. GMX1, resistant to the same antibiotics with the addition of netilmicin. The cell-free culture supernatant was analyzed for possible antibacterials by HPLC, and the active fraction was further identified by LC-MS. Results suggest the production of tunicamycin, a nucleoside antibiotic. The draft genome of this bacterial isolate was analyzed, and the 4.2 Mb sequence data revealed six secondary metabolite-producing clusters, identified using antiSMASH platform as ectoine, butyrolactone, phosphonate, terpene, polyketides, and nonribosomal peptide synthase (NRPS). Additionally, the draft genome demonstrated homology to the tunicamycin-producing gene cluster and also defined 30 ORFs linked to protein secretion that could also play a role in the antibacterial activity observed. Gene expression analysis demonstrated that both NRPS and dTDP-glucose 4,6-dehydratase gene clusters are functional and could be involved in antibacterial biosynthesis.
Collapse
Affiliation(s)
- Atya Kapley
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India. .,Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur, 440 020, India.
| | | | - Sneha Sagarkar
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - A R Prasad
- CSIR-IICT, Uppal Road, Tarnaka, Hyderabad, 500007, Andhra Pradesh, India
| | | | - Nandita Sharma
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asifa Qureshi
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | | |
Collapse
|
12
|
Blackmore NJ, Nazmi AR, Hutton RD, Webby MN, Baker EN, Jameson GB, Parker EJ. Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties of Both: AN EXAMPLE OF MOLECULAR SYMBIOSIS. J Biol Chem 2015; 290:18187-18198. [PMID: 26032422 DOI: 10.1074/jbc.m115.638700] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.
Collapse
Affiliation(s)
- Nicola J Blackmore
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Ali Reza Nazmi
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Richard D Hutton
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Melissa N Webby
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre and School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.
| | - Emily J Parker
- Maurice Wilkins Centre and Biomolecular Interaction Centre, Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
| |
Collapse
|
13
|
Rawat G, Tripathi P, Saxena RK. Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends. Appl Microbiol Biotechnol 2013; 97:4277-87. [PMID: 23553030 DOI: 10.1007/s00253-013-4840-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
Shikimic acid is an industrially important chiral compound used as a key ingredient in formulation of drug Oseltamivir phosphate (Tamiflu) for the treatment of swine/avian flu. The high cost and limited availability of shikimic acid isolated from plants has detained the use of this valuable building block of the drug. It is a versatile compound having many characteristic properties for many synthetic reactions particularly in pharmaceuticals and cosmetic industries. By virtue of being a natural product, the relevant biochemical pathway in microorganisms can be harnessed into fermentation processes to produce shikimic acid. This is an excellent alternative for the sustainable and efficient production of shikimic acid over the tedious and cumbersome process of plant based extraction methods. Various strategies of shikimic acid production are reviewed and an account of comparison of their challenges, promises and restraint is presented. Furthermore, present review attempts to focus on the market trend of shikimic acid due to its high demand with particular emphasis laid on the pandemics of swine flu. This review not only covers the recent advances in shikimic acid production but also highlights the versatile applications and its market scenario. The concluding remarks and its potential as a commercial bulk chemical are discussed in the light of current research.
Collapse
Affiliation(s)
- Garima Rawat
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | | | | |
Collapse
|
14
|
Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 2012; 8:e1002612. [PMID: 22807670 PMCID: PMC3395594 DOI: 10.1371/journal.pcbi.1002612] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/29/2012] [Indexed: 12/04/2022] Open
Abstract
Control of enzyme allosteric regulation is required to drive metabolic flux toward desired levels. Although the three-dimensional (3D) structures of many enzyme-ligand complexes are available, it is still difficult to rationally engineer an allosterically regulatable enzyme without decreasing its catalytic activity. Here, we describe an effective strategy to deregulate the allosteric inhibition of enzymes based on the molecular evolution and physicochemical characteristics of allosteric ligand-binding sites. We found that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We applied our findings to design mutations in selected target residues that deregulate the allosteric activity of fructose-1,6-bisphosphatase (FBPase). Specifically, charged amino acids at less conserved positions were substituted with hydrophobic or neutral amino acids with similar sizes. The engineered proteins successfully diminished the allosteric inhibition of E. coli FBPase without affecting its catalytic efficiency. We expect that our method will aid the rational design of enzyme allosteric regulation strategies and facilitate the control of metabolic flux. Design of allosterically regulatable enzyme is essential to develop a highly efficient metabolite production. However, mutations on allosteric ligand binding sites often disrupt the catalytic activity of enzyme. To aid the design process of allosterically controllable enzymes, we develop an effective computational strategy to deregulate the allosteric inhibition of enzymes based on sequence evolution analysis of allosteric ligand-binding sites. We analyzed the molecular evolution and amino acid composition of catalytic and allosteric sites of enzymes, and discovered that allosteric sites are evolutionarily variable and comprised of more hydrophobic residues than catalytic sites. We then experimentally tested our strategy of enzyme allosteric regulation and found that the designed mutations effectively deregulated allosteric inhibition of FBPase. We believe that our method will aid the rational design of enzyme allosteric regulation and help to facilitate control of metabolic flux.
