1
|
Wessel AJ, Johnson DTT, Waters CM. DNA repair is essential for Vibrio cholerae growth on Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS) Medium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632459. [PMID: 39829866 PMCID: PMC11741472 DOI: 10.1101/2025.01.10.632459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic Vibrios. We observed that an exonuclease VII (exoVII) mutant of Vibrio cholerae failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for toxicity of the exoVII mutant. Suppressor mutations in DNA gyrase restored growth of the exoVII mutants on TCBS, suggesting that TCBS inhibits DNA gyrase similar to the antibiotic ciprofloxacin. To better understand what factors are important for V. cholerae to grow on TCBS, we generated a randomly-barcoded TnSeq (RB-TnSeq) library in V. cholerae and have used it to uncover a range of DNA repair mutants that also fail to grow on TCBS agar. The results of this study suggest that TCBS agar causes DNA damage to V. cholerae similarly to the mechanism of action of fluoroquinolones, and overcoming this DNA damage is critical for Vibrio growth on this selective medium.
Collapse
Affiliation(s)
- Alex J Wessel
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Drew T T Johnson
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
3
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
4
|
Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli. Nat Commun 2022; 13:5904. [PMID: 36202805 PMCID: PMC9537139 DOI: 10.1038/s41467-022-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Recent experiments show that adaptive Darwinian evolution in one environment can lead to the emergence of multiple new traits that provide no immediate benefit in this environment. Such latent non-adaptive traits, however, can become adaptive in future environments. We do not know whether mutation or environment-driven selection is more important for the emergence of such traits. To find out, we evolve multiple wild-type and mutator E. coli populations under two mutation rates in simple (single antibiotic) environments and in complex (multi-antibiotic) environments. We then assay the viability of evolved populations in dozens of new environments and show that all populations become viable in multiple new environments different from those they had evolved in. The number of these new environments increases with environmental complexity but not with the mutation rate. Genome sequencing demonstrates the reason: Different environments affect pleiotropic mutations differently. Our experiments show that the selection pressure provided by an environment can be more important for the evolution of novel traits than the mutational supply experienced by a wild-type and a mutator strain of E. coli. Novel traits without immediate fitness benefit evolve frequently but we don’t know whether mutation or environment-driven selection drives this evolution. Here, using experimental evolution of E. coli populations, the authors demonstrate the importance of selection in the evolution of latent novel traits.
Collapse
|
5
|
Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nat Ecol Evol 2022; 6:979-988. [PMID: 35618819 DOI: 10.1038/s41559-022-01768-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.
Collapse
|
6
|
Mutators Enhance Adaptive Micro-Evolution in Pathogenic Microbes. Microorganisms 2022; 10:microorganisms10020442. [PMID: 35208897 PMCID: PMC8875331 DOI: 10.3390/microorganisms10020442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Adaptation to the changing environmental conditions experienced within a host requires genetic diversity within a microbial population. Genetic diversity arises from mutations which occur due to DNA damage from exposure to exogenous environmental stresses or generated endogenously through respiration or DNA replication errors. As mutations can be deleterious, a delicate balance must be obtained between generating enough mutations for micro-evolution to occur while maintaining fitness and genomic integrity. Pathogenic microorganisms can actively modify their mutation rate to enhance adaptive micro-evolution by increasing expression of error-prone DNA polymerases or by mutating or decreasing expression of genes required for DNA repair. Strains which exhibit an elevated mutation rate are termed mutators. Mutators are found in varying prevalence in clinical populations where large-effect beneficial mutations enhance survival and are predominately caused by defects in the DNA mismatch repair (MMR) pathway. Mutators can facilitate the emergence of antibiotic resistance, allow phenotypic modifications to prevent recognition and destruction by the host immune system and enable switching to metabolic and cellular morphologies better able to survive in the given environment. This review will focus on recent advances in understanding the phenotypic and genotypic changes occurring in MMR mutators in both prokaryotic and eukaryotic pathogens.
Collapse
|
7
|
Khademi SMH, Gabrielaite M, Paulsson M, Knulst M, Touriki E, Marvig RL, Påhlman LI. Genomic and Phenotypic Evolution of Achromobacter xylosoxidans during Chronic Airway Infections of Patients with Cystic Fibrosis. mSystems 2021; 6:e0052321. [PMID: 34184916 PMCID: PMC8269239 DOI: 10.1128/msystems.00523-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the whole-genome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and β-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Magnus Paulsson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| | - Mattis Knulst
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Touriki
- Clinical Microbiology, Labmedicin Skåne, Lund, Sweden
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother 2021; 65:e0001321. [PMID: 33875437 DOI: 10.1128/aac.00013-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.
Collapse
|
9
|
Emergence of the Novel Aminoglycoside Acetyltransferase Variant aac(6')-Ib-D179Y and Acquisition of Colistin Heteroresistance in Carbapenem-Resistant Klebsiella pneumoniae Due to a Disrupting Mutation in the DNA Repair Enzyme MutS. mBio 2020; 11:mBio.01954-20. [PMID: 33443109 PMCID: PMC8534291 DOI: 10.1128/mbio.01954-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Amikacin and colistin are effective against carbapenem-resistant Klebsiella pneumoniae In 2017, we successively isolated three carbapenem-resistant K. pneumoniae isolates (ST967) from a patient with chronic renal failure in Japan. The first (SMKP01, sputum, day 0) and second (SMKP02, blood, day 14) strains were resistant to most antimicrobials tested but still susceptible to amikacin (MICs of 4 and 0.5 mg/liter, respectively) and colistin (MIC of 0.5 mg/liter for both). The third strain (SMKP03, blood, day 51) was not susceptible to amikacin (MIC, 32 mg/liter), and its MIC for colistin varied (0.5 to 8 mg/liter). Whole-genome sequencing of SMKP01 revealed that 17 of 20 antimicrobial resistance genes, including qnrB91 (a novel qnrB2 variant) and aac(6')-Ib-cr, were located on an 86.9-kb IncFII-IncQ plasmid. The qnrB91 conferred greater fluoroquinolone resistance than qnrB2 SMKP03 aac(6')-Ib-cr that possessed a gene mutation that resulted in an R102W substitution, namely, aac(6')-Ib-D179Y, made a greater contribution to amikacin resistance than did aac(6')-Ib-cr SMKP03 harbored a nonsense mutation in mutS, which encodes a DNA repair enzyme. Introduction of this mutation into SMKP01 (SMKP01mutS A307T) resulted in a dramatic increase (>58-fold) in the frequency of spontaneous amikacin-resistant mutants relative to SMKP01, and the substantial mutants possessed aac(6')-Ib-D179Y SMKP01mutS A307T exhibited an unstable MIC for colistin (0.5 to 8 mg/liter). The results demonstrate that a disruptive mutation in MutS, arising during the clinical course of an infection, created a platform for the acquisition of amikacin nonsusceptibility and colistin heteroresistance in multidrug-resistant K. pneumoniae, mediated by the elevated frequency of spontaneous mutations.IMPORTANCE The emergence of multidrug resistance in pathogens such as Klebsiella pneumoniae is of great clinical concern. Antimicrobial resistance sometimes arises during the course of an infection. Although many studies have reported the emergence of antimicrobial resistance and novel antimicrobial resistance genes in the clinical isolates, the identity of the bacterial factor(s) that generate this emergence is still unclear. We report that a disruptive mutation in MutS, arising during the clinical course of an infection, created a context for the acquisition of colistin resistance and the emergence of a novel variant of the amikacin resistance gene in multidrug-resistant K. pneumoniae via an increase in the frequency of spontaneous mutation. This observation is important for understanding how K. pneumoniae develops multidrug resistance during infection and could potentially lead to new antimicrobial treatments for high-risk pathological microbes.
