1
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Recent Advances in the Study of Gas Vesicle Proteins and Application of Gas Vesicles in Biomedical Research. Life (Basel) 2022; 12:life12091455. [PMID: 36143491 PMCID: PMC9501494 DOI: 10.3390/life12091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
The formation of gas vesicles has been investigated in bacteria and haloarchaea for more than 50 years. These air-filled nanostructures allow cells to stay at a certain height optimal for growth in their watery environment. Several gvp genes are involved and have been studied in Halobacterium salinarum, cyanobacteria, Bacillus megaterium, and Serratia sp. ATCC39006 in more detail. GvpA and GvpC form the gas vesicle shell, and additional Gvp are required as minor structural proteins, chaperones, an ATP-hydrolyzing enzyme, or as gene regulators. We analyzed the Gvp proteins of Hbt. salinarum with respect to their protein–protein interactions, and developed a model for the formation of these nanostructures. Gas vesicles are also used in biomedical research. Since they scatter waves and produce ultrasound contrast, they could serve as novel contrast agent for ultrasound or magnetic resonance imaging. Additionally, gas vesicles were engineered as acoustic biosensors to determine enzyme activities in cells. These applications are based on modifications of the surface protein GvpC that alter the mechanical properties of the gas vesicles. In addition, gas vesicles have been decorated with GvpC proteins fused to peptides of bacterial or viral pathogens and are used as tools for vaccine development.
Collapse
|
3
|
A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH. mBio 2021; 12:e0276621. [PMID: 34809461 PMCID: PMC8609365 DOI: 10.1128/mbio.02766-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic Methanothermobacter spp. are used as model microbes to study the physiology and biochemistry of the conversion of molecular hydrogen and carbon dioxide into methane (i.e., hydrogenotrophic methanogenesis). Yet, a genetic system for these model microbes was missing despite intensive work for four decades. Here, we report the successful implementation of genetic tools for Methanothermobacter thermautotrophicus ΔH. We developed shuttle vectors that replicated in Escherichia coli and M. thermautotrophicus ΔH. For M. thermautotrophicus ΔH, a thermostable neomycin resistance cassette served as the selectable marker for positive selection with neomycin, and the cryptic plasmid pME2001 from Methanothermobacter marburgensis served as the replicon. The shuttle-vector DNA was transferred from E. coli into M. thermautotrophicus ΔH via interdomain conjugation. After the successful validation of DNA transfer and positive selection in M. thermautotrophicus ΔH, we demonstrated heterologous gene expression of a thermostable β-galactosidase-encoding gene (bgaB) from Geobacillus stearothermophilus under the expression control of four distinct synthetic and native promoters. In quantitative in-vitro enzyme activity assay, we found significantly different β-galactosidase activity with these distinct promoters. With a formate dehydrogenase operon-encoding shuttle vector, we allowed growth of M. thermautotrophicus ΔH on formate as the sole growth substrate, while this was not possible for the empty-vector control.
Collapse
|
4
|
Halovirus HF2 Intergenic Repeat Sequences Carry Promoters. Viruses 2021; 13:v13122388. [PMID: 34960657 PMCID: PMC8707807 DOI: 10.3390/v13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Halovirus HF2 was the first member of the Haloferacalesvirus genus to have its genome fully sequenced, which revealed two classes of intergenic repeat (IR) sequences: class I repeats of 58 bp in length, and class II repeats of 29 bp in length. Both classes of repeat contain AT-rich motifs that were conjectured to represent promoters. In the present study, nine IRs were cloned upstream of the bgaH reporter gene, and all displayed promoter activity, providing experimental evidence for the previous conjecture. Comparative genomics showed that IR sequences and their relative genomic positions were strongly conserved among other members of the same virus genus. The transcription of HF2 was also examined by the reverse-transcriptase-PCR (RT-PCR) method, which demonstrated very long transcripts were produced that together covered most of the genome, and from both strands. The presence of long counter transcripts suggests a regulatory role or possibly unrecognized coding potential.
