1
|
Wang X, Yang Q, Haringa C, Wang Z, Chu J, Zhuang Y, Wang G. An industrial perspective on metabolic responses of Penicillium chrysogenum to periodic dissolved oxygen feast-famine cycles in a scale-down system. Biotechnol Bioeng 2024; 121:3076-3098. [PMID: 39382054 DOI: 10.1002/bit.28782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 10/10/2024]
Abstract
While traveling through different zones in large-scale bioreactors, microbes are most likely subjected to fluctuating dissolved oxygen (DO) conditions at the timescales of global circulation time. In this study, to mimic industrial-scale spatial DO gradients, we present a scale-down setup based on dynamic feast/famine regime (150 s) that leads to repetitive cycles with rapid changes in DO availability in glucose-limited chemostat cultures of Penicillium chrysogenum. Such DO feast/famine regime induced a stable and repetitive pattern with a reproducible metabolic response in time, and the dynamic response of intracellular metabolites featured specific differences in terms of both coverage and magnitude in comparison to other dynamic conditions, for example, substrate feast/famine cycles. Remarkably, intracellular sugar polyols were considerably increased as the hallmark metabolites along with a dynamic and higher redox state (NADH/NAD+) of the cytosol. Despite the increased availability of NADPH for penicillin production under the oscillatory DO conditions, this positive effect may be counteracted by the decreased ATP supply. Moreover, it is interesting to note that not only the penicillin productivity was reduced under such oscillating DO conditions, but also that of the unrecyclable byproduct ortho-hydroxyphenyl acetic acid and degeneration of penicillin productivity. Furthermore, dynamic flux profiles showed the most pronounced variations in central carbon metabolism, amino acid (AA) metabolism, energy metabolism and fatty acid metabolism upon the DO oscillation. Taken together, the metabolic responses of P. chrysogenum to DO gradients reported here are important for elucidating metabolic regulation mechanisms, improving bioreactor design and scale-up procedures as well as for constructing robust cell strains to cope with heterogenous industrial culture conditions.
Collapse
Affiliation(s)
- Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Cees Haringa
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Zheng C, Hou S, Zhou Y, Yu C, Li H. Regulation of the PFK1 gene on the interspecies microbial competition behavior of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2024; 108:272. [PMID: 38517486 PMCID: PMC10959778 DOI: 10.1007/s00253-024-13091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
Saccharomyces cerevisiae is a widely used strain for ethanol fermentation; meanwhile, efficient utilization of glucose could effectively promote ethanol production. The PFK1 gene is a key gene for intracellular glucose metabolism in S. cerevisiae. Our previous work suggested that although deletion of the PFK1 gene could confer higher oxidative tolerance to S. cerevisiae cells, the PFK1Δ strain was prone to contamination by other microorganisms. High interspecies microbial competition ability is vital for the growth and survival of microorganisms in co-cultures. The result of our previous studies hinted us a reasonable logic that the EMP (i.e., the Embden-Meyerhof-Parnas pathway, the glycolytic pathway) key gene PFK1 could be involved in regulating interspecies competitiveness of S. cerevisiae through the regulation of glucose utilization and ethanol production efficiency. The results suggest that under 2% and 5% glucose, the PFK1Δ strain showed slower growth than the S288c wild-type and TDH1Δ strains in the lag and exponential growth stages, but realized higher growth in the stationary stage. However, relative high supplement of glucose (10%) eliminated this phenomenon, suggesting the importance of glucose in the regulation of PFK1 in yeast cell growth. Furthermore, during the lag growth phase, the PFK1Δ strain displayed a decelerated glucose consumption rate (P < 0.05). The expression levels of the HXT2, HXT5, and HXT6 genes decreased by approximately 0.5-fold (P < 0.05) and the expression level of the ZWF1 exhibited a onefold increase in the PFK1Δ strain compared to that in the S. cerevisiae S288c wild-type strain (P < 0.05).These findings suggested that the PFK1 inhibited the uptake and utilization of intracellular glucose by yeast cells, resulting in a higher amount of residual glucose in the medium for the PFK1Δ strain to utilize for growth during the reverse overshoot stage in the stationary phase. The results presented here also indicated the potential of ethanol as a defensive weapon against S. cerevisiae. The lower ethanol yield in the early stage of the PFK1Δ strain (P < 0.001) and the decreased expression levels of the PDC5 and PDC6 (P < 0.05), which led to slower growth, resulted in the strain being less competitive than the wild-type strain when co-cultured with Escherichia coli. The lower interspecies competitiveness of the PFK1Δ strain further promoted the growth of co-cultured E. coli, which in turn activated the ethanol production efficiency of the PFK1Δ strain to antagonize it from E. coli at the stationary stage. The results presented clarified the regulation of the PFK1 gene on the growth and interspecies microbial competition behavior of S. cerevisiae and would help us to understand the microbial interactions between S. cerevisiae and other microorganisms. KEY POINTS: • PFK1Δ strain could realize reverse growth overshoot at the stationary stage • PFK1 deletion decreased ethanol yield and interspecific competitiveness • Proportion of E. coli in co-culture affected ethanol yield capacity of yeast cells.
Collapse
Affiliation(s)
- Caijuan Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shuxin Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yu Zhou
- School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Li
- School of Public Health, Jining Medical University, Jining, 272067, People's Republic of China.
| |
Collapse
|
3
|
Grigaitis P, Teusink B. An excess of glycolytic enzymes under glucose-limited conditions may enable Saccharomyces cerevisiae to adapt to nutrient availability. FEBS Lett 2022; 596:3203-3210. [PMID: 36008883 DOI: 10.1002/1873-3468.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
Microorganisms, including the budding yeast Saccharomyces cerevisiae, express glycolytic proteins to a maximal capacity that (largely) exceeds the actual flux through the enzymes, especially at low growth rates. An open question is if this apparent expression level is really an overcapacity, or maintains the (optimal) enzyme capacity needed to carry flux at (very) low substrate availability. Here, we use computational modelling to suggest that yeast maintains a genuine excess of glycolytic enzymes at low specific growth rates. During fast fermentative growth at high glucose levels, the observed expression of the glycolytic enzymes matched the predicted optimal levels. We suggest that the excess glycolytic capacity at low glucose levels is a preparatory strategy in the adaptation to sugar fluctuations in the environment.
Collapse
Affiliation(s)
- Pranas Grigaitis
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
4
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Boonekamp FJ, Knibbe E, Vieira-Lara MA, Wijsman M, Luttik MAH, van Eunen K, Ridder MD, Bron R, Almonacid Suarez AM, van Rijn P, Wolters JC, Pabst M, Daran JM, Bakker BM, Daran-Lapujade P. Full humanization of the glycolytic pathway in Saccharomyces cerevisiae. Cell Rep 2022; 39:111010. [PMID: 35767960 DOI: 10.1016/j.celrep.2022.111010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.