Collapse
|
10
|
Prevalence of hypermutator isolates of Achromobacter spp. from cystic fibrosis patients. Int J Med Microbiol 2020; 310:151393. [PMID: 31969255 DOI: 10.1016/j.ijmm.2020.151393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/26/2023] Open
Abstract
Bacteria colonising the lungs of cystic fibrosis (CF) patients encounter high selective pressures. Hypermutation facilitates adaptation to fluctuating environments, and hypermutator strains are frequently isolated from CF patients. We investigated the prevalence of hypermutator isolates of Achromobacter spp. among patients affiliated with the CF Centre in Aarhus, Denmark. By exposure to rifampicin, the mutation frequency was determined for 90 isolates of Achromobacter spp. cultured from 42 CF patients; 20 infections were categorised as chronic, 22 as intermittent. The genetic mechanisms of hypermutation were examined by comparing DNA repair gene sequences from hypermutator and normomutator isolates. Achromobacter spp. cultured from 11 patients were categorised as hypermutators, and this phenotype was exclusively associated with chronic infections. Isolates of the Danish epidemic strain (DES) of Achromobacter ruhlandii cultured from patients from both Danish CF centres showed elevated mutation frequencies. The hypermutator state of Achromobacter spp. was most commonly associated with nonsynonymous mutations in the DNA mismatch repair gene mutS; a single clone had developed a substitution in the S-adenosyl-L-methionine-dependent methyltransferase putatively involved in DNA repair mechanisms, but not previously linked to the hypermutator phenotype. Hypermutation is prevalent among clinical isolates of Achromobacter spp. and could be a key determinant for the extraordinary adaptation and persistence of DES.
Collapse
|
11
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
12
|
Alexander HK, Mayer SI, Bonhoeffer S. Population Heterogeneity in Mutation Rate Increases the Frequency of Higher-Order Mutants and Reduces Long-Term Mutational Load. Mol Biol Evol 2017; 34:419-436. [PMID: 27836985 PMCID: PMC5850754 DOI: 10.1093/molbev/msw244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified.
Collapse
Affiliation(s)
- Helen K. Alexander
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Stephanie I. Mayer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Switzerland
| |
Collapse
|
13
|
Evolution of Mutation Rates in Rapidly Adapting Asexual Populations. Genetics 2016; 204:1249-1266. [PMID: 27646140 DOI: 10.1534/genetics.116.193565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022] Open
Abstract
Mutator and antimutator alleles often arise and spread in both natural microbial populations and laboratory evolution experiments. The evolutionary dynamics of these mutation rate modifiers are determined by indirect selection on linked beneficial and deleterious mutations. These indirect selection pressures have been the focus of much earlier theoretical and empirical work, but we still have a limited analytical understanding of how the interplay between hitchhiking and deleterious load influences the fates of modifier alleles. Our understanding is particularly limited when clonal interference is common, which is the regime of primary interest in laboratory microbial evolution experiments. Here, we calculate the fixation probability of a mutator or antimutator allele in a rapidly adapting asexual population, and we show how this quantity depends on the population size, the beneficial and deleterious mutation rates, and the strength of a typical driver mutation. In the absence of deleterious mutations, we find that clonal interference enhances the fixation probability of mutators, even as they provide a diminishing benefit to the overall rate of adaptation. When deleterious mutations are included, natural selection pushes the population toward a stable mutation rate that can be suboptimal for the adaptation of the population as a whole. The approach to this stable mutation rate is not necessarily monotonic: even in the absence of epistasis, selection can favor mutator and antimutator alleles that "overshoot" the stable mutation rate by substantial amounts.
Collapse
|
14
|
Maldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 2016; 40:480-93. [PMID: 27075488 PMCID: PMC4931227 DOI: 10.1093/femsre/fuw007] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2015] [Accepted: 03/10/2016] [Indexed: 12/16/2022] Open
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS) is a major component of the outer membrane that plays a key role in host-pathogen interactions with the innate immune system. During infection, bacteria are exposed to a host environment that is typically dominated by inflammatory cells and soluble factors, including antibiotics, which provide cues about regulation of gene expression. Bacterial adaptive changes including modulation of LPS synthesis and structure are a conserved theme in infections, irrespective of the type or bacteria or the site of infection. In general, these changes result in immune system evasion, persisting inflammation and increased antimicrobial resistance. Here, we review the modifications of LPS structure and biosynthetic pathways that occur upon adaptation of model opportunistic pathogens (Pseudomonas aeruginosa, Burkholderia cepacia complex bacteria, Helicobacter pylori and Salmonella enterica) to chronic infection in respiratory and gastrointestinal sites. We also discuss the molecular mechanisms of these variations and their role in the host-pathogen interaction.
Collapse
Affiliation(s)
- Rita F. Maldonado
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon 1049-001, Portugal
| | - Miguel A. Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
15
|
Bartoli C, Lamichhane JR, Berge O, Varvaro L, Morris CE. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. MOLECULAR PLANT PATHOLOGY 2015; 16:860-9. [PMID: 25649542 PMCID: PMC6638476 DOI: 10.1111/mpp.12243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mutable bacterial cells are defective in their DNA repair system and often have a phenotype different from that of their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotypes are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as a saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability or resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, whereas, in planta, both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here, we report that a high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava, but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype.
Collapse
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Odile Berge
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| |
Collapse
|
16
|
Genetic Adaptation of Achromobacter sp. during Persistence in the Lungs of Cystic Fibrosis Patients. PLoS One 2015; 10:e0136790. [PMID: 26313451 PMCID: PMC4552427 DOI: 10.1371/journal.pone.0136790] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Achromobacter species are increasingly isolated from the respiratory tract of cystic fibrosis patients and often a chronic infection is established. How Achromobacter sp. adapts to the human host remains uncharacterised. By comparing longitudinally collected isolates of Achromobacter sp. isolated from five CF patients, we have investigated the within-host evolution of clonal lineages. The majority of identified mutations were isolate-specific suggesting co-evolution of several subpopulations from the original infecting isolate. The largest proportion of mutated genes were involved in the general metabolism of the bacterium, but genes involved in virulence and antimicrobial resistance were also affected. A number of virulence genes required for initiation of acute infection were selected against, e.g. genes of the type I and type III secretion systems and genes related to pilus and flagellum formation or function. Six antimicrobial resistance genes or their regulatory genes were mutated, including large deletions affecting the repressor genes of an RND-family efflux pump and a beta-lactamase. Convergent evolution was observed for five genes that were all implicated in bacterial virulence. Characterisation of genes involved in adaptation of Achromobacter to the human host is required for understanding the pathogen-host interaction and facilitate design of future therapeutic interventions.