Collapse
|
5
|
Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 2021; 49:1662-1687. [PMID: 33434266 PMCID: PMC7897474 DOI: 10.1093/nar/gkaa1268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.
Collapse
Affiliation(s)
- Robert Knüppel
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael Kern
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Winfried Hausner
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Kutnowski N, Shmulevich F, Davidov G, Shahar A, Bar-Zvi D, Eichler J, Zarivach R, Shaanan B. Specificity of protein-DNA interactions in hypersaline environment: structural studies on complexes of Halobacterium salinarum oxidative stress-dependent protein hsRosR. Nucleic Acids Res 2019; 47:8860-8873. [PMID: 31310308 PMCID: PMC7145548 DOI: 10.1093/nar/gkz604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein–DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR–DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein–DNA interactions in an ionic environment characterized by molar salt concentrations.
Collapse
Affiliation(s)
- Nitzan Kutnowski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Fania Shmulevich
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Anat Shahar
- Macromolecular Crystallography Research Center, National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Dudy Bar-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva 8410510, Israel
| | - Boaz Shaanan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410510, Israel
| |
Collapse
|
7
|
Abstract
Ubiquitin-like protein (Ubl) ligation is common to diverse archaea and targets many cellular pathways, including those associated with sulfur mobilization, and also tags proteins as substrates for degradation by the proteasome. Here we highlight protocols to assay proteasome function and Ubl ligation in archaea. A chase assay is described to monitor the impact of proteasome function on the stability of Ubl-modified proteins in the cell. A method to reconstitute Ubl ligation using a purified E1-like enzyme (UbaA), Ubl (SAMP2), methionine sulfoxide reductase A (MsrA), and cell lysate of an ΔmsrA ΔubaA Δsamp1-3 mutant is also described. MsrA is found to have the surprising ability to stimulate the formation of Ubl bonds. Haloferax volcanii, a halophilic archaeon originally isolated from the Dead Sea, serves as the model organism for these protocols.
Collapse
|
8
|
Gómez S, López-Estepa M, Fernández FJ, Vega MC. Protein Complex Production in Alternative Prokaryotic Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:115-33. [PMID: 27165322 DOI: 10.1007/978-3-319-27216-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Research for multiprotein expression in nonconventional bacterial and archaeal expression systems aims to exploit particular properties of "alternative" prokaryotic hosts that might make them more efficient than E. coli for particular applications, especially in those areas where more conventional bacterial hosts traditionally do not perform well. Currently, a wide range of products with clinical or industrial application have to be isolated from their native source, often microorganisms whose growth present numerous problems owing to very slow growth phenotypes or because they are unculturable under laboratory conditions. In those cases, transfer of the gene pathway responsible for synthesizing the product of interest into a suitable recombinant host becomes an attractive alternative solution. Despite many efforts dedicated to improving E. coli systems due to low cost, ease of use, and its dominant position as a ubiquitous expression host model, many alternative prokaryotic systems have been developed for heterologous protein expression mostly for biotechnological applications. Continuous research has led to improvements in expression yield through these non-conventional models, including Pseudomonas, Streptomyces and Mycobacterium as alternative bacterial expression hosts. Advantageous properties shared by these systems include low costs, high levels of secreted protein products and their safety of use, with non-pathogenic strains been commercialized. In addition, the use of extremophilic and halotolerant archaea as expression hosts has to be considered as a potential tool for the production of mammalian membrane proteins such as GPCRs.