Collapse
Affiliation(s)
- Francine J Boonekamp
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Karen van Eunen
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Reinier Bron
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Maria Almonacid Suarez
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands.
| |
Collapse
|
6
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
7
|
Emergence of Phenotypically Distinct Subpopulations Is a Factor in Adaptation of Recombinant Saccharomyces cerevisiae under Glucose-Limited Conditions. Appl Environ Microbiol 2022; 88:e0230721. [PMID: 35297727 DOI: 10.1128/aem.02307-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells cultured in a nutrient-limited environment can undergo adaptation, which confers improved fitness under long-term energy limitation. We have shown previously how a recombinant Saccharomyces cerevisiae strain, producing a heterologous insulin product, under glucose-limited conditions adapts over time at the average population level. Here, we investigated this adaptation at the single-cell level by application of fluorescence-activated cell sorting (FACS) and showed that the following three apparent phenotypes underlie the adaptive response observed at the bulk level: (i) cells that drastically reduced insulin production (23%), (ii) cells with reduced enzymatic capacity in central carbon metabolism (46%), and (iii) cells that exhibited pseudohyphal growth (31%). We speculate that the phenotypic heterogeneity is a result of different mechanisms to increase fitness. Cells with reduced insulin productivity have increased fitness by reducing the burden of the heterologous insulin production, and the populations with reduced enzymatic capacity of the central carbon metabolism and pseudohyphal growth have increased fitness toward the glucose-limited conditions. The results highlight the importance of considering population heterogeneity when studying adaptation and evolution. IMPORTANCE The yeast Saccharomyces cerevisiae is an attractive microbial host for industrial production and is used widely for manufacturing, e.g., pharmaceuticals. Chemostat cultivation mode is an efficient cultivation strategy for industrial production processes as it ensures a constant, well-controlled cultivation environment. Nevertheless, both the production of a heterologous product and the constant cultivation environment in the chemostat impose a selective pressure on the production organism, which may result in adaptation and loss of productivity. The exact mechanisms behind the observed adaptation and loss of performance are often unidentified. We used a recombinant S. cerevisiae strain producing heterologous insulin and investigated the adaptation occurring during chemostat growth at the single-cell level. We showed that three apparent phenotypes underlie the adaptive response observed at the bulk level in the chemostat. These findings highlight the importance of considering population heterogeneity when studying adaptation in industrial bioprocesses.
Collapse
|
8
|
Sinner P, Stiegler M, Goldbeck O, Seibold GM, Herwig C, Kager J. Online estimation of changing metabolic capacities in continuous Corynebacterium glutamicum cultivations growing on a complex sugar mixture. Biotechnol Bioeng 2021; 119:575-590. [PMID: 34821377 PMCID: PMC9299845 DOI: 10.1002/bit.28001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023]
Abstract
Model‐based state estimators enable online monitoring of bioprocesses and, thereby, quantitative process understanding during running operations. During prolonged continuous bioprocesses strain physiology is affected by selection pressure. This can cause time‐variable metabolic capacities that lead to a considerable model‐plant mismatch reducing monitoring performance if model parameters are not adapted accordingly. Variability of metabolic capacities therefore needs to be integrated in the in silico representation of a process using model‐based monitoring approaches. To enable online monitoring of multiple concentrations as well as metabolic capacities during continuous bioprocessing of spent sulfite liquor with Corynebacterium glutamicum, this study presents a particle filtering framework that takes account of parametric variability. Physiological parameters are continuously adapted by Bayesian inference, using noninvasive off‐gas measurements. Additional information on current parameter importance is derived from time‐resolved sensitivity analysis. Experimental results show that the presented framework enables accurate online monitoring of long‐term culture dynamics, whereas state estimation without parameter adaption failed to quantify substrate metabolization and growth capacities under conditions of high selection pressure. Online estimated metabolic capacities are further deployed for multiobjective optimization to identify time‐variable optimal operating points. Thereby, the presented monitoring system forms a basis for adaptive control during continuous bioprocessing of lignocellulosic by‐product streams.
Collapse
Affiliation(s)
- Peter Sinner
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Marlene Stiegler
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Gerd M Seibold
- Section for Synthetic Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Herwig
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Julian Kager
- Research Unit of Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria.,Competence Center CHASE GmbH, Linz, Austria
| |
Collapse
|
9
|
Fernandes T, Silva-Sousa F, Pereira F, Rito T, Soares P, Franco-Duarte R, Sousa MJ. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J Fungi (Basel) 2021; 7:jof7090712. [PMID: 34575750 PMCID: PMC8467266 DOI: 10.3390/jof7090712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Torulaspora delbrueckii has attracted interest in recent years, especially due to its biotechnological potential, arising from its flavor- and aroma-enhancing properties when used in wine, beer or bread dough fermentation, as well as from its remarkable resistance to osmotic and freezing stresses. In the present review, genomic, biochemical, and phenotypic features of T. delbrueckii are described, comparing them with other species, particularly with the biotechnologically well-established yeast, Saccharomyces cerevisiae. We conclude about the aspects that make this yeast a promising biotechnological model to be exploited in a wide range of industries, particularly in wine and bakery. A phylogenetic analysis was also performed, using the core proteome of T. delbrueckii, to compare the number of homologous proteins relative to the most closely related species, understanding the phylogenetic placement of this species with robust support. Lastly, the genetic tools available for T. delbrueckii improvement are discussed, focusing on adaptive laboratorial evolution and its potential.
Collapse
Affiliation(s)
- Ticiana Fernandes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Fábio Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Teresa Rito
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: or ; Tel.: +351-253-604-310; Fax: +351-253-678-980
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|
11
|
Bazeia D, Ferreira MJB, Oliveira BFD, Szolnoki A. Environment driven oscillation in an off-lattice May-Leonard model. Sci Rep 2021; 11:12512. [PMID: 34131239 PMCID: PMC8206140 DOI: 10.1038/s41598-021-91994-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Cyclic dominance of competing species is an intensively used working hypothesis to explain biodiversity in certain living systems, where the evolutionary selection principle would dictate a single victor otherwise. Technically the May–Leonard models offer a mathematical framework to describe the mentioned non-transitive interaction of competing species when individual movement is also considered in a spatial system. Emerging rotating spirals composed by the competing species are frequently observed character of the resulting patterns. But how do these spiraling patterns change when we vary the external environment which affects the general vitality of individuals? Motivated by this question we suggest an off-lattice version of the tradition May–Leonard model which allows us to change the actual state of the environment gradually. This can be done by introducing a local carrying capacity parameter which value can be varied gently in an off-lattice environment. Our results support a previous analysis obtained in a more intricate metapopulation model and we show that the well-known rotating spirals become evident in a benign environment when the general density of the population is high. The accompanying time-dependent oscillation of competing species can also be detected where the amplitude and the frequency show a scaling law of the parameter that characterizes the state of the environment. These observations highlight that the assumed non-transitive interaction alone is insufficient condition to maintain biodiversity safely, but the actual state of the environment, which characterizes the general living conditions, also plays a decisive role on the evolution of related systems.