Collapse
|
15
|
Hanik N, Gómez S, Best M, Schueller M, Orians CM, Ferrieri RA. Partitioning of new carbon as ¹¹C in Nicotiana tabacum reveals insight into methyl jasmonate induced changes in metabolism. J Chem Ecol 2010; 36:1058-67. [PMID: 20842413 DOI: 10.1007/s10886-010-9835-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/08/2010] [Accepted: 07/19/2010] [Indexed: 01/22/2023]
Abstract
We examined the timeline by which methyl jasmonate (MeJA) reprograms new carbon partitioning into key metabolite pools. The radioactive isotope ¹¹C (t(¹/₂) 20.4 min), administered to intact leaves of Nicotiana tabacum L. (cv Samsun) as ¹¹CO(2) gas enabled us to measure changes in new carbon partitioning into soluble sugar and amino acid pools of [¹¹C]photosynthate. A 500 μM MeJA treatment resulted in a decrease in the [¹¹C]soluble sugar pool and an increase in the [¹¹C]amino acid pool after 4 h. This pattern was more pronounced 15 h after treatment. We also examined the timeline for ¹¹C-partitioning into aromatic amino acid metabolites of the shikimate pathway. [¹¹C]Tyrosine, [C¹¹C]phenylalanine and [¹¹C]tryptophan were elevated 1.5-fold, 12-fold and 12-fold, respectively, relative to controls, 4 h after MeJA treatment, while endogeneous pools were unchanged. This suggests that only new carbon is utilized during early stages of defense induction. By 15 h, [C¹¹C]tyrosine and [¹¹C]phenylalanine returned to baseline while [¹¹C]tryptophan was elevated 30-fold, suggesting that MeJA exerts selective control over the shikimate pathway. Finally, we measured trans-cinnamic acid levels as a gauge of downstream phenolic metabolism. Levels were unchanged 4 h after MeJA treatment relative to controls, but were increased 2-fold by 15 h, indicating a lag in response of secondary metabolism.
Collapse
Affiliation(s)
- Nils Hanik
- Fachbereich Chemie, Johannes Gutenberg Universität, 55099, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E. Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 2010; 12:455-61. [DOI: 10.1016/j.ymben.2010.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 11/26/2022]
|
17
|
Webby CJ, Jiao W, Hutton RD, Blackmore NJ, Baker HM, Baker EN, Jameson GB, Parker EJ. Synergistic allostery, a sophisticated regulatory network for the control of aromatic amino acid biosynthesis in Mycobacterium tuberculosis. J Biol Chem 2010; 285:30567-76. [PMID: 20667835 DOI: 10.1074/jbc.m110.111856] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The shikimate pathway, responsible for aromatic amino acid biosynthesis, is required for the growth of Mycobacterium tuberculosis and is a potential drug target. The first reaction is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Feedback regulation of DAH7PS activity by aromatic amino acids controls shikimate pathway flux. Whereas Mycobacterium tuberculosis DAH7PS (MtuDAH7PS) is not inhibited by the addition of Phe, Tyr, or Trp alone, combinations cause significant loss of enzyme activity. In the presence of 200 μm Phe, only 2.4 μm Trp is required to reduce enzymic activity to 50%. Reaction kinetics were analyzed in the presence of inhibitory concentrations of Trp/Phe or Trp/Tyr. In the absence of inhibitors, the enzyme follows Michaelis-Menten kinetics with respect to substrate erythrose 4-phosphate (E4P), whereas the addition of inhibitor combinations caused significant homotropic cooperativity with respect to E4P, with Hill coefficients of 3.3 (Trp/Phe) and 2.8 (Trp/Tyr). Structures of MtuDAH7PS/Trp/Phe, MtuDAH7PS/Trp, and MtuDAH7PS/Phe complexes were determined. The MtuDAH7PS/Trp/Phe homotetramer binds four Trp and six Phe molecules. Binding sites for both aromatic amino acids are formed by accessory elements to the core DAH7PS (β/α)(8) barrel that are unique to the type II DAH7PS family and contribute to the tight dimer and tetramer interfaces. A comparison of the liganded and unliganded MtuDAH7PS structures reveals changes in the interface areas associated with inhibitor binding and a small displacement of the E4P binding loop. These studies uncover a previously unrecognized mode of control for the branched pathways of aromatic amino acid biosynthesis involving synergistic inhibition by specific pairs of pathway end products.