Collapse
Affiliation(s)
- Sara Gómez
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Miguel López-Estepa
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Francisco J Fernández
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - M Cristina Vega
- Center for Biological Research, Spanish National Research Council (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T, Soppa J, Marchfelder A. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 2015; 117:129-37. [DOI: 10.1016/j.biochi.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
|
10
|
Johnsen U, Sutter JM, Schulz AC, Tästensen JB, Schönheit P. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Environ Microbiol 2014; 17:1663-76. [PMID: 25141768 DOI: 10.1111/1462-2920.12603] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022]
Abstract
The haloarchaeon Haloferax volcanii degrades D-xylose and L-arabinose via oxidative pathways to α-ketoglutarate. The genes involved in these pathways are clustered and were transcriptionally upregulated by both D-xylose and L-arabinose suggesting a common regulator. Adjacent to the gene cluster, a putative IclR-like transcriptional regulator, HVO_B0040, was identified. It is shown that HVO_B0040, designated xacR, encodes an activator of both D-xylose and L-arabinose catabolism: in ΔxacR cells, transcripts of genes involved in pentose catabolism could not be detected; transcript formation could be recovered by complementation, indicating XacR dependent transcriptional activation. Upstream activation promoter regions and nucleotide sequences that were essential for XacR-mediated activation of pentose-specific genes were identified by in vivo deletion and scanning mutagenesis. Besides its activator function XacR acted as repressor of its own synthesis: xacR deletion resulted in an increase of xacR promoter activity. A palindromic sequence was identified at the operator site of xacR promoter, and mutation of this sequence also resulted in an increase and thus derepression of xacR promoter activity. It is concluded that the palindromic sequence represents the binding site of XacR as repressor. This is the first report of a transcriptional regulator of pentose catabolism in the domain of archaea.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, Kiel, D-24118, Germany
| | | | | | | | | |
Collapse
|
11
|
Marschaus L, Pfeifer F. A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. MICROBIOLOGY-SGM 2012; 158:2815-2825. [PMID: 22997463 DOI: 10.1099/mic.0.060178-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gas vesicle formation in haloarchaea involves 14 gas vesicle protein (gvp) genes. The strong promoter P(A) drives the expression of gvpACNO, which encodes the major gas vesicle structural proteins GvpA and GvpC, whereas the oppositely oriented promoter P(D) initiates the synthesis of the two regulator proteins, GvpD and GvpE. GvpE activates P(A) and P(D), and requires a 20 nt upstream activator sequence (UAS). UAS(A) and UAS(D) partially overlap in the centre of the 35 bp intergenic region. The basal and GvpE-induced activities of P(A) and P(D) were investigated in Haloferax volcanii transformants. Each UAS consists of two 8 nt portions (P(A), 1A+2A; P(D), 1D+2D), and mutations in the overlapping 1A and 1D portions affected the GvpE induction of both promoters. Substitution of one of the UAS portions by a nonsense sequence showed that a complete UAS is required for activation. The activation of P(A) was more efficient compared with P(D). Promoter P(A) with UAS(A) in configuration 1A+1A was still activated by GvpE, but P(D) was not inducible with UAS(D) in configuration 1D+1D. The TATA box and/or transcription factor B recognition element (BRE) were exchanged between P(A) and P(D). All elements of P(A) functioned well in the environment of 'P(D)' and transferred the stronger P(A) activity to 'P(D)'. In contrast, the respective 'P(A)' chimeras were less active, and BRE(D) was not functional in the environment of 'P(A)'. The relative strengths of the two promoters were substantially determined by the BRE. A 4 nt scanning mutagenesis uncovered an additional regulatory element in the region between TATA(D) and the transcriptional start site of gvpD.
Collapse
Affiliation(s)
- Larissa Marschaus
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Mikrobiologie und Archaea, Fachbereich Biologie der Technischen Universität Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| |
Collapse
|
12
|
|
13
|
Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS. Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 2011; 7:554. [PMID: 22108796 PMCID: PMC3261711 DOI: 10.1038/msb.2011.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023] Open
Abstract
Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network.