Collapse
|
17
|
Bacterial Adaptation during Chronic Respiratory Infections. Pathogens 2015; 4:66-89. [PMID: 25738646 PMCID: PMC4384073 DOI: 10.3390/pathogens4010066] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/22/2023] Open
Abstract
Chronic lung infections are associated with increased morbidity and mortality for individuals with underlying respiratory conditions such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). The process of chronic colonisation allows pathogens to adapt over time to cope with changing selection pressures, co-infecting species and antimicrobial therapies. These adaptations can occur due to environmental pressures in the lung such as inflammatory responses, hypoxia, nutrient deficiency, osmolarity, low pH and antibiotic therapies. Phenotypic adaptations in bacterial pathogens from acute to chronic infection include, but are not limited to, antibiotic resistance, exopolysaccharide production (mucoidy), loss in motility, formation of small colony variants, increased mutation rate, quorum sensing and altered production of virulence factors associated with chronic infection. The evolution of Pseudomonas aeruginosa during chronic lung infection has been widely studied. More recently, the adaptations that other chronically colonising respiratory pathogens, including Staphylococcus aureus, Burkholderia cepacia complex and Haemophilus influenzae undergo during chronic infection have also been investigated. This review aims to examine the adaptations utilised by different bacterial pathogens to aid in their evolution from acute to chronic pathogens of the immunocompromised lung including CF and COPD.
Collapse
|
18
|
Skaare D, Anthonisen IL, Kahlmeter G, Matuschek E, Natås OB, Steinbakk M, Sundsfjord A, Kristiansen BE. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 25523969 DOI: 10.2807/1560-7917.es2014.19.49.20986] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Resistance to cephalosporins in Haemophilus influenzae is usually caused by characteristic alterations in penicillin-binding protein 3 (PBP3), encoded by the ftsI gene. Resistance to extended-spectrum cephalosporins is associated with high-level PBP3-mediated resistance (high-rPBP3), defined by the second stage S385T substitution in addition to a first stage substitution (R517H or N526K). The third stage L389F substitution is present in some high-rPBP3 strains. High-rPBP3 H. influenzae are considered rare outside Japan and Korea. In this study, 30 high-rPBP3 isolates from Norway, collected between 2006 and 2013, were examined by serotyping, multilocus sequence typing (MLST), ftsI sequencing, detection of beta-lactamase genes and minimum inhibitory concentration (MIC) determination. MICs were interpreted according to clinical breakpoints from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Respiratory isolates predominated (proportion: 24/30). The 30 isolates included one serotype f isolate, while the remaining 29 lacked polysaccharide capsule genes. Resistance to extended-spectrum cephalosporins (cefixime, 29 isolates/30 isolates; cefepime, 28/30; cefotaxime, 26 /30; ceftaroline, 26/30; ceftriaxone, 14/30), beta-lactamase production (11/30) and co-resistance to non-beta-lactams (trimethoprim-sulfamethoxazole, 13/30; tetracycline, 4/30; chloramphenicol, 4/30; ciprofloxacin, 3/30) was frequent. The N526K substitution in PBP3 was present in 23 of 30 isolates; these included a blood isolate which represents the first invasive S385T + N526K isolate reported from Europe. The L389F substitution, present in 16 of 30 isolates, coincided with higher beta-lactam MICs. Non-susceptibility to meropenem was frequent in S385T + L389F + N526K isolates (8/12). All 11 beta-lactamase positive isolates were TEM-1. Five clonal groups of two to 10 isolates with identical MLST-ftsI allelic profiles were observed, including the first reported high-rPBP3 clone with TEM-1 beta-lactamase and co-resistance to ciprofloxacin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole. Prior to this study, no multidrug resistant high-rPBP3 H. influenzae had been reported in Norway. Intensified surveillance of antimicrobial resistance is needed to guide empiric therapy.
Collapse
Affiliation(s)
- D Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tonsberg, Norway
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev 2014; 27:753-82. [PMID: 25278574 PMCID: PMC4187638 DOI: 10.1128/cmr.00022-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced.
Collapse
Affiliation(s)
- Axel Dalhoff
- University Medical Center Schleswig-Holstein, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
20
|
Bartoli C, Berge O, Monteil CL, Guilbaud C, Balestra GM, Varvaro L, Jones C, Dangl JL, Baltrus DA, Sands DC, Morris CE. ThePseudomonas viridiflavaphylogroups in theP. syringaespecies complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits. Environ Microbiol 2014; 16:2301-15. [DOI: 10.1111/1462-2920.12433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
- UR0407 Pathologie Végétale; INRA; Montfavet France
| | - Odile Berge
- UR0407 Pathologie Végétale; INRA; Montfavet France
| | | | | | - Giorgio M. Balestra
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE); Tuscia University; Viterbo Italy
| | - Corbin Jones
- Department of Biology; Carolina Center for Genome Sciences; Chapel Hill NC 29599 USA
| | - Jeffery L. Dangl
- Department of Biology; Howard Hughes Medical Institute; University of North Carolina; Chapel Hill NC 29599 USA
| | - David A. Baltrus
- School of Plant Sciences; University of Arizona; Tucson AZ 85721 USA
| | - David C. Sands
- Department Plant Sciences and Plant Pathology; Montana State University; Bozeman MT 59717-3150 USA
| | - Cindy E. Morris
- UR0407 Pathologie Végétale; INRA; Montfavet France
- Department Plant Sciences and Plant Pathology; Montana State University; Bozeman MT 59717-3150 USA
| |
Collapse
|
21
|
Lopes SP, Azevedo NF, Pereira MO. Microbiome in cystic fibrosis: Shaping polymicrobial interactions for advances in antibiotic therapy. Crit Rev Microbiol 2014; 41:353-65. [PMID: 24645634 DOI: 10.3109/1040841x.2013.847898] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent molecular methodologies have demonstrated a complex microbial ecosystem in cystic fibrosis (CF) airways, with a wide array of uncommon microorganisms co-existing with the traditional pathogens. Although there are lines of evidence supporting the contribution of some of those emergent species for lung disease chronicity, clinical significance remains uncertain for most cases. A possible contribution for disease is likely to be related with the dynamic interactions established between microorganisms within the microbial community and with the host. If this is the case, management of CF will only be successful upon suitable and exhaustive modulation of such mixed ecological processes, which will also be useful to predict the effects of new therapeutic interventions.