Collapse
Affiliation(s)
- Celia J Webby
- From the Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Biosynthetic and regulatory elements involved in the production of the siderophore vanchrobactin in Vibrio anguillarum. Microbiology (Reading) 2008; 154:1400-1413. [DOI: 10.1099/mic.0.2008/016618-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Tan K, Li H, Zhang R, Gu M, Clancy ST, Joachimiak A. Structures of open (R) and close (T) states of prephenate dehydratase (PDT)--implication of allosteric regulation by L-phenylalanine. J Struct Biol 2007; 162:94-107. [PMID: 18171624 DOI: 10.1016/j.jsb.2007.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/05/2007] [Accepted: 11/09/2007] [Indexed: 11/29/2022]
Abstract
The enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Building 202, Room A125 9700, S. Cass Avenue, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | | | |
Collapse
|
20
|
Balado M, Osorio CR, Lemos ML. A gene cluster involved in the biosynthesis of vanchrobactin, a chromosome-encoded siderophore produced by Vibrio anguillarum. MICROBIOLOGY-SGM 2007; 152:3517-3528. [PMID: 17159203 DOI: 10.1099/mic.0.29298-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio anguillarum serotype O2 strains produce a catechol siderophore named vanchrobactin, which has been identified as N-[N'-(2,3-dihydroxybenzoyl)-arginyl]-serine. This work describes a chromosomal region that harbours the genetic determinants necessary for the biosynthesis of vanchrobactin. The authors have identified the genes involved in 2,3-dihydroxybenzoic acid (DHBA) biosynthesis (vabA, vabB and vabC) and activation (vabE), and a gene (vabF) encoding a non-ribosomal peptide synthetase, which is putatively involved in the assembly of the siderophore components. Also described are the identification and characterization of genes encoding a putative vanchrobactin exporter (vabS) and a siderophore esterase (vabH). In-frame deletion mutants in vabA, vabB, vabC, vabE, vabF and vabH were impaired for growth under conditions of iron limitation, and the analysis of culture supernatants by chrome azurol-S and cross-feeding assays showed almost no production of siderophores in any of the vabABCEF mutants. In addition, deletion mutations of vabA, vabB and vabC abolished production of DHBA, as assessed by chemical and biological analyses. Complementation of each mutant with the corresponding gene provided in trans confirmed the involvement of this gene cluster in the biosynthesis of DHBA and vanchrobactin in V. anguillarum strain RV22. Based on chemical and genetic data, and on published models for other catechol siderophores, a model for vanchrobactin biosynthesis is proposed.
Collapse
Affiliation(s)
- Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos R Osorio
- Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| |
Collapse
|
21
|
Webby C, Patchett M, Parker E. Characterization of a recombinant type II 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Helicobacter pylori. Biochem J 2005; 390:223-30. [PMID: 15853768 PMCID: PMC1184578 DOI: 10.1042/bj20050259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DAH7P (3-Deoxy-D-arabino-heptulosonate 7-phosphate) synthase catalyses the condensation reaction between phosphoenolpyruvate (PEP) and D-erythrose 4-phosphate (E4P) as the first committed step in the biosynthesis of aromatic compounds in plants and micro-organisms. Previous work has identified two families of DAH7P synthases based on sequence similarity and molecular mass, with the majority of the mechanistic and structural studies being carried out on the type I paralogues from Escherichia coli. Whereas a number of organisms possess genes encoding both type I and type II DAH7P synthases, the pathogen Helicobacter pylori has only a single, type II, enzyme. Recombinant DAH7P synthase from H. pylori was partially solubilized by co-expression with chaperonins GroEL/GroES in E. coli, and purified to homogeneity. The enzyme reaction follows an ordered sequential mechanism with the following kinetic parameters: K(m) (PEP), 3 microM; K(m) (E4P), 6 microM; and kcat, 3.3 s(-1). The enzyme reaction involves interaction of the si face of PEP with the re face of E4P. H. pylori DAH7P synthase is not inhibited by phenylalanine, tyrosine, tryptophan or chorismate. EDTA inactivates the enzyme, and activity is restored by a range of bivalent metal ions, including (in order of decreasing effectiveness) Co2+, Mn2+, Ca2+, Mg2+, Cu2+ and Zn2+. Analysis of type II DAH7P synthase sequences reveals several highly conserved motifs, and comparison with the type I enzymes suggests that catalysis by these two enzyme types occurs on a similar active-site scaffold and that the two DAH7P synthase families may indeed be distantly related.
Collapse
Affiliation(s)
- Celia J. Webby
- *Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Mark L. Patchett
- †Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | - Emily J. Parker
- *Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- To whom correspondence should be sent, at the following address: Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand (email )
| |
Collapse
|