Collapse
Affiliation(s)
| | - David J Reiss
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | - Wan Lin Su
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | - Min Pan
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Nitin S Baliga
- Baliga Lab, Institute for Systems Biology, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Skowyra A, MacNeill SA. Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 2011; 40:1077-90. [PMID: 21976728 PMCID: PMC3273820 DOI: 10.1093/nar/gkr838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in all aspects of DNA metabolism in all three domains of life and are characterized by the presence of one or more OB fold ssDNA-binding domains. Here, using the genetically tractable euryarchaeon Haloferax volcanii as a model, we present the first genetic analysis of SSB function in the archaea. We show that genes encoding the OB fold and zinc finger-containing RpaA1 and RpaB1 proteins are individually non-essential for cell viability but share an essential function, whereas the gene encoding the triple OB fold RpaC protein is essential. Loss of RpaC function can however be rescued by elevated expression of RpaB, indicative of functional overlap between the two classes of haloarchaeal SSB. Deletion analysis is used to demonstrate important roles for individual OB folds in RpaC and to show that conserved N- and C-terminal domains are required for efficient repair of DNA damage. Consistent with a role for RpaC in DNA repair, elevated expression of this protein leads to enhanced resistance to DNA damage. Taken together, our results offer important insights into archaeal SSB function and establish the haloarchaea as a valuable model for further studies.
Collapse
Affiliation(s)
- Agnieszka Skowyra
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9TF, UK
| | | |
Collapse
|
15
|
GlpR represses fructose and glucose metabolic enzymes at the level of transcription in the haloarchaeon Haloferax volcanii. J Bacteriol 2010; 192:6251-60. [PMID: 20935102 DOI: 10.1128/jb.00827-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a DeoR/GlpR-type transcription factor was investigated for its potential role as a global regulator of sugar metabolism in haloarchaea, using Haloferax volcanii as a model organism. Common to a number of haloarchaea and Gram-positive bacterial species, the encoding glpR gene was chromosomally linked with genes of sugar metabolism. In H. volcanii, glpR was cotranscribed with the downstream phosphofructokinase (PFK; pfkB) gene, and the transcript levels of this glpR-pfkB operon were 10- to 20-fold higher when cells were grown on fructose or glucose than when they were grown on glycerol alone. GlpR was required for repression on glycerol based on significant increases in the levels of PFK (pfkB) transcript and enzyme activity detected upon deletion of glpR from the genome. Deletion of glpR also resulted in significant increases in both the activity and the transcript (kdgK1) levels of 2-keto-3-deoxy-D-gluconate kinase (KDGK), a key enzyme of haloarchaeal glucose metabolism, when cells were grown on glycerol, compared to the levels obtained for media with glucose. Promoter fusions to a β-galactosidase bgaH reporter revealed that transcription of glpR-pfkB and kdgK1 was modulated by carbon source and GlpR, consistent with quantitative reverse transcription-PCR (qRT-PCR) and enzyme activity assays. The results presented here provide genetic and biochemical evidence that GlpR controls both fructose and glucose metabolic enzymes through transcriptional repression of the glpR-pfkB operon and kdgK1 during growth on glycerol.
Collapse
|
16
|
Sastre DE, Paggi RA, De Castro RE. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity. Microbiol Res 2010; 166:304-13. [PMID: 20869220 DOI: 10.1016/j.micres.2010.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 01/22/2023]
Abstract
The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Investigaciones Biológicas, UNMDP-CONICET, Funes 3250 4 to Nivel, Mar del Plata 7600, Argentina
| | | | | |
Collapse
|
17
|
Teufel K, Pfeifer F. Interaction of transcription activator GvpE with TATA-box-binding proteins of Halobacterium salinarum. Arch Microbiol 2010; 192:143-9. [DOI: 10.1007/s00203-009-0537-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/27/2009] [Accepted: 12/18/2009] [Indexed: 11/29/2022]
|
18
|
Peng N, Xia Q, Chen Z, Liang YX, She Q. An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 2009; 74:928-39. [PMID: 19818017 DOI: 10.1111/j.1365-2958.2009.06908.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microorganisms can utilize different sugars as energy and carbon sources and the genes involved in sugar metabolism often exhibit highly regulated expression. To study cis-acting elements controlling arabinose-responsive expression in archaea, the promoter of the Sulfolobus solfataricus araS gene encoding an arabinose binding protein was characterized using an Sulfolobus islandicus reporter gene system. The minimal active araS promoter (P(araS)) was found to be 59 nucleotides long and harboured four promoter elements: an ara-box, an upstream transcription factor B-responsive element (BRE), a TATA-box and a proximal promoter element, each of which contained important nucleotides that either greatly decreased or completely abolished promoter activity upon mutagenesis. The basal araS promoter was virtually inactive due to intrinsically weak BRE element, and the upstream activating sequence (UAS) ara-box activated the basal promoter by recruiting transcription factor B to its BRE. While this UAS ensured a general expression from an inactive or weak basal promoter in the presence of other tested carbon resources, it exhibited a strong arabinose-responsive transcriptional activation. To our knowledge, this represents the first example of an archaeal UAS that exhibits differential activation to the expression on the same promoter in the presence of different carbon sources.