Collapse
Affiliation(s)
- D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB, 58051-970, Brazil
| | - M J B Ferreira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
| | - A Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, 1525, Hungary.
| |
Collapse
|
12
|
Klim J, Zielenkiewicz U, Skoneczny M, Skoneczna A, Kurlandzka A, Kaczanowski S. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast. BMC Ecol Evol 2021; 21:99. [PMID: 34039270 PMCID: PMC8157726 DOI: 10.1186/s12862-021-01830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
Background The impact of genetic interaction networks on evolution is a fundamental issue. Previous studies have demonstrated that the topology of the network is determined by the properties of the cellular machinery. Functionally related genes frequently interact with one another, and they establish modules, e.g., modules of protein complexes and biochemical pathways. In this study, we experimentally tested the hypothesis that compensatory evolutionary modifications, such as mutations and transcriptional changes, occur frequently in genes from perturbed modules of interacting genes. Results Using Saccharomyces cerevisiae haploid deletion mutants as a model, we investigated two modules lacking COG7 or NUP133, which are evolutionarily conserved genes with many interactions. We performed laboratory evolution experiments with these strains in two genetic backgrounds (with or without additional deletion of MSH2), subjecting them to continuous culture in a non-limiting minimal medium. Next, the evolved yeast populations were characterized through whole-genome sequencing and transcriptome analyses. No obvious compensatory changes resulting from inactivation of genes already included in modules were identified. The supposedly compensatory inactivation of genes in the evolved strains was only rarely observed to be in accordance with the established fitness effect of the genetic interaction network. In fact, a substantial majority of the gene inactivations were predicted to be neutral in the experimental conditions used to determine the interaction network. Similarly, transcriptome changes during continuous culture mostly signified adaptation to growth conditions rather than compensation of the absence of the COG7, NUP133 or MSH2 genes. However, we noticed that for genes whose inactivation was deleterious an upregulation of transcription was more common than downregulation. Conclusions Our findings demonstrate that the genetic interactions and the modular structure of the network described by others have very limited effects on the evolutionary trajectory following gene deletion of module elements in our experimental conditions and has no significant impact on short-term compensatory evolution. However, we observed likely compensatory evolution in functionally related (albeit non-interacting) genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01830-9.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
13
|
Ong JY, Pence JT, Molik DC, Shepherd HAM, Goodson HV. Yeast grown in continuous culture systems can detect mutagens with improved sensitivity relative to the Ames test. PLoS One 2021; 16:e0235303. [PMID: 33730086 PMCID: PMC7968628 DOI: 10.1371/journal.pone.0235303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
Continuous culture systems allow for the controlled growth of microorganisms over a long period of time. Here, we develop a novel test for mutagenicity that involves growing yeast in continuous culture systems exposed to low levels of mutagen for a period of approximately 20 days. In contrast, most microorganism-based tests for mutagenicity expose the potential mutagen to the biological reporter at a high concentration of mutagen for a short period of time. Our test improves upon the sensitivity of the well-established Ames test by at least 20-fold for each of two mutagens that act by different mechanisms (the intercalator ethidium bromide and alkylating agent methyl methanesulfonate). To conduct the tests, cultures were grown in small, inexpensive continuous culture systems in media containing (potential) mutagen, and the resulting mutagenicity of the added compound was assessed via two methods: a canavanine-based plate assay and whole genome sequencing. In the canavanine-based plate assay, we were able to detect a clear relationship between the amount of mutagen and the number of canavanine-resistant mutant colonies over a period of one to three weeks of exposure. Whole genome sequencing of yeast grown in continuous culture systems exposed to methyl methanesulfonate demonstrated that quantification of mutations is possible by identifying the number of unique variants across each strain. However, this method had lower sensitivity than the plate-based assay and failed to distinguish the different concentrations of mutagen. In conclusion, we propose that yeast grown in continuous culture systems can provide an improved and more sensitive test for mutagenicity.
Collapse
Affiliation(s)
- Joseph Y. Ong
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Julia T. Pence
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David C. Molik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Heather A. M. Shepherd
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Holly V. Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
14
|
Postma ED, Dashko S, van Breemen L, Taylor Parkins SK, van den Broek M, Daran JM, Daran-Lapujade P. A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:1769-1783. [PMID: 33423048 PMCID: PMC7897487 DOI: 10.1093/nar/gkaa1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
The construction of microbial cell factories for sustainable production of chemicals and pharmaceuticals requires extensive genome engineering. Using Saccharomyces cerevisiae, this study proposes synthetic neochromosomes as orthogonal expression platforms for rewiring native cellular processes and implementing new functionalities. Capitalizing the powerful homologous recombination capability of S. cerevisiae, modular neochromosomes of 50 and 100 kb were fully assembled de novo from up to 44 transcriptional-unit-sized fragments in a single transformation. These assemblies were remarkably efficient and faithful to their in silico design. Neochromosomes made of non-coding DNA were stably replicated and segregated irrespective of their size without affecting the physiology of their host. These non-coding neochromosomes were successfully used as landing pad and as exclusive expression platform for the essential glycolytic pathway. This work pushes the limit of DNA assembly in S. cerevisiae and paves the way for de novo designer chromosomes as modular genome engineering platforms in S. cerevisiae.
Collapse
Affiliation(s)
- Eline D Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Lars van Breemen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Shannara K Taylor Parkins
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| |
Collapse
|
15
|
Impact of Altered Trehalose Metabolism on Physiological Response of Penicillium chrysogenum Chemostat Cultures during Industrially Relevant Rapid Feast/Famine Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Due to insufficient mass transfer and mixing issues, cells in the industrial-scale bioreactor are often forced to experience glucose feast/famine cycles, mostly resulting in reduced commercial metrics (titer, yield and productivity). Trehalose cycling has been confirmed as a double-edged sword in the Penicillium chrysogenum strain, which facilitates the maintenance of a metabolically balanced state, but it consumes extra amounts of the ATP responsible for the repeated breakdown and formation of trehalose molecules in response to extracellular glucose perturbations. This loss of ATP would be in competition with the high ATP-demanding penicillin biosynthesis. In this work, the role of trehalose metabolism was further explored under industrially relevant conditions by cultivating a high-yielding Penicillium chrysogenum strain, and the derived trehalose-null strains in the glucose-limited chemostat system where the glucose feast/famine condition was imposed. This dynamic feast/famine regime with a block-wise feed/no feed regime (36 s on, 324 s off) allows one to generate repetitive cycles of moderate changes in glucose availability. The results obtained using quantitative metabolomics and stoichiometric analysis revealed that the intact trehalose metabolism is vitally important for maintaining penicillin production capacity in the Penicillium chrysogenum strain under both steady state and dynamic conditions. Additionally, cells lacking such a key metabolic regulator would become more sensitive to industrially relevant conditions, and are more able to sustain metabolic rearrangements, which manifests in the shrinkage of the central metabolite pool size and the formation of ATP-consuming futile cycles.
Collapse
|
16
|
Wright NR, Rønnest NP, Sonnenschein N. Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Front Bioeng Biotechnol 2020; 8:579841. [PMID: 33392163 PMCID: PMC7775484 DOI: 10.3389/fbioe.2020.579841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in continuous manufacturing within the bioprocessing community. In this context, the chemostat process is an important unit operation. The current application of chemostat processes in industry is limited although many high yielding processes are reported in literature. In order to reach the full potential of the chemostat in continuous manufacture, the output should be constant. However, adaptation is often observed resulting in changed productivities over time. The observed adaptation can be coupled to the selective pressure of the nutrient-limited environment in the chemostat. We argue that population heterogeneity should be taken into account when studying adaptation in the chemostat. We propose to investigate adaptation at the single-cell level and discuss the potential of different single-cell technologies, which could be used to increase the understanding of the phenomena. Currently, none of the discussed single-cell technologies fulfill all our criteria but in combination they may reveal important information, which can be used to understand and potentially control the adaptation.