Collapse
Affiliation(s)
- Susana P Lopes
- IBB-CEB, Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar , Braga , Portugal and
| | | | | |
Collapse
|
22
|
Engelmoer DJP, Donaldson I, Rozen DE. Conservative sex and the benefits of transformation in Streptococcus pneumoniae. PLoS Pathog 2013; 9:e1003758. [PMID: 24244172 PMCID: PMC3828180 DOI: 10.1371/journal.ppat.1003758] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/26/2013] [Indexed: 12/03/2022] Open
Abstract
Natural transformation has significant effects on bacterial genome evolution, but the evolutionary factors maintaining this mode of bacterial sex remain uncertain. Transformation is hypothesized to have both positive and negative evolutionary effects on bacteria. It can facilitate adaptation by combining beneficial mutations into a single individual, or reduce the mutational load by exposing deleterious alleles to natural selection. Alternatively, it may expose transformed cells to damaged or otherwise mutated environmental DNA and is energetically expensive. Here, we examine the long-term effects of transformation in the naturally competent species Streptococcus pneumoniae by evolving populations of wild-type and competence-deficient strains in chemostats for 1000 generations. Half of these populations were exposed to periodic mild stress to examine context-dependent benefits of transformation. We find that competence reduces fitness gain under benign conditions; however, these costs are reduced in the presence of periodic stress. Using whole genome re-sequencing, we show that competent populations fix fewer new mutations and that competence prevents the emergence of mutators. Our results show that during evolution in benign conditions competence helps maintain genome stability but is evolutionary costly; however, during periods of stress this same conservativism enables cells to retain fitness in the face of new mutations, showing for the first time that the benefits of transformation are context dependent. Transformation of environmental DNA can provide bacteria with a means to adapt quickly to a changing environment. While this can benefit microbes by facilitating the spread of antibiotic resistance, it can also be harmful if it causes the loss of beneficial alleles from a population. Therefore, it is unclear what evolutionary factors enable transformation to persist in bacterial populations. We used the naturally transformable opportunistic pathogen Streptococcus pneumoniae to investigate the long-term benefits of transformation. We compared the fitness of laboratory populations of S. pneumoniae after 1000 generations of evolution. Half of these populations were naturally transformable (competent) while the other half was deficient for this function. At the same time, half of the evolving populations were periodically exposed to short periods of mild stress. We find that competence reduces the average fitness gain of evolving populations, but this cost is mitigated in populations facing mild stress. Using whole genome sequencing, we discovered that functional competence reduces the total number of fixed mutations and prevents hyper-mutable cells from increasing in frequency. Our results suggest that competence in S. pneumoniae is a conservative process acting to preserve alleles, rather than an innovative one that persists because it recombines beneficial mutations.
Collapse
Affiliation(s)
- Daniel J. P. Engelmoer
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
- Department of Animal Ecology, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- * E-mail: (DJPE); (DER)
| | - Ian Donaldson
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Daniel E. Rozen
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail: (DJPE); (DER)
| |
Collapse
|
23
|
Wang S, Wu C, Shen J, Wu Y, Wang Y. Hypermutable Staphylococcus aureus strains present at high frequency in subclinical bovine mastitis isolates are associated with the development of antibiotic resistance. Vet Microbiol 2013; 165:410-5. [PMID: 23642648 DOI: 10.1016/j.vetmic.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
Abstract
Hypermutable bacterial strains with greatly elevated spontaneous mutation rates have been described at high frequencies in various clinically important species, particularly in cystic fibrosis (CF) patients. It has been suggested that such strains can play a major role in the development of chronic respiratory infections. Nevertheless, little information is available regarding the potential association between hypermutation and other chronic infection settings. Here, we investigated the mutation frequencies of 261 Staphylococcus aureus isolates from bovine mastitis cases. The comparative analysis revealed that the subclinical mastitis (SM) isolates harbored significantly more hypermutators than the clinical mastitis (CM) isolates (26/141 versus 0/120, P<0.001, Fisher's exact test). Analysis of mutS and mutL genes, which are major components of the methyl mismatch repair (MMR) system, revealed that 13 of the 14 genetically unrelated hypermutators showed alterations in their deduced MutS and/or MutL amino acid sequences. The hypermutators were much more frequently found to be resistant to all of the 7 antibiotics tested (except sulfafurazole) than the nonmutators. Moreover, the proportion of hypermutators harboring multi-drug resistance was significantly higher than that of the nonmutators as well (P<0.001). Taken together, this work provides evidence that hypermutability plays an important role in antibiotic resistance development during long-term persistence of S. aureus, and reveals that the link between hypermutation and chronic infections appears not to be restricted to respiratory infections alone.
Collapse
Affiliation(s)
- Shaochen Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
24
|
Yamachika S, Sugihara C, Kamai Y, Yamashita M. Correlation between penicillin-binding protein 2 mutations and carbapenem resistance in Escherichia coli. J Med Microbiol 2013; 62:429-436. [DOI: 10.1099/jmm.0.051631-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shinichiro Yamachika
- Oncology Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Chika Sugihara
- Lead Discovery & Optimization Research Laboratories II, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yasuki Kamai
- Oncology Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Makoto Yamashita
- Biological Research Laboratories, Daiichi Sankyo Co. Ltd, 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| |
Collapse
|
25
|
Watson ME, Nelson KL, Nguyen V, Burnham CAD, Clarridge JE, Qin X, Smith AL. Adhesin genes and serum resistance in Haemophilus influenzae type f isolates. J Med Microbiol 2012; 62:514-524. [PMID: 23242639 DOI: 10.1099/jmm.0.052175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The incidence of invasive infections due to Haemophilus influenzae has decreased significantly in developed countries with high rates of vaccination against H. influenzae serotype b (Hib). This vaccine provides no protection against H. influenzae serotype f (Hif), typically associated with invasive infections in adults with chronic disease and/or immunodeficiency, and rarely in otherwise healthy adults and children. The specific properties of Hif associated with virulence remain largely uncharacterized. A panel of 26 Hif strains consisting of both invasive disease-associated and mucosal surface non-invasive disease-associated isolates was surveyed by DNA fingerprinting, biotyping and PCR detection of hmw1, hmw2, hsf, the hif fimbrial locus and the lipo-oligosaccharide (LOS) biosynthetic island, and assessment of β-lactamase expression and determination of resistance to the bactericidal activity of normal adult human serum. Repetitive sequence-based PCR fingerprinting differentiated the 26 strains into three clusters, with the majority of isolates (22/26, 84.6 %) clustered into a single indistinguishable group. Most isolates (24/26, 92.3 %) were of biotype I and two isolates produced β-lactamase with detection of a conjugative plasmid, and the isolates displayed a range of resistances to the bactericidal activity of human serum. All 26 isolates carried the adhesin hsf, 21 carried a partial hif fimbrial operon and 4 had the adhesin genes hmw1/2. A LOS biosynthetic island was detected in 20 isolates consisting of the genes lic2BC. It was concluded that Hif has many recognized virulence properties and comprises a relatively homogeneous group independent of the anatomical source from which it was isolated.
Collapse
Affiliation(s)
- Michael E Watson
- Divison of Pediatric Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Kevin L Nelson
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| | - Victoria Nguyen
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| | - Carey-Ann D Burnham
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jill E Clarridge
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xuan Qin
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Arnold L Smith
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, USA
| |
Collapse
|
26
|
Lenhart JS, Sharma A, Hingorani MM, Simmons LA. DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication. Mol Microbiol 2012; 87:553-68. [PMID: 23228104 DOI: 10.1111/mmi.12115] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2012] [Indexed: 11/30/2022]
Abstract
Mismatch repair (MMR) increases the fidelity of DNA replication by identifying and correcting replication errors. Processivity clamps are vital components of DNA replication and MMR, yet the mechanism and extent to which they participate in MMR remains unclear. We investigated the role of the Bacillus subtilis processivity clamp DnaN, and found that it serves as a platform for mismatch detection and coupling of repair to DNA replication. By visualizing functional MutS fluorescent fusions in vivo, we find that MutS forms foci independent of mismatch detection at sites of replication (i.e. the replisome). These MutS foci are directed to the replisome by DnaN clamp zones that aid mismatch detection by targeting the search to nascent DNA. Following mismatch detection, MutS disengages from the replisome, facilitating repair. We tested the functional importance of DnaN-mediated mismatch detection for MMR, and found that it accounts for 90% of repair. This high dependence on DnaN can be bypassed by increasing MutS concentration within the cell, indicating a secondary mode of detection in vivo whereby MutS directly finds mismatches without associating with the replisome. Overall, our results provide new insight into the mechanism by which DnaN couples mismatch recognition to DNA replication in living cells.