Collapse
Affiliation(s)
- Nan Peng
- State key laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Characterization of a Haloferax volcanii member of the enolase superfamily: deletion mutant construction, expression analysis, and transcriptome comparison. Arch Microbiol 2008; 190:341-53. [PMID: 18493744 DOI: 10.1007/s00203-008-0379-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/09/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
The enolase superfamily (COG4948) contains proteins with very different biological functions including regulators like the Escherichia coli RspA and metabolic enzymes like enolase. To unravel the biological function of an archaeal family member, an in frame deletion mutant of a gene encoding a COG4948 protein of Haloferax volcanii was generated. The mutant had a lag phase of 3 days after transition from a richer to a poorer medium, in contrast to the wild-type, and the gene was therefore named "important for transition" (iftA). After inoculation of fresh casamino acids or complex medium with stationary phase wild-type cells, the transcript level of iftA was transiently induced at the onset of growth. In contrast, in minimal (or "poor") glucose medium, both transcript and protein were present throughout growth, even in late stationary phase. A comparison of the transcriptomes of deletion mutant and wild-type revealed that transcript levels of a very restricted set of genes were differentially regulated, including genes encoding proteins involved in phosphate metabolism, regulators and stress response proteins. Taken together, the results indicate that IftA might have a dual function, i.e., transiently after transition to fresh medium and permanently during growth in glucose medium.
Collapse
|
21
|
Regulation of gvp genes encoding gas vesicle proteins in halophilic Archaea. Arch Microbiol 2008; 190:333-9. [PMID: 18385982 DOI: 10.1007/s00203-008-0362-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/27/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
Three gas vesicle gene clusters derived from Halobacterium salinarum (p-vac and c-vac) and Haloferax mediterranei (mc-vac) are used as model systems to study gene regulation in Archaea. An unusual pair of regulatory proteins is involved here, with GvpE acting as transcription activator and GvpD exhibiting a repressing function. Both regulators are able to interact leading to the loss of GvpE and the repression (or turnoff) of the gas vesicle formation. The latter function of GvpD requires a p-loop motif and an arginine-rich region, bR1. Both regulator proteins are differentially expressed from the same gvp transcript in Hfx. mediterranei and Hbt. salinarum PHH4. GvpE appears to recognize a 20-nucleotide activator sequence (UAS) located upstream and adjacent to the TFB-recognition element BRE of the two promoters driving the transcription of the divergently oriented gvpACNO and gvpDEFGHIJKLM gene clusters. The BRE elements of these two promoters are separated by 35 nucleotides only, and the distal portions of the two GvpE-UAS overlap considerably in the center of this region. Mutations here negatively affect the GvpE-induced activities of both gvp promoters, whereas alterations in the proximal UAS portions only affect the activity of the promoter located close by.