Collapse
Affiliation(s)
- Naia Risager Wright
- Novo Nordisk A/S, Bagsvaerd, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Klim J, Zielenkiewicz U, Kurlandzka A, Kaczanowski S, Skoneczny M. Slow Adaptive Response of Budding Yeast Cells to Stable Conditions of Continuous Culture Can Occur without Genome Modifications. Genes (Basel) 2020; 11:genes11121419. [PMID: 33261040 PMCID: PMC7759791 DOI: 10.3390/genes11121419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Continuous cultures assure the invariability of environmental conditions and the metabolic state of cultured microorganisms, whereas batch-cultured cells undergo constant changes in nutrients availability. For that reason, continuous culture is sometimes employed in the whole transcriptome, whole proteome, or whole metabolome studies. However, the typical method for establishing uniform growth of a cell population, i.e., by limited chemostat, results in the enrichment of the cell population gene pool with mutations adaptive for starvation conditions. These adaptive changes can skew the results of large-scale studies. It is commonly assumed that these adaptations reflect changes in the genome, and this assumption has been confirmed experimentally in rare cases. Here we show that in a population of budding yeast cells grown for over 200 generations in continuous culture in non-limiting minimal medium and therefore not subject to selection pressure, remodeling of transcriptome occurs, but not as a result of the accumulation of adaptive mutations. The observed changes indicate a shift in the metabolic balance towards catabolism, a decrease in ribosome biogenesis, a decrease in general stress alertness, reorganization of the cell wall, and transactions occurring at the cell periphery. These adaptive changes signify the acquisition of a new lifestyle in a stable nonstressful environment. The absence of underlying adaptive mutations suggests these changes may be regulated by another mechanism.
Collapse
Affiliation(s)
- Joanna Klim
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.K.); (U.Z.)
| | - Anna Kurlandzka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Szymon Kaczanowski
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5921217
| |
Collapse
|
18
|
Boonekamp FJ, Dashko S, Duiker D, Gehrmann T, van den Broek M, den Ridder M, Pabst M, Robert V, Abeel T, Postma ED, Daran JM, Daran-Lapujade P. Design and Experimental Evaluation of a Minimal, Innocuous Watermarking Strategy to Distinguish Near-Identical DNA and RNA Sequences. ACS Synth Biol 2020; 9:1361-1375. [PMID: 32413257 PMCID: PMC7309318 DOI: 10.1021/acssynbio.0c00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discrimination between synthetic and native gene copies. While it is well documented that codon usage can affect translation, and most likely mRNA stability in eukaryotes, remarkably few quantitative studies explore the impact of watermarking on transcription, protein expression, and physiology in the popular model and industrial yeast Saccharomyces cerevisiae. The present study, using S. cerevisiae as eukaryotic paradigm, designed, implemented, and experimentally validated a systematic strategy to watermark DNA with minimal alteration of yeast physiology. The 13 genes encoding proteins involved in the major pathway for sugar utilization (i.e., glycolysis and alcoholic fermentation) were simultaneously watermarked in a yeast strain using the previously published pathway swapping strategy. Carefully swapping codons of these naturally codon optimized, highly expressed genes, did not affect yeast physiology and did not alter transcript abundance, protein abundance, and protein activity besides a mild effect on Gpm1. The markerQuant bioinformatics method could reliably discriminate native from watermarked genes and transcripts. Furthermore, presence of watermarks enabled selective CRISPR/Cas genome editing, specifically targeting the native gene copy while leaving the synthetic, watermarked variant intact. This study offers a validated strategy to simply watermark genes in S. cerevisiae.
Collapse
Affiliation(s)
- Francine J. Boonekamp
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Donna Duiker
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Thies Gehrmann
- Westerdijk Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Vincent Robert
- Westerdijk Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Thomas Abeel
- Intelligent Systems − Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 6, 2628XE Delft, The Netherlands
| | - Eline D. Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
19
|
Wright NR, Wulff T, Palmqvist EA, Jørgensen TR, Workman CT, Sonnenschein N, Rønnest NP, Herrgård MJ. Fluctuations in glucose availability prevent global proteome changes and physiological transition during prolonged chemostat cultivations of
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2074-2088. [DOI: 10.1002/bit.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Naia R. Wright
- Novo Nordisk A/S Bagsværd Denmark
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | | | - Thomas R. Jørgensen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
| | - Christopher T. Workman
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- Department of Biotechnology and BiomedicineTechnical University of Denmark Lyngby Denmark
| | | | - Markus J. Herrgård
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark Lyngby Denmark
- BioInnovation Institute København N Denmark
| |
Collapse
|
20
|
Yu R, Campbell K, Pereira R, Björkeroth J, Qi Q, Vorontsov E, Sihlbom C, Nielsen J. Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nat Commun 2020; 11:1881. [PMID: 32312967 PMCID: PMC7171132 DOI: 10.1038/s41467-020-15749-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Cells maintain reserves in their metabolic and translational capacities as a strategy to quickly respond to changing environments. Here we quantify these reserves by stepwise reducing nitrogen availability in yeast steady-state chemostat cultures, imposing severe restrictions on total cellular protein and transcript content. Combining multi-omics analysis with metabolic modeling, we find that seven metabolic superpathways maintain >50% metabolic capacity in reserve, with glucose metabolism maintaining >80% reserve capacity. Cells maintain >50% reserve in translational capacity for 2490 out of 3361 expressed genes (74%), with a disproportionately large reserve dedicated to translating metabolic proteins. Finally, ribosome reserves contain up to 30% sub-stoichiometric ribosomal proteins, with activation of reserve translational capacity associated with selective upregulation of 17 ribosomal proteins. Together, our dataset provides a quantitative link between yeast physiology and cellular economics, which could be leveraged in future cell engineering through targeted proteome streamlining. Cells maintain reserves in their metabolic and translational capacities enabling fast response to changing environments. Here, the authors quantify reserves in yeast by stepwise reduction in nitrogen availability and a combination of multi-omic analysis and metabolic modelling.