Collapse
Affiliation(s)
- Justin S Lenhart
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
27
|
Sanjuán R, Lázaro E, Vignuzzi M. Biomedical implications of viral mutation and evolution. Future Virol 2012. [DOI: 10.2217/fvl.12.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mutation rates vary hugely across viruses and strongly determine their evolution. In addition, viral mutation and evolution are biomedically relevant because they can determine pathogenesis, vaccine efficacy and antiviral resistance. We review experimental methods for estimating viral mutation rates and how these estimates vary across viral groups, paying special attention to the more general trends. Recent advances positing a direct association between viral mutation rates and virulence, or the use of high-fidelity variants as attenuated vaccines, are also discussed. Finally, we review the implications of viral mutation and evolution for the design of rational antiviral therapies and for efficient epidemiological surveillance.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Ester Lázaro
- Centro de Astrobiología, CSIC-INTA, Madrid, Spain
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations & Pathogenesis Laboratory, Paris, France
| |
Collapse
|
28
|
Kumar P, Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. J Mol Evol 2012; 74:127-39. [PMID: 22415400 DOI: 10.1007/s00239-012-9491-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 02/15/2012] [Indexed: 11/30/2022]
Abstract
Mutational bias toward expansion or contraction of simple sequence repeats (SSRs) is referred to as directionality of SSR evolution. In this communication, we report the mutational bias exhibited by mononucleotide SSRs occurring in the non-coding regions of several prokaryotic genomes. Our investigations revealed that the strains or species lacking mismatch repair (MMR) system generally show higher number of polymorphic SSRs than those species/strains having MMR system. An exception to this observation was seen in the mycobacterial genomes that are MMR deficient where only a few SSR tracts were seen with mutations. This low incidence of SSR mutations even in the MMR-deficient background could be attributed to the high fidelity of the DNA polymerases as a consequence of high generation time of the mycobacteria. MMR system-deficient species generally did not show any bias toward mononucleotide SSR expansions or contractions indicating a neutral evolution of SSRs in these species. The MMR-proficient species in which the observed mutations correspond to secondary mutations showed bias toward contraction of polymononucleotide tracts, perhaps, indicating low efficiency of MMR system to repair SSR-induced slippage errors on template strands. This bias toward deletion in the mononucleotide SSR tracts might be a probable reason behind scarcity for long poly A|T and G|C tracts in prokaryotic systems which are mostly MMR proficient. In conclusion, our study clearly demonstrates mutational dynamics of SSRs in relation to the presence/absence of MMR system in the prokaryotic system.
Collapse
Affiliation(s)
- Pankaj Kumar
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics (CDFD), Tuljaguda Complex, 4-1-714, Mozamjahi Rd, Nampally, Hyderabad, 500 001, India
| | | |
Collapse
|
29
|
Cardines R, Giufrè M, Pompilio A, Fiscarelli E, Ricciotti G, Bonaventura GD, Cerquetti M. Haemophilus influenzae in children with cystic fibrosis: Antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int J Med Microbiol 2012; 302:45-52. [DOI: 10.1016/j.ijmm.2011.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/26/2011] [Accepted: 08/29/2011] [Indexed: 12/22/2022] Open
|
30
|
Abstract
Mutator alleles, which elevate an individual's mutation rate from 10 to 10,000-fold, have been found at high frequencies in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occasionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that when deleterious mutation rates are high in mutators, there will often be many "young," recently produced mutators in the population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then consider how this mutator-nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators, so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution of the population.
Collapse
|
31
|
Yu G. Gnom(Cmp): a quantitative approach for comparative analysis of closely related genomes of bacterial pathogens. Genome 2011; 54:402-18. [PMID: 21539441 DOI: 10.1139/g11-005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Comparative genome analysis is a powerful approach to understanding the biology of infectious bacterial pathogens. In this study, a quantitative approach, referred to as Gnom(Cmp), was developed to study the microevolution of bacterial pathogens. Although much more time-consuming than existing tools, this procedure provides a much higher resolution. Gnom(Cmp) accomplishes this by establishing genome-wide heterogeneity genotypes, which are then quantified and comparatively analyzed. The heterogeneity genotypes are defined as chromosomal base positions that have multiple variants within particular genomes, resulted from DNA duplications and subsequent mutations. To prove the concept, the procedure was applied on the genomes of 15 Staphylococcus aureus strains, focusing extensively on two pairs of hVISA/VISA strains. hVISA refers to heteroresistant vancomycin-intermediate S. aureus strains and VISA is their VISA mutants. hVISA/VISA displays some remarkable properties. hVISA is susceptible to vancomycin, but VISA mutants emerge soon after a short period of vancomycin therapy, therefore making the pathogen a great model organism for fast-evolving bacterial pathogens. The analysis indicated that Gnom(Cmp) could reveal variants within the genomes, which can be analyzed within the global genome context. Gnom(Cmp) discovered evolutionary hotspots and their dynamics among many closely related, even isogenic genomes. The analysis thus allows the exploration of the molecular mechanisms behind hVISA/VISA evolution, providing a working hypotheses for experimental testing and validation.
Collapse
Affiliation(s)
- GongXin Yu
- Department of Biological Science, Department of Computer Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
32
|
Oliver A, Mena A. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect 2011; 16:798-808. [PMID: 20880409 DOI: 10.1111/j.1469-0691.2010.03250.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypermutable or mutator microorganisms are those that have an increased spontaneous mutation rate as a result of defects in DNA repair or error avoidance systems. Over the last two decades, several studies have provided strong evidence for a relevant role of mutators in the evolution of natural bacterial populations, particularly in the field of infectious diseases. Among them, chronic respiratory infection with Pseudomonas aeruginosa in cystic fibrosis (CF) patients was the first natural environment to reveal the high prevalence and important role of mutators. A remarkable positive selection of mutators during the course of the chronic infection has been reported, mainly as a result of the emergence of DNA mismatch repair system (mutS, mutL or mutU)-deficient mutants, although strains defective in the GO system (mutM, mutY and mutT) have also been observed. High frequencies of mutators have also been noted among other pathogens in the CF setting, particularly Staphylococcus aureus and Haemophilus influenzae. Enhanced antimicrobial resistance development is the most thoroughly studied consequence of mutators in CF and other chronic infections, although recent studies show that mutators may additionally have important effects on the evolution of virulence, genetic adaptation to the airways of CF patients, persistence of colonization, transmissibility, and perhaps lung function decline. Further prospective clinical studies are nevertheless still needed for an in-depth evaluation of the impact of mutators on disease progression and outcome.