Collapse
|
22
|
Bose A, Metcalf WW. Distinct regulators control the expression of methanol methyltransferase isozymes inMethanosarcina acetivoransC2A. Mol Microbiol 2008; 67:649-61. [DOI: 10.1111/j.1365-2958.2007.06075.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Bauer M, Marschaus L, Reuff M, Besche V, Sartorius-Neef S, Pfeifer F. Overlapping activator sequences determined for two oppositely oriented promoters in halophilic Archaea. Nucleic Acids Res 2007; 36:598-606. [PMID: 18056077 PMCID: PMC2241852 DOI: 10.1093/nar/gkm1077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription of the genomic region involved in gas vesicle formation in Halobacterium salinarum (p-vac) and Haloferax mediterranei (mc-vac) is driven by two divergent promoters, P(A) and P(D), separated by only 35 nt. Both promoters are activated by the transcription activator GvpE which in the case of P(mcA) requires a 20-nt sequence (UAS) consisting of two conserved 8-nt sequence portions located upstream of BRE. Here, we determined the two UAS elements in the promoter region of p-vac by scanning mutageneses using constructs containing P(pD) (without P(pA)) fused to the bgaH reporter gene encoding an enzyme with beta-galactosidase activity, or the dual reporter construct pApD with P(pD) fused to bgaH and P(pA) to an altered version of gvpA. The two UAS elements found exhibited a similar extension and distance to BRE as previously determined for the UAS in P(mcA). Their distal 8-nt portions almost completely overlapped in the centre of P(pD)-P(pA), and mutations in this region negatively affected the GvpE-mediated activation of both promoters. Any alteration of the distance between BRE and UAS resulted in the loss of the GvpE activation, as did a complete substitution of the proximal 8-nt portion, underlining that a close location of UAS and BRE was very important.
Collapse
Affiliation(s)
- Martina Bauer
- Institut für Mikrobiologie und Genetik, TU Darmstadt, Schnittspahnstrasse 10, D-64287 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Large A, Stamme C, Lange C, Duan Z, Allers T, Soppa J, Lund PA. Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol Microbiol 2007; 66:1092-106. [PMID: 17973910 DOI: 10.1111/j.1365-2958.2007.05980.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A system where archaeal gene expression could be controlled by simple manipulation of growth conditions would enable the construction of conditional lethal mutants in essential genes, and permit the controlled overproduction of proteins in their native host. As tools for the genetic manipulation of Haloferax volcanii are well developed, we set out to identify promoters with a wide dynamic range of expression in this organism. Tryptophan is the most costly amino acid for the cell to make, so we reasoned that tryptophan-regulated promoters might be good candidates. Microarray analysis of H. volcanii gene expression in the presence and absence of tryptophan identified a tryptophanase gene (tna) that showed strong induction in the presence of tryptophan. qRT-PCR revealed a very fast response and an up to 100-fold induction after tryptophan addition. This result has been confirmed using three independent reporter genes (cct1, pyrE2 and bgaH). Vectors containing this promoter will be very useful for investigating gene function in H. volcanii and potentially in other halophilic archaea. To demonstrate this, we used the promoter to follow the consequences of depletion of the essential chaperonin protein CCT1, and to determine the ability of heterologous CCT proteins to function in H. volcanii.