Collapse
Affiliation(s)
- Rosemary Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Kate Campbell
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rui Pereira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Johan Björkeroth
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Qi Qi
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-413 90, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-413 90, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark. .,BioInnovation Institute, Ole Måløes Vej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
21
|
Jung HM, Im DK, Lim JH, Jung GY, Oh MK. Metabolic perturbations in mutants of glucose transporters and their applications in metabolite production in Escherichia coli. Microb Cell Fact 2019; 18:170. [PMID: 31601271 PMCID: PMC6786474 DOI: 10.1186/s12934-019-1224-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Most microorganisms have evolved to maximize growth rate, with rapid consumption of carbon sources from the surroundings. However, fast growing phenotypes usually feature secretion of organic compounds. For example, E. coli mainly produced acetate in fast growing condition such as glucose rich and aerobic condition, which is troublesome for metabolic engineering because acetate causes acidification of surroundings, growth inhibition and decline of production yield. The overflow metabolism can be alleviated by reducing glucose uptake rate. RESULTS As glucose transporters or their subunits were knocked out in E. coli, the growth and glucose uptake rates decreased and biomass yield was improved. Alteration of intracellular metabolism caused by the mutations was investigated with transcriptome analysis and 13C metabolic flux analysis (13C MFA). Various transcriptional and metabolic perturbations were identified in the sugar transporter mutants. Transcription of genes related to glycolysis, chemotaxis, and flagella synthesis was downregulated, and that of gluconeogenesis, Krebs cycle, alternative transporters, quorum sensing, and stress induced proteins was upregulated in the sugar transporter mutants. The specific production yields of value-added compounds (enhanced green fluorescent protein, γ-aminobutyrate, lycopene) were improved significantly in the sugar transporter mutants. CONCLUSIONS The elimination of sugar transporter resulted in alteration of global gene expression and redirection of carbon flux distribution, which was purposed to increase energy yield and recycle carbon sources. When the pathways for several valuable compounds were introduced to mutant strains, specific yield of them were highly improved. These results showed that controlling the sugar uptake rate is a good strategy for ameliorating metabolite production.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 South Korea
| | - Dae-Kyun Im
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 South Korea
| | - Jae Hyung Lim
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 South Korea
| |
Collapse
|
22
|
Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng 2019; 56:1-16. [PMID: 31401242 DOI: 10.1016/j.ymben.2019.08.004] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022]
Abstract
Harnessing the process of natural selection to obtain and understand new microbial phenotypes has become increasingly possible due to advances in culturing techniques, DNA sequencing, bioinformatics, and genetic engineering. Accordingly, Adaptive Laboratory Evolution (ALE) experiments represent a powerful approach both to investigate the evolutionary forces influencing strain phenotypes, performance, and stability, and to acquire production strains that contain beneficial mutations. In this review, we summarize and categorize the applications of ALE to various aspects of microbial physiology pertinent to industrial bioproduction by collecting case studies that highlight the multitude of ways in which evolution can facilitate the strain construction process. Further, we discuss principles that inform experimental design, complementary approaches such as computational modeling that help maximize utility, and the future of ALE as an efficient strain design and build tool driven by growing adoption and improvements in automation.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Michael J Salazar
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Liam L Weng
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
23
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
24
|
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 2018; 50:47-56. [DOI: 10.1016/j.copbio.2017.10.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023]
|
25
|
Fares MA, Sabater-Muñoz B, Toft C. Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biol Evol 2017; 9:1229-1240. [PMID: 28459980 PMCID: PMC5433386 DOI: 10.1093/gbe/evx085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 12/23/2022] Open
Abstract
Gene duplication generates new genetic material, which has been shown to lead to major innovations in unicellular and multicellular organisms. A whole-genome duplication occurred in the ancestor of Saccharomyces yeast species but 92% of duplicates returned to single-copy genes shortly after duplication. The persisting duplicated genes in Saccharomyces led to the origin of major metabolic innovations, which have been the source of the unique biotechnological capabilities in the Baker’s yeast Saccharomyces cerevisiae. What factors have determined the fate of duplicated genes remains unknown. Here, we report the first demonstration that the local genome mutation and transcription rates determine the fate of duplicates. We show, for the first time, a preferential location of duplicated genes in the mutational and transcriptional hotspots of S. cerevisiae genome. The mechanism of duplication matters, with whole-genome duplicates exhibiting different preservation trends compared to small-scale duplicates. Genome mutational and transcriptional hotspots are rich in duplicates with large repetitive promoter elements. Saccharomyces cerevisiae shows more tolerance to deleterious mutations in duplicates with repetitive promoter elements, which in turn exhibit higher transcriptional plasticity against environmental perturbations. Our data demonstrate that the genome traps duplicates through the accelerated regulatory and functional divergence of their gene copies providing a source of novel adaptations in yeast.
Collapse
Affiliation(s)
- Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Beatriz Sabater-Muñoz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Valencia, Spain.,Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Christina Toft
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valencia, Paterna, Spain.,Department of Genetics, University of Valencia, Burjasot, Spain.,Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas (CSIC), Burjasot, Valencia, Spain
| |
Collapse
|
26
|
Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH. Appl Environ Microbiol 2017; 83:AEM.01120-17. [PMID: 28802267 DOI: 10.1128/aem.01120-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A.IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch repair enzyme MutS. Here, we show this method was effective in increasing the resistance of L. casei to lactic acid at low pH. Additionally, we identified three genes that contribute to increased acid resistance in L. casei 12A. These results provide valuable insight on methods to enhance an organism's fitness to complex phenotypes through adaptive evolution and targeted gene inactivation.
Collapse
|
27
|
Dias O, Basso TO, Rocha I, Ferreira EC, Gombert AK. Quantitative physiology and elemental composition of Kluyveromyces lactis CBS 2359 during growth on glucose at different specific growth rates. Antonie van Leeuwenhoek 2017; 111:183-195. [PMID: 28900755 DOI: 10.1007/s10482-017-0940-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The yeast Kluyveromyces lactis has received attention both from academia and industry due to some important features, such as its capacity to grow in lactose-based media, its safe status, its suitability for large-scale cultivation and for heterologous protein synthesis. It has also been considered as a model organism for genomics and metabolic regulation. Despite this, very few studies were carried out hitherto under strictly controlled conditions, such as those found in a chemostat. Here we report a set of quantitative physiological data generated during chemostat cultivations with the K. lactis CBS 2359 strain, obtained under glucose-limiting and fully aerobic conditions. This dataset serves [corrected] as a basis for the comparison of K. lactis with the model yeast Saccharomyces cerevisiae in terms of their elemental compositions, as well as for future metabolic flux analysis and metabolic modelling studies with K. lactis.
Collapse
Affiliation(s)
- Oscar Dias
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil
| | - Thiago O Basso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.
| | - Isabel Rocha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Eugénio C Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Andreas K Gombert
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto 380, São Paulo, SP, 05508-010, Brazil.,School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
28
|
Brickwedde A, van den Broek M, Geertman JMA, Magalhães F, Kuijpers NGA, Gibson B, Pronk JT, Daran JMG. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front Microbiol 2017; 8:1690. [PMID: 28943864 PMCID: PMC5596070 DOI: 10.3389/fmicb.2017.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | | | | | - Niels G A Kuijpers
- HEINEKEN Supply Chain, Global Innovation and ResearchZoeterwoude, Netherlands
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
29
|
Wortel MT, Bosdriesz E, Teusink B, Bruggeman FJ. Evolutionary pressures on microbial metabolic strategies in the chemostat. Sci Rep 2016; 6:29503. [PMID: 27381431 PMCID: PMC4933952 DOI: 10.1038/srep29503] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/20/2016] [Indexed: 11/29/2022] Open
Abstract
Protein expression is shaped by evolutionary processes that tune microbial fitness. The limited biosynthetic capacity of a cell constrains protein expression and forces the cell to carefully manage its protein economy. In a chemostat, the physiology of the cell feeds back on the growth conditions, hindering intuitive understanding of how changes in protein concentration affect fitness. Here, we aim to provide a theoretical framework that addresses the selective pressures and optimal evolutionary-strategies in the chemostat. We show that the optimal enzyme levels are the result of a trade-off between the cost of their production and the benefit of their catalytic function. We also show that deviations from optimal enzyme levels are directly related to selection coefficients. The maximal fitness strategy for an organism in the chemostat is to express a well-defined metabolic subsystem known as an elementary flux mode. Using a coarse-grained, kinetic model of Saccharomyces cerevisiae’s metabolism and growth, we illustrate that the dynamics and outcome of evolution in a chemostat can be very counter-intuitive: Strictly-respiring and strictly-fermenting strains can evolve from a common ancestor. This work provides a theoretical framework that relates a kinetic, mechanistic view on metabolism with cellular physiology and evolutionary dynamics in the chemostat.