Collapse
Affiliation(s)
- A Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Dureta, Instituto Universitario de Investigación en Ciencias de la Salud, Palma de Mallorca, Spain.
| | | |
Collapse
|
33
|
Döring G, Parameswaran IG, Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev 2011; 35:124-46. [PMID: 20584083 DOI: 10.1111/j.1574-6976.2010.00237.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cystic fibrosis (CF), the most common autosomal recessive disorder in Caucasians, and chronic obstructive pulmonary disease (COPD), a disease of adults, are characterized by chronic lung inflammation, airflow obstruction and extensive tissue remodelling, which have a major impact on patients' morbidity and mortality. Airway inflammation is stimulated in CF by chronic bacterial infections and in COPD by environmental stimuli, particularly from smoking. Pseudomonas aeruginosa is the major bacterial pathogen in CF, while in COPD, Haemophilus influenzae is most frequently observed. Molecular studies indicate that during chronic pulmonary infection, P. aeruginosa clones genotypically and phenotypically adapt to the CF niche, resulting in a highly diverse bacterial community that is difficult to eradicate therapeutically. Pseudomonas aeruginosa clones from COPD patients remain within the airways only for limited time periods, do not adapt and are easily eradicated. However, in a subgroup of severely ill COPD patients, P. aeruginosa clones similar to those in CF persist. In this review, we will discuss the pathophysiology of lung disease in CF and COPD, the complex genotypic and phenotypic adaptation processes of the opportunistic bacterial pathogens and novel treatment options.
Collapse
Affiliation(s)
- Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
34
|
Jolivet-Gougeon A, Kovacs B, Le Gall-David S, Le Bars H, Bousarghin L, Bonnaure-Mallet M, Lobel B, Guillé F, Soussy CJ, Tenke P. Bacterial hypermutation: clinical implications. J Med Microbiol 2011; 60:563-573. [PMID: 21349992 DOI: 10.1099/jmm.0.024083-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Heritable hypermutation in bacteria is mainly due to alterations in the methyl-directed mismatch repair (MMR) system. MMR-deficient strains have been described from several bacterial species, and all of the strains exhibit increased mutation frequency and recombination, which are important mechanisms for acquired drug resistance in bacteria. Antibiotics select for drug-resistant strains and refine resistance determinants on plasmids, thus stimulating DNA recombination via the MMR system. Antibiotics can also act as indirect promoters of antibiotic resistance by inducing the SOS system and certain error-prone DNA polymerases. These alterations have clinical consequences in that efficacious treatment of bacterial infections requires high doses of antibiotics and/or a combination of different classes of antimicrobial agents. There are currently few new drugs with low endogenous resistance potential, and the development of such drugs merits further research.
Collapse
Affiliation(s)
- Anne Jolivet-Gougeon
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bela Kovacs
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| | - Sandrine Le Gall-David
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Hervé Le Bars
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Latifa Bousarghin
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Martine Bonnaure-Mallet
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bernard Lobel
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - François Guillé
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - Claude-James Soussy
- Service de Bactériologie-Virologie-Hygiène, CHU Henri-Mondor, 51 avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil cedex, France
| | - Peter Tenke
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| |
Collapse
|
35
|
Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29-70. [PMID: 21233507 PMCID: PMC3021203 DOI: 10.1128/cmr.00036-10] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A select group of microorganisms inhabit the airways of individuals with cystic fibrosis. Once established within the pulmonary environment in these patients, many of these microbes adapt by altering aspects of their structure and physiology. Some of these microbes and adaptations are associated with more rapid deterioration in lung function and overall clinical status, whereas others appear to have little effect. Here we review current evidence supporting or refuting a role for the different microbes and their adaptations in contributing to poor clinical outcomes in cystic fibrosis.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, 303 E. Chicago Ave., Searle 6-495, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
36
|
Duvernay C, Coulange L, Dutilh B, Dubois V, Quentin C, Arpin C. Duplication of the chromosomal blaSHV-11 gene in a clinical hypermutable strain of Klebsiella pneumoniae. MICROBIOLOGY-SGM 2010; 157:496-503. [PMID: 20966089 DOI: 10.1099/mic.0.043885-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a collection of 110 clinical isolates of Klebsiella pneumoniae, a single strain, Kp593, was found to exhibit a mutator phenotype with a rifampicin mutation frequency 100-fold higher than the modal value for this species. Complementation experiments with the wild-type MutL, one of the main components of the methyl-directed mismatch repair system, allowed the mutator phenotype to be reversed. Sequencing revealed substitution of the conserved residue Lys307 to Arg and site-directed mutagenesis followed by complementation experiments confirmed the critical role of this mutation. The patient infected with Kp593 relapsed a month later and the strain isolated then, Kp869, was identical to Kp593, as verified by PFGE analysis. Phenotypically, Kp869 colonies were more mucoid than those of Kp593, probably due to increased capsule synthesis as shown by electron microscopy. In addition, Kp869 exhibited a 16-fold higher amoxicillin resistance level related to a 36.4 kb tandem duplication encompassing the chromosomal bla(SHV-11) gene, which was unstable in vitro. These data suggest that the mutator phenotype found in Kp593/Kp869 is associated with beneficial mutations conferring a selective advantage, such as increased virulence factor production and antibiotic resistance. The latter was due to resistance gene duplication, an event rarely described in natural isolates. This is the first description of the in vivo occurrence of gene duplication in a mutator background.
Collapse
Affiliation(s)
- Chloé Duvernay
- CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Laure Coulange
- CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | - Véronique Dubois
- CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Claudine Quentin
- CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Corinne Arpin
- CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France
| |
Collapse
|
37
|
Yu G. GenHtr: a tool for comparative assessment of genetic heterogeneity in microbial genomes generated by massive short-read sequencing. BMC Bioinformatics 2010; 11:508. [PMID: 20939910 PMCID: PMC2967562 DOI: 10.1186/1471-2105-11-508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Microevolution is the study of short-term changes of alleles within a population and their effects on the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis. Results For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly sequenced genomes (using massive short-read sequencing) and their isogenic reference (using simulated data). As proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS. Conclusion GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time-consuming when compared to Maq, a popular tool for SNP analysis, GenHtr is able to predict potential multiple variants that pre-exist in the bacterial population as well as SNPs that occur in the highly duplicated gene families. It is expected that, with the proper experimental design, this analysis can improve our understanding of the molecular mechanism underlying the dynamics and the evolution of drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Gongxin Yu
- Department of Biological Science, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA.
| |
Collapse
|
38
|
Henderson-Begg SK, Sheppard CL, George RC, Livermore DM, Hall LM. Mutation frequency in antibiotic-resistant and -susceptible isolates of Streptococcus pneumoniae. Int J Antimicrob Agents 2010; 35:342-6. [DOI: 10.1016/j.ijantimicag.2009.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
|
39
|
Inoue S, Watanuki Y, Miyazawa N, Kudo M, Sato T, Kobayashi N, Mishina K, Sasaki M, Kaneko T, Ishigatsubo Y. High frequency of β-lactamase-negative, ampicillin-resistant strains of Haemophilus influenzae in patients with chronic bronchitis in Japan. J Infect Chemother 2010; 16:72-5. [DOI: 10.1007/s10156-009-0020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 11/02/2009] [Indexed: 10/20/2022]
|
40
|
Tristram SG. Novel bla(TEM)-positive ampicillin-susceptible strains of Haemophilus influenzae. J Infect Chemother 2009; 15:340-2. [PMID: 19856076 DOI: 10.1007/s10156-009-0700-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
Two ampicillin-susceptible strains of Haemophilus influenzae were found to carry blaTEM genes. In one strain ampicillin susceptibility was explained by poor expression of a functional TEM-1 enzyme from a putative weak promoter created by a mutation in the promoter region of the gene, and in the other by production of an inactive mutant TEM enzyme.