Collapse
Affiliation(s)
- Andrew Large
- School of Biosciences, The University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Lei KL, Hou HN, Liu Y, Ye XC, Shen P. Microcalorimetric Studies on Gene Promoter Function of Cloned DNA Fragements fromHalobacterium halobium J7 Plasmid pHH205 inEscherichia coli TG1. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Scheuch S, Pfeifer F. GvpD-induced breakdown of the transcriptional activator GvpE of halophilic archaea requires a functional p-loop and an arginine-rich region of GvpD. Microbiology (Reading) 2007; 153:947-958. [PMID: 17379705 DOI: 10.1099/mic.0.2006/004499-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two proteins involved in the regulation of gas vesicle formation in Haloferax mediterranei, mcGvpE (activator) and mcGvpD (repressive function), are able to interact in vitro. It was also found that the respective proteins cGvpE and cGvpD of Halobacterium salinarum and the heterologous pairs mcGvpD-cGvpE and cGvpD-mcGvpE were able to interact. Previously constructed mcGvpD mutants with alterations in regions affecting the repressive function of GvpD (p-loop motif or the two arginine-rich regions bR1 and bR2) were tested for their ability to interact with GvpE, and all still bound GvpE. Even a deletion of or near the p-loop motif in GvpD did not affect this ability to interact. Further deletion variants lacking larger N- or C-terminal portions of mcGvpD yielded that neither the N-terminal region with the p-loop motif nor the C-terminal portion were important for the binding of GvpE, and suggested that the central portion is involved in GvpE binding. The GvpD protein also induces a reduction in the amount of GvpE in Haloferax volcanii transformants expressing both genes under fdx promoter control on a single plasmid. Such DE(ex) transformants contain GvpD, but no detectable GvpE, whereas large amounts of GvpE are found in DeltaDE(ex) transformants that have incurred a deletion within the gvpD gene. A similar reduction was observed in D(ex)+E(ex) transformants harbouring both reading frames under fdx promoter control on two different plasmids. GvpD wild-type and also GvpD mutants were tested, and a significant reduction in the amount of GvpE was obtained in the case of GvpD wild-type and the super-repressor mutant GvpD(3-AAA). In contrast, transformants harbouring GvpD mutants with alterations in the p-loop motif or the bR1 region still contained GvpE. Since the amount of gvpE transcript was not reduced, the reduction occurred at the protein level. These results underlined that a functional p-loop and the arginine-rich region bR1 of GvpD were required for the GvpD-mediated reduction in the amount of GvpE.
Collapse
Affiliation(s)
- Sandra Scheuch
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
27
|
|
28
|
Abstract
Haloarchaea are adapted to high-salt environments and accumulate equally high salt concentrations in the cytoplasm. The genomes of representatives of six haloarchaeal genera have been fully or partially sequenced, allowing the analysis of haloarchaeal propertiesin silico. Transcriptome and proteome analyses have been established forHalobacterium salinarumandHaloferax volcanii. Genetic systems are available including methods that allow the fast in-frame deletion or modification of chromosomal genes. The high-efficiency transformation system ofHf. volcaniiallows the isolation of genes essential for a biological process by complementation of loss-of-function mutants. For the analysis of haloarchaeal biology many molecular genetic, biochemical, structural and cell biological methods have been adapted to application at high salt concentrations. Recently it has become clear that several different mechanisms allow the adaptation of proteins to the high salt concentration of the cytoplasm. Taken together, the wealth of techniques available make haloarchaea excellent archaeal model species.
Collapse
Affiliation(s)
- Jörg Soppa
- Goethe-University, Biocentre, Institute for Microbiology, D-60439 Frankfurt, Germany
| |
Collapse
|
29
|