Collapse
Affiliation(s)
- Meike T Wortel
- Systems Bioinformatics, VU University, Amsterdam, De Boelelaan 1087, 1081 HV, The Netherlands
| | - Evert Bosdriesz
- Systems Bioinformatics, VU University, Amsterdam, De Boelelaan 1087, 1081 HV, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, VU University, Amsterdam, De Boelelaan 1087, 1081 HV, The Netherlands
| | - Frank J Bruggeman
- Systems Bioinformatics, VU University, Amsterdam, De Boelelaan 1087, 1081 HV, The Netherlands
| |
Collapse
|
30
|
Sun XM, Ren LJ, Ji XJ, Chen SL, Guo DS, Huang H. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis. BIORESOURCE TECHNOLOGY 2016; 211:374-81. [PMID: 27030957 DOI: 10.1016/j.biortech.2016.03.093] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 05/09/2023]
Abstract
Adaptive laboratory evolution (ALE) is an effective method in changing the strain characteristics. Here, ALE with high oxygen as a selection pressure was applied to improve the production capacity of Schizochytrium sp. Results showed that cell dry weight (CDW) of endpoint strain was 32.4% higher than that of starting strain. But slight lipid accumulation impairment was observed. These major performance changes were accompanied with enhanced isocitrate dehydrogenase enzyme activity and reduced ATP:citrate lyase enzyme activity. And a serious decrease of 62.6% in SDHA 140rpm→170rpm was observed in the endpoint strain. To further study the docosahexaenoic acid (DHA) production ability of evolved strain, fed-batch strategy was applied and 84.34g/L of cell dry weight and 26.40g/L of DHA yield were observed. In addition, endpoint strain produced greatly less squalene than starting strain. This work demonstrated that ALE may be a promising tool in modifying microalga strains.
Collapse
Affiliation(s)
- Xiao-Man Sun
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Xiao-Jun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-Lan Chen
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Dong-Sheng Guo
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
31
|
Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Microb Cell Fact 2016; 15:111. [PMID: 27317316 PMCID: PMC4912818 DOI: 10.1186/s12934-016-0501-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Saccharomyces cerevisiae is an established microbial platform for production of native and non-native compounds. When product pathways compete with growth for precursors and energy, uncoupling of growth and product formation could increase product yields and decrease formation of biomass as a by-product. Studying non-growing, metabolically active yeast cultures is a first step towards developing S. cerevisiae as a robust, non-growing cell factory. Microbial physiology at near-zero growth rates can be studied in retentostats, which are continuous-cultivation systems with full biomass retention. Hitherto, retentostat studies on S. cerevisiae have focused on anaerobic conditions, which bear limited relevance for aerobic industrial processes. The present study uses aerobic, glucose-limited retentostats to explore the physiology of non-dividing, respiring S. cerevisiae cultures, with a focus on industrially relevant features. Results Retentostat feeding regimes for smooth transition from exponential growth in glucose-limited chemostat cultures to near-zero growth rates were obtained by model-aided experimental design. During 20 days of retentostats cultivation, the specific growth rate gradually decreased from 0.025 h−1 to below 0.001 h−1, while culture viability remained above 80 %. The maintenance requirement for ATP (mATP) was estimated at 0.63 ± 0.04 mmol ATP (g biomass)−1 h−1, which is ca. 35 % lower than previously estimated for anaerobic retentostats. Concomitant with decreasing growth rate in aerobic retentostats, transcriptional down-regulation of genes involved in biosynthesis and up-regulation of stress-responsive genes resembled transcriptional regulation patterns observed for anaerobic retentostats. The heat-shock tolerance in aerobic retentostats far exceeded previously reported levels in stationary-phase batch cultures. While in situ metabolic fluxes in retentostats were intentionally low due to extreme caloric restriction, off-line measurements revealed that cultures retained a high metabolic capacity. Conclusions This study provides the most accurate estimation yet of the maintenance-energy coefficient in aerobic cultures of S. cerevisiae, which is a key parameter for modelling of industrial aerobic, glucose-limited fed-batch processes. The observed extreme heat-shock tolerance and high metabolic capacity at near-zero growth rates demonstrate the intrinsic potential of S. cerevisiae as a robust, non-dividing microbial cell factory for energy-intensive products. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Vos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Xavier D V Hakkaart
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
32
|
Ciani M, Morales P, Comitini F, Tronchoni J, Canonico L, Curiel JA, Oro L, Rodrigues AJ, Gonzalez R. Non-conventional Yeast Species for Lowering Ethanol Content of Wines. Front Microbiol 2016; 7:642. [PMID: 27199967 PMCID: PMC4854890 DOI: 10.3389/fmicb.2016.00642] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must.
Collapse
Affiliation(s)
- Maurizio Ciani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Francesca Comitini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Laura Canonico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - José A Curiel
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Lucia Oro
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche Ancona, Italy
| | - Alda J Rodrigues
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| |
Collapse
|
33
|
Nilsson A, Nielsen J. Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase. Sci Rep 2016; 6:22264. [PMID: 26928598 PMCID: PMC4772093 DOI: 10.1038/srep22264] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Intermediary metabolism provides living cells with free energy and precursor metabolites required for synthesizing proteins, lipids, RNA and other cellular constituents, and it is highly conserved among living species. Only a fraction of cellular protein can, however, be allocated to enzymes of intermediary metabolism and consequently metabolic trade-offs may take place. One such trade-off, aerobic fermentation, occurs in both yeast (the Crabtree effect) and cancer cells (the Warburg effect) and has been a scientific challenge for decades. Here we show, using flux balance analysis combined with in vitro measured enzyme specific activities, that fermentation is more catalytically efficient than respiration, i.e. it produces more ATP per protein mass. And that the switch to fermentation at high growth rates therefore is a consequence of a high ATP production rate, provided by a limited pool of enzymes. The catalytic efficiency is also higher for cells grown on glucose compared to galactose and ethanol, which may explain the observed differences in their growth rates. The enzyme F1F0-ATP synthase (Complex V) was found to have flux control over respiration in the model, and since it is evolutionary conserved, we expect the trade-off to occur in organisms from all kingdoms of life.