Collapse
Affiliation(s)
- Stephen G Tristram
- School of Human Life Sciences, University of Tasmania, Newnham Drive, Launceston, Tasmania 7250, Australia.
| |
Collapse
|
41
|
Hazen TH, Kennedy KD, Chen S, Yi SV, Sobecky PA. Inactivation of mismatch repair increases the diversity ofVibrio parahaemolyticus. Environ Microbiol 2009; 11:1254-66. [DOI: 10.1111/j.1462-2920.2008.01853.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni. J Bacteriol 2009; 191:3785-93. [PMID: 19376866 DOI: 10.1128/jb.01817-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence and functionality of DNA repair mechanisms in Campylobacter jejuni are largely unknown. In silico analysis of the complete translated genome of C. jejuni NCTC 11168 suggests the presence of genes involved in methyl-directed mismatch repair (MMR), nucleotide excision repair, base excision repair (BER), and recombinational repair. To assess the functionality of these putative repair mechanisms in C. jejuni, mutS, uvrB, ung, and recA knockout mutants were constructed and analyzed for their ability to repair spontaneous point mutations, UV irradiation-induced DNA damage, and nicked DNA. Inactivation of the different putative DNA repair genes did not alter the spontaneous mutation frequency. Disruption of the UvrB and RecA orthologues, but not the putative MutS or Ung proteins, resulted in a significant reduction in viability after exposure to UV irradiation. Assays performed with uracil-containing plasmid DNA showed that the putative uracil-DNA glycosylase (Ung) protein, important for initiation of the BER pathway, is also functional in C. jejuni. Inactivation of recA also resulted in a loss of natural transformation. Overall, the data indicate that C. jejuni has multiple functional DNA repair systems that may protect against DNA damage and limit the generation of genetic diversity. On the other hand, the apparent absence of a functional MMR pathway may enhance the frequency of on-and-off switching of phase variable genes typical for C. jejuni and may contribute to the genetic heterogeneity of the C. jejuni population.
Collapse
|
43
|
Wylie CS, Ghim CM, Kessler D, Levine H. The fixation probability of rare mutators in finite asexual populations. Genetics 2009; 181:1595-612. [PMID: 19153261 PMCID: PMC2666523 DOI: 10.1534/genetics.108.094532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/08/2009] [Indexed: 11/18/2022] Open
Abstract
A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii when selection is fast compared to mutation (micro/s<<1). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution experiments and suggest future experimental directions.
Collapse
Affiliation(s)
- C Scott Wylie
- Center for Theoretical Biological Physics, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
INTRODUCTION Infection is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). Research on CF infection has highlighted differences from other respiratory infections--both in the range and the nature of the organisms--especially in chronic infection. This is a rapidly advancing field of microbiology and is bringing insights into the complexity and adaptations of bacteria causing chronic infection in the respiratory tract. AREAS OF AGREEMENT AND CONTROVERSY The epidemiology of some infections in CF has changed, with reduction in spread of Burkholderia cenocepacia following patient segregation. Conversely, epidemic strains of Pseudomonas aeruginosa have emerged, which spread between patients; previously, most P. aeruginosa strains were patient-specific. Studies on hypermutators, quorum sensing, biofilm growth and the development of molecular identification have shed light on pathogenicity, microbial adaptation to the host and complexity of infection in CF. Non-tuberculous mycobacteria are emerging pathogens in CF; however, there is much to learn about pathogenicity and treatment of these infections. Species of aerobic and anaerobic bacteria, more commonly encountered in the upper tract, are found in significant numbers in CF sputum. The significance of this is however under debate. Finally, although the clinical relevance of conventional antibiotic susceptibility testing for chronic CF pathogens has been questioned, there are no clear alternatives. EMERGING AREAS FOR DEVELOPING RESEARCH Much has been learnt about pathogenicity, evolution of CF pathogens and development of antibiotic resistance. The need is to focus on clinical relevance of these observations to improve diagnosis, prevention and treatment of CF infection.
Collapse
Affiliation(s)
- Juliet Foweraker
- Department of Microbiology, Papworth Hospital HNS Foundation Trust, Papworth Everard, Cambridge, UK.
| |
Collapse
|
45
|
Abstract
Oenococcus oeni is an alcohol-tolerant, acidophilic lactic acid bacterium primarily responsible for malolactic fermentation in wine. A recent comparative genomic analysis of O. oeni PSU-1 with other sequenced lactic acid bacteria indicates that PSU-1 lacks the mismatch repair (MMR) genes mutS and mutL. Consistent with the lack of MMR, mutation rates for O. oeni PSU-1 and a second oenococcal species, O. kitaharae, were higher than those observed for neighboring taxa, Pediococcus pentosaceus and Leuconostoc mesenteroides. Sequence analysis of the rpoB mutations in rifampin-resistant strains from both oenococcal species revealed a high percentage of transition mutations, a result indicative of the lack of MMR. An analysis of common alleles in the two sequenced O. oeni strains, PSU-1 and BAA-1163, also revealed a significantly higher level of transition substitutions than were observed in other Lactobacillales species. These results suggest that the genus Oenococcus is hypermutable due to the loss of mutS and mutL, which occurred with the divergence away from the neighboring Leuconostoc branch. The hypermutable status of the genus Oenococcus explains the observed high level of allelic polymorphism among known O. oeni isolates and likely contributed to the unique adaptation of this genus to acidic and alcoholic environments.
Collapse
|
46
|
Kenna DT, Doherty CJ, Foweraker J, Macaskill L, Barcus VA, Govan JRW. Hypermutability in environmental Pseudomonas aeruginosa and in populations causing pulmonary infection in individuals with cystic fibrosis. MICROBIOLOGY-SGM 2007; 153:1852-1859. [PMID: 17526842 DOI: 10.1099/mic.0.2006/005082-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is the pathogen most commonly associated with morbidity and mortality in cystic fibrosis (CF) patients. The host-pathogen interactions responsible for progressive CF lung diseases are complex. However, there is growing interest in the role of hypermutable P. aeruginosa (that is, those strains with an increased mutation frequency due to mutations in mismatch repair and error prevention genes), in terms of both bacterial adaptation and antimicrobial resistance. The prevalence of hypermutable P. aeruginosa in chronic CF infection has been established, and at 37 % is surprisingly high. To the authors' knowledge, there are no reports of prevalence during the early stages of infection, in environmental pseudomonas, which are believed to be the primary source of infection, and in epidemic strains, which have emerged as a major challenge. The aim of this study was to establish the prevalence of hypermutable P. aeruginosa in these pseudomonas populations. The hypothesis was that hypermutability would be rare in early and in environmental P. aeruginosa but in contrast would explain the relatively recent emergence of epidemic strains. It was found that 10/100 (10 %) of early isolates were strong or weak mutators, suggesting that the CF lung is not the only factor influencing the existence of mutators in this group of patients. Two weak mutators (6 %) were found in 32 environmental isolates. Only two of 15 (13 %) epidemic P. aeruginosa strains were hypermutable, and although closer analysis revealed this issue to be complex, on the whole the data suggested that the atypical characteristics of these highly transmissible strains cannot solely be explained by this phenomenon. The higher than predicted prevalence of mutators in early infection, and in environmental isolates, reinforces the importance of early and aggressive treatment for P. aeruginosa infection in CF.