Sun C, Li Y, Mei S, Lu Q, Zhou L, Xiang H. A single gene directs both production and immunity of halocin C8 in a haloarchaeal strain AS7092. Mol Microbiol 2005; 57:537-49. [PMID: 15978083 DOI: 10.1111/j.1365-2958.2005.04705.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halocin C8 (HalC8) is an extremely stable and hydrophobic microhalocin with 76 amino acids, and has a wide inhibitory spectrum against the haloarchaea. It is derived from the C-terminus of a 283-amino-acid prepro-protein (ProC8), which was demonstrated by molecular cloning of the halC8 gene, and verified by the N-terminal amino acid sequencing as well as MALDI-TOF-MS analysis of the purified HalC8. The production of this halocin is controlled through both transcription regulation and protein processing: the halC8 transcripts and HalC8 activity rapidly increased to maximal levels upon transition from exponential to stationary phase. However, while halC8 transcripts remained abundant, the HalC8 processing was inhibited during stationary phase. Remarkably, agar-diffusion test revealed the unprocessed ProC8 and its 207-amino-acid N-terminal peptide (HalI), with or without the putative Tat signal sequence, were capable to block the halocin activity of HalC8 in vitro. In addition, heterologous expression of HalI in Haloarcula hispanica rendered this sensitive strain remarkable resistance to HalC8, indicating that HalI encodes the immunity property of the producer. In accordance with this immunity function, HalI and ProC8 were both found localized on the cellular membrane. Protein interaction assay revealed that HalI likely sequestrated the HalC8 activity by specific binding. To our knowledge, this is the first report on halocin immunity, and our results that a single gene encodes both peptide antibiotic and immunity protein also provide a novel immune mechanism for peptide antibiotics.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaeal Proteins/biosynthesis
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/pharmacology
- Base Sequence
- Cell Membrane/chemistry
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- Drug Resistance, Microbial
- Genes, Archaeal
- Haloarcula/genetics
- Haloarcula/metabolism
- Molecular Sequence Data
- Protein Binding
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- RNA, Archaeal/analysis
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- Chaomin Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
30
|
Soppa J. From replication to cultivation: hot news from Haloarchaea. Curr Opin Microbiol 2005; 8:737-44. [PMID: 16253545 DOI: 10.1016/j.mib.2005.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 10/12/2005] [Indexed: 12/19/2022]
Abstract
Haloarchaea have developed into model organisms that are utilized to study many biological processes. Examples are the mechanisms of chromosome maintenance, gene expression and its regulation, protein export and degradation, and motility and sensing. In addition to the analysis of model species like Halobacterium salinarum and Haloferax volcanii, natural communities have been characterized. Halophilic Archaea were found in low-salt environments and are thus more widespread than previously thought.
Collapse
Affiliation(s)
- Jörg Soppa
- Goethe-University, Biocentre, Institute for Microbiology, Marie-Curie-Str. 9, D-60439, Germany.
| |
Collapse
|
31
|
Lee SJ, Moulakakis C, Koning SM, Hausner W, Thomm M, Boos W. TrmB, a sugar sensing regulator of ABC transporter genes inPyrococcus furiosusexhibits dual promoter specificity and is controlled by different inducers. Mol Microbiol 2005; 57:1797-807. [PMID: 16135241 DOI: 10.1111/j.1365-2958.2005.04804.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TrmB is the transcriptional repressor for the gene cluster of the trehalose/maltose ABC transporter of the hyperthermophilic archaea Thermococcus litoralis and Pyrococcus furiosus (malE or TM operon), with maltose and trehalose acting as inducers. We found that TrmB (the protein is identical in both organisms) also regulated the transcription of genes encoding a separate maltodextrin ABC transporter in P. furiosus (mdxE or MD operon) with maltotriose, longer maltodextrins and sucrose acting as inducers, but not with maltose or trehalose. In vitro transcription of the malE and the mdxE operons was inhibited by TrmB binding to the different operator sequences. Inhibition of the TM operon was released by maltose and trehalose whereas inhibition of the MD operon was released by maltotriose and larger maltodextrins as well as by sucrose. Scanning mutagenesis of the TM operator revealed the role of the palindromic TACTNNNAGTA sequence for TrmB recognition. TrmB exhibits a broad spectrum of sugar-binding specificity, binding maltose, sucrose, maltotriose and trehalose in decreasing order of affinity, half-maximal binding occurring at 20, 60, 250 and 500 microM substrate concentration respectively. Of all substrates, only maltose shows sigmoidal binding characteristics with a Hill coefficient of 2. As measured by molecular sieve chromatography and cross-linking TrmB behaved as dimer in dilute buffer solution at room temperature. We conclude that TrmB acts as a bifunctional transcriptional regulator acting on two different promoters and being differentially controlled by binding to different sugars. We believe this to represent a novel strategy of prokaryotic transcription regulation.
Collapse
Affiliation(s)
- Sung-Jae Lee
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|