Collapse
Affiliation(s)
- Avlant Nilsson
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, SE41296, Sweden
| | - Jens Nielsen
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, SE41296, Sweden.,Technical University of Denmark, Novo Nordisk Foundation Center for Biosustainability, Hørsholm, DK2970, Denmark
| |
Collapse
|
34
|
Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E. Yeast biomass, an optimised product with myriad applications in the food industry. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Risager Wright N, Rønnest NP, Thykaer J. Scale-down of continuous protein producingSaccharomyces cerevisiaecultivations using a two-compartment system. Biotechnol Prog 2015; 32:152-9. [DOI: 10.1002/btpr.2184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Naia Risager Wright
- Diabetes Up- and Downstream Development; Novo Nordisk A/S; Bagsvaerd Denmark
| | | | - Jette Thykaer
- Dept. of Systems Biology; Technical University of Denmark; Lyngby Denmark
| |
Collapse
|
36
|
Solis-Escalante D, Kuijpers NGA, Barrajon-Simancas N, van den Broek M, Pronk JT, Daran JM, Daran-Lapujade P. A Minimal Set of Glycolytic Genes Reveals Strong Redundancies in Saccharomyces cerevisiae Central Metabolism. EUKARYOTIC CELL 2015; 14:804-16. [PMID: 26071034 PMCID: PMC4519752 DOI: 10.1128/ec.00064-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/26/2015] [Indexed: 01/13/2023]
Abstract
As a result of ancestral whole-genome and small-scale duplication events, the genomes of Saccharomyces cerevisiae and many eukaryotes still contain a substantial fraction of duplicated genes. In all investigated organisms, metabolic pathways, and more particularly glycolysis, are specifically enriched for functionally redundant paralogs. In ancestors of the Saccharomyces lineage, the duplication of glycolytic genes is purported to have played an important role leading to S. cerevisiae's current lifestyle favoring fermentative metabolism even in the presence of oxygen and characterized by a high glycolytic capacity. In modern S. cerevisiae strains, the 12 glycolytic reactions leading to the biochemical conversion from glucose to ethanol are encoded by 27 paralogs. In order to experimentally explore the physiological role of this genetic redundancy, a yeast strain with a minimal set of 14 paralogs was constructed (the "minimal glycolysis" [MG] strain). Remarkably, a combination of a quantitative systems approach and semiquantitative analysis in a wide array of growth environments revealed the absence of a phenotypic response to the cumulative deletion of 13 glycolytic paralogs. This observation indicates that duplication of glycolytic genes is not a prerequisite for achieving the high glycolytic fluxes and fermentative capacities that are characteristic of S. cerevisiae and essential for many of its industrial applications and argues against gene dosage effects as a means of fixing minor glycolytic paralogs in the yeast genome. The MG strain was carefully designed and constructed to provide a robust prototrophic platform for quantitative studies and has been made available to the scientific community.
Collapse
Affiliation(s)
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
37
|
Rabbers I, van Heerden JH, Nordholt N, Bachmann H, Teusink B, Bruggeman FJ. Metabolism at evolutionary optimal States. Metabolites 2015; 5:311-43. [PMID: 26042723 PMCID: PMC4495375 DOI: 10.3390/metabo5020311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/13/2023] Open
Abstract
Metabolism is generally required for cellular maintenance and for the generation of offspring under conditions that support growth. The rates, yields (efficiencies), adaptation time and robustness of metabolism are therefore key determinants of cellular fitness. For biotechnological applications and our understanding of the evolution of metabolism, it is necessary to figure out how the functional system properties of metabolism can be optimized, via adjustments of the kinetics and expression of enzymes, and by rewiring metabolism. The trade-offs that can occur during such optimizations then indicate fundamental limits to evolutionary innovations and bioengineering. In this paper, we review several theoretical and experimental findings about mechanisms for metabolic optimization.
Collapse
Affiliation(s)
- Iraes Rabbers
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Johan H van Heerden
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Niclas Nordholt
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Herwig Bachmann
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
- NIZO Food Research, 6718 ZB Ede, The Netherlands.
- Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands.
| | - Bas Teusink
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Frank J Bruggeman
- Department of Systems Bioinformatics, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Bachmann H, Pronk JT, Kleerebezem M, Teusink B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 2015; 32:1-7. [DOI: 10.1016/j.copbio.2014.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
|
39
|
Bosdriesz E, Molenaar D, Teusink B, Bruggeman FJ. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization. FEBS J 2015; 282:2029-44. [PMID: 25754869 PMCID: PMC4672707 DOI: 10.1111/febs.13258] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/02/2015] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Maximization of growth rate is an important fitness strategy for bacteria. Bacteria can achieve this by expressing proteins at optimal concentrations, such that resources are not wasted. This is exemplified for Escherichia coli by the increase of its ribosomal protein-fraction with growth rate, which precisely matches the increased protein synthesis demand. These findings and others have led to the hypothesis that E. coli aims to maximize its growth rate in environments that support growth. However, what kind of regulatory strategy is required for a robust, optimal adjustment of the ribosome concentration to the prevailing condition is still an open question. In the present study, we analyze the ppGpp-controlled mechanism of ribosome expression used by E. coli and show that this mechanism maintains the ribosomes saturated with its substrates. In this manner, overexpression of the highly abundant ribosomal proteins is prevented, and limited resources can be redirected to the synthesis of other growth-promoting enzymes. It turns out that the kinetic conditions for robust, optimal protein-partitioning, which are required for growth rate maximization across conditions, can be achieved with basic biochemical interactions. We show that inactive ribosomes are the most suitable ‘signal’ for tracking the intracellular nutritional state and for adjusting gene expression accordingly, as small deviations from optimal ribosome concentration cause a huge fractional change in ribosome inactivity. We expect to find this control logic implemented across fast-growing microbial species because growth rate maximization is a common selective pressure, ribosomes are typically highly abundant and thus costly, and the required control can be implemented by a small, simple network.
Collapse
Affiliation(s)
- Evert Bosdriesz
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
40
|
Binai NA, Bisschops MMM, van Breukelen B, Mohammed S, Loeff L, Pronk JT, Heck AJR, Daran-Lapujade P, Slijper M. Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures. J Proteome Res 2014; 13:3542-53. [PMID: 25000127 DOI: 10.1021/pr5003388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Stationary-phase, carbon-starved shake-flask cultures of Saccharomyces cerevisiae are popular models for studying eukaryotic chronological aging. However, their nutrient-starved physiological status differs substantially from that of postmitotic metazoan cells. Retentostat cultures offer an attractive alternative model system in which yeast cells, maintained under continuous calorie restriction, hardly divide but retain high metabolic activity and viability for prolonged periods of time. Using TMT labeling and UHPLC-MS/MS, the present study explores the proteome of yeast cultures during transition from exponential growth to near-zero growth in severely calorie-restricted retentostats. This transition elicited protein level changes in 20% of the yeast proteome. Increased abundance of heat shock-related proteins correlated with increased transcript levels of the corresponding genes and was consistent with a strongly increased heat shock tolerance of retentostat-grown cells. A sizable fraction (43%) of the proteins with increased abundance under calorie restriction was involved in oxidative phosphorylation and in various mitochondrial functions that, under the anaerobic, nongrowing conditions used, have a very limited role. Although it may seem surprising that yeast cells confronted with severe calorie restriction invest in the synthesis of proteins that, under those conditions, do not contribute to fitness, these responses may confer metabolic flexibility and thereby a selective advantage in fluctuating natural habitats.
Collapse
Affiliation(s)
- Nadine A Binai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen Y, Liu Q, Chen X, Wu J, Xie J, Guo T, Zhu C, Ying H. Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability. Appl Microbiol Biotechnol 2014; 98:6621-32. [PMID: 24769901 DOI: 10.1007/s00253-014-5701-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/14/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
Abstract
Adenosine triphosphate (ATP), the most important energy source for metabolic reactions and pathways, plays a vital role in control of metabolic flux. Considering the importance of ATP in regulation of the glycolytic pathway, the use of ATP-oriented manipulation is a rational and efficient route to regulate metabolic flux. In this paper, a series of efficient ATP-oriented regulation methods, such as changing ambient temperature and altering reduced nicotinamide adenine dinucleotide (NADH), was developed. To satisfy the different demand for ATP at different phases in directed biosynthesis of uridine-phosphoryl compounds, a multiphase ATP supply regulation strategy was also used to enhance to yield of target metabolites.