Collapse
Affiliation(s)
- Dervla T Kenna
- Cystic Fibrosis Group, Centre for Infectious Diseases, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Catherine J Doherty
- Cystic Fibrosis Group, Centre for Infectious Diseases, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Juliet Foweraker
- Department of Microbiology, Papworth Hospital NHS Trust, Papworth Everard, Cambridge CB3 8RE, UK
| | - Lisa Macaskill
- The Whitchurch Laboratory, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia
| | - Victoria A Barcus
- Cystic Fibrosis Group, Centre for Infectious Diseases, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - John R W Govan
- Cystic Fibrosis Group, Centre for Infectious Diseases, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
47
|
Abstract
Bacteria possessing elevated spontaneous mutation rates are prevalent in certain environments, which is a paradox because most mutations are deleterious. For example, cells with defects in the methyl-directed mismatch repair (MMR) system, termed mutators or hypermutators, are overrepresented in populations of bacterial pathogens, with the mutator trait hypothesized to be advantageous in the changing host enviroments faced during colonization and establishment of chronic infections. Error-prone DNA polymerases, such as polIV and polV, function in translesion DNA synthesis, a DNA damage response that ensures genome integrity with a cost of increased mutation. While the biochemical aspects of these mutability pathways are well understood, the biological impacts have received less attention. Here, an examination of bacterial mutability systems and specifically the ecological and evolutionary context resulting in the selection of these systems is carried out.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant Pathology, Centers for Microbial Ecology and Pathogenesis, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
48
|
Davidsen T, Tuven HK, Bjørås M, Rødland EA, Tønjum T. Genetic interactions of DNA repair pathways in the pathogen Neisseria meningitidis. J Bacteriol 2007; 189:5728-37. [PMID: 17513474 PMCID: PMC1951836 DOI: 10.1128/jb.00161-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), translesion synthesis, and recombinational repair pathways. The highest spontaneous mutation frequency among the N. meningitidis single mutants was found in the MutY-deficient strain as opposed to mutS mutants in Escherichia coli, indicating a role for meningococcal MutY in antibiotic resistance development. Recombinational repair was recognized as a major pathway counteracting methyl methanesulfonate-induced alkylation damage in the N. meningitidis. In contrast to what has been shown in other species, meningococcal NER did not contribute significantly to repair of alkylation-induced DNA damage, and meningococcal recombinational repair may thus be one of the main pathways for removal of abasic (apurinic/apyrimidinic) sites and strand breaks in DNA. Conversely, NER was identified as the main meningococcal defense pathway against UV-induced DNA damage. N. meningitidis RecA single mutants exhibited only a moderate decrease in survival after UV exposure as opposed to E. coli recA strains, which are extremely UV sensitive, possibly reflecting the lack of a meningococcal SOS response. In conclusion, distinct differences between N. meningitidis and established DNA repair characteristics in E. coli and other species were identified.
Collapse
Affiliation(s)
- Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
49
|
Montanari S, Oliver A, Salerno P, Mena A, Bertoni G, Tümmler B, Cariani L, Conese M, Döring G, Bragonzi A. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology (Reading) 2007; 153:1445-1454. [PMID: 17464058 DOI: 10.1099/mic.0.2006/003400-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The high prevalence of hypermutable (mismatch repair-deficient) Pseudomonas aeruginosa strains in patients with cystic fibrosis (CF) is thought to be driven by their co-selection with adaptive mutations required for long-term persistence. Whether the increased mutation rate of naturally hypermutable strains is associated with a biological benefit or cost for the colonization of secondary environments is not known. Thirty-nine P. aeruginosa strains were collected from ten patients with CF during their course of chronic lung infections and screened for hypermutability. Seven hypermutable P. aeruginosa strains (18 %) isolated from six patients with CF (60 %) were identified and assigned to five different genotypes. Complementation and sequence analysis in the mutS, mutL and uvrD genes of these hypermutable P. aeruginosa strains revealed novel mutations. To understand the consequences of hypermutation for the fitness of the organisms, five pairs of clinical wild-type/hypermutable, clonally related P. aeruginosa strains and the laboratory strains PAO1/PAO1DeltamutS were subjected to competition in vitro and in the agar-beads mouse model of chronic airway infection. When tested in competition assay in vitro, the wild-type outcompeted four clinical hypermutable strains and the PAO1DeltamutS strain. In vivo, all of the hypermutable strains were less efficient at establishing lung infection than their wild-type clones. These results suggest that P. aeruginosa hypermutation is associated with a biological cost, reducing the potential for colonization of new environments and therefore strain transmissibility.
Collapse
Affiliation(s)
- Sara Montanari
- Institute for Experimental Treatment of Cystic Fibrosis, Scientific Institute H. S. Raffaele, Milano, Italy
| | - Antonio Oliver
- Servicio de Microbiologìa Hospital Son Dureta, Palma de Mallorca, Spain
| | - Paola Salerno
- Institute for Experimental Treatment of Cystic Fibrosis, Scientific Institute H. S. Raffaele, Milano, Italy
| | - Ana Mena
- Servicio de Microbiologìa Hospital Son Dureta, Palma de Mallorca, Spain
| | - Giovanni Bertoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lisa Cariani
- Ospedale Maggiore Policlinico, CF Clinic, Milano, Italy
| | - Massimo Conese
- Institute for Experimental Treatment of Cystic Fibrosis, Scientific Institute H. S. Raffaele, Milano, Italy
| | - Gerd Döring
- Institute of Medical Microbiology and Hygiene, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Alessandra Bragonzi
- Institute for Experimental Treatment of Cystic Fibrosis, Scientific Institute H. S. Raffaele, Milano, Italy
| |
Collapse
|
50
|
Davidsen T, Koomey M, Tønjum T. Microbial genome dynamics in CNS pathogenesis. Neuroscience 2007; 145:1375-87. [PMID: 17367950 DOI: 10.1016/j.neuroscience.2007.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
The balancing act between microbes and their host in commensal and disease states needs to be deciphered in order to fully treat and combat infectious diseases. The elucidation of microbial genome dynamics in each instance is therefore required. In this context, the major bacterial meningitis pathogens are Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae. In prokaryotic CNS pathogenesis both the intact organism as well as its released components can elicit disease, often resulting in neurological sequelae, neurodegeneration or fatal outcome. The study of microbial virulence in CNS disease is expected to generate findings that yield new information on the general mechanisms of brain edema and excitatory neuronal disturbances due to meningitis, with significant potential for discoveries that can directly influence and inspire new strategies for prevention and treatment of this serious disease.
Collapse
Affiliation(s)
- T Davidsen
- Centre for Molecular Biology and Neuroscience, Institute of Microbiology, Rikshospitalet-Radiumhospitalet Medical Centre, Sognsvannsveien 20, NO-0027 Oslo, Norway
| | | | | |
Collapse
|