Collapse
Affiliation(s)
- Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Xin mofan Road 5, Nanjing, 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
The fates of mutant lineages and the distribution of fitness effects of beneficial mutations in laboratory budding yeast populations. Genetics 2014; 196:1217-26. [PMID: 24514901 DOI: 10.1534/genetics.113.160069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outcomes of evolution are determined by which mutations occur and fix. In rapidly adapting microbial populations, this process is particularly hard to predict because lineages with different beneficial mutations often spread simultaneously and interfere with one another's fixation. Hence to predict the fate of any individual variant, we must know the rate at which new mutations create competing lineages of higher fitness. Here, we directly measured the effect of this interference on the fates of specific adaptive variants in laboratory Saccharomyces cerevisiae populations and used these measurements to infer the distribution of fitness effects of new beneficial mutations. To do so, we seeded marked lineages with different fitness advantages into replicate populations and tracked their subsequent frequencies for hundreds of generations. Our results illustrate the transition between strongly advantageous lineages that decisively sweep to fixation and more moderately advantageous lineages that are often outcompeted by new mutations arising during the course of the experiment. We developed an approximate likelihood framework to compare our data to simulations and found that the effects of these competing beneficial mutations were best approximated by an exponential distribution, rather than one with a single effect size. We then used this inferred distribution of fitness effects to predict the rate of adaptation in a set of independent control populations. Finally, we discuss how our experimental design can serve as a screen for rare, large-effect beneficial mutations.
Collapse
|
43
|
Dragosits M, Mattanovich D. Adaptive laboratory evolution -- principles and applications for biotechnology. Microb Cell Fact 2013; 12:64. [PMID: 23815749 PMCID: PMC3716822 DOI: 10.1186/1475-2859-12-64] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria.
| | | |
Collapse
|
44
|
Kazemi Seresht A, Cruz AL, de Hulster E, Hebly M, Palmqvist EA, van Gulik W, Daran JM, Pronk J, Olsson L. Long-term adaptation of Saccharomyces cerevisiae to the burden of recombinant insulin production. Biotechnol Bioeng 2013; 110:2749-63. [PMID: 23568816 DOI: 10.1002/bit.24927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 12/28/2022]
Abstract
High-level production of heterologous proteins is likely to impose a metabolic burden on the host cell and can thus affect various aspects of cellular physiology. A data-driven approach was applied to study the secretory production of a human insulin analog precursor (IAP) in Saccharomyces cerevisiae during prolonged cultivation (80 generations) in glucose-limited aerobic chemostat cultures. Physiological characterization of the recombinant cells involved a comparison with cultures of a congenic reference strain that did not produce IAP, and time-course analysis of both strains aimed at identifying the metabolic adaptation of the cells towards the burden of IAP production. All cultures were examined at high cell density conditions (30 g/L dry weight) to increase the industrial relevance of the results. The burden of heterologous protein production in the recombinant strain was explored by global transcriptome analysis and targeted metabolome analysis, including the analysis of intracellular amino acid pools, glycolytic metabolites, and TCA intermediates. The cellular re-arrangements towards IAP production were categorized in direct responses, for example, enhanced metabolism of amino acids as precursors for the formation of IAP, as well as indirect responses, for example, changes in the central carbon metabolism. As part of the long-term adaptation, a metabolic re-modeling of the IAP-expressing strain was observed, indicating an augmented negative selection pressure on glycolytic overcapacity, and the emergence of mitochondrial dysfunction. The evoked metabolic re-modeling of the cells led to less optimal conditions with respect to the expression and processing of the target protein and thus decreased the cellular expression capacity for the secretory production of IAP during prolonged cultivation.
Collapse
Affiliation(s)
- Ali Kazemi Seresht
- Industrial Biotechnology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivaegen 10, 41296, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kazemi Seresht A, Palmqvist EA, Schluckebier G, Pettersson I, Olsson L. The challenge of improved secretory production of active pharmaceutical ingredients inSaccharomyces cerevisiae: A case study on human insulin analogs. Biotechnol Bioeng 2013; 110:2764-74. [DOI: 10.1002/bit.24928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022]
Affiliation(s)
| | - Eva A. Palmqvist
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Gerd Schluckebier
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Ingrid Pettersson
- Diabetes Protein Engineering, Diabetes Research Unit; Novo Nordisk A/S; DK-2780; Måløv; Denmark
| | - Lisbeth Olsson
- Industrial Biotechnology, Department of Chemical and Biological Engineering; Chalmers University of Technology; Gothenburg; Sweden
| |
Collapse
|
46
|
Randez-Gil F, Córcoles-Sáez I, Prieto JA. Genetic and Phenotypic Characteristics of Baker's Yeast: Relevance to Baking. Annu Rev Food Sci Technol 2013; 4:191-214. [DOI: 10.1146/annurev-food-030212-182609] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francisca Randez-Gil
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - Isaac Córcoles-Sáez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - José A. Prieto
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
47
|
Requejo RJ, Camacho J. Scarcity may promote cooperation in populations of simple agents. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022819. [PMID: 23496580 DOI: 10.1103/physreve.87.022819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/22/2012] [Indexed: 06/01/2023]
Abstract
In the study of the evolution of cooperation, resource limitations are usually assumed just to provide a finite population size. Recently, however, it has been pointed out that resource limitation may also generate dynamical payoffs able to modify the original structure of the games. Here we study analytically a phase transition from a homogeneous population of defectors when resources are abundant to the survival of unconditional cooperators when resources reduce below a threshold. To this end, we introduce a model of simple agents, with no memory or ability of recognition, interacting in well-mixed populations. The result might shed light on the role played by resource constraints on the origin of multicellularity.
Collapse
Affiliation(s)
- R J Requejo
- Departament de Física, Universitat Autònoma de Barcelona, Campus UAB, E-08193 Bellaterra, Spain
| | | |
Collapse
|
48
|
Yeast respiration of sugars by non-Saccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2012.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Cruz LAB, Hebly M, Duong GH, Wahl SA, Pronk JT, Heijnen JJ, Daran-Lapujade P, van Gulik WM. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics? BMC SYSTEMS BIOLOGY 2012; 6:151. [PMID: 23216813 PMCID: PMC3554419 DOI: 10.1186/1752-0509-6-151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/06/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. RESULTS Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. CONCLUSIONS From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.
Collapse
Affiliation(s)
- Luisa Ana B Cruz
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Leite FCB, Basso TO, Pita WDB, Gombert AK, Simões DA, de Morais MA. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 2012; 13:34-43. [PMID: 23078341 DOI: 10.1111/1567-1364.12007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/07/2012] [Accepted: 09/07/2012] [Indexed: 12/01/2022] Open
Abstract
Dekkera bruxellensis has been described as the major contaminant yeast of industrial ethanol production, although little is known about its physiology. The aim of this study was to investigate the growth of this yeast in diverse carbon sources and involved conducting shake-flask and glucose- or sucrose-limited chemostats experiments, and from the chemostat data, the stoichiometry of biomass formation during aerobic growth was established. As a result of the shake-flask experiments with hexoses or disaccharides, the specific growth rates were calculated, and a different behavior in rich and mineral medium was observed concerning to profile of acetate and ethanol production. In C-limited chemostats conditions, the metabolism of this yeast was completely respiratory, and the biomass yields reached values of 0.62 gDW gS(-1) . In addition, glucose pulses were applied to the glucose- or sucrose-limited chemostats. These results showed that D. bruxellensis has a short-term Crabtree effect. While the glucose pulse was at the sucrose-limited chemostat, sucrose accumulated at the reactor, indicating the presence of a glucose repression mechanism in D. bruxellensis.
Collapse
|