1
|
Jain PM, Nellikka A, Kammara R. Understanding bacteriocin heterologous expression: A review. Int J Biol Macromol 2024; 277:133916. [PMID: 39033897 DOI: 10.1016/j.ijbiomac.2024.133916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Bacteriocins are a diverse group of ribosomally synthesised antimicrobial peptides/proteins that play an important role in self-defence. They are widely used as bio-preservatives and effective substitutes for disease eradication. They can be used in conjunction with or as an alternative to antibiotics to minimize the risk of resistance development. There are remarkably few reports indicating resistance to bacteriocins. Although there are many research reports that emphasise heterologous expression of bacteriocin, there are no convincing reports on the significant role that intrinsic and extrinsic factors play in overexpression. A coordinated and cooperative expression system works in concert with multiple genetic elements encoding native proteins, immunoproteins, exporters, transporters and enzymes involved in the post-translational modification of bacteriocins. The simplest way could be to utilise the existing E. coli expression system, which is conventional, widely used for heterologous expression and has been further extended for bacteriocin expression. In this article, we will review the intrinsic and extrinsic factors, advantages, disadvantages and major problems associated with bacteriocin overexpression in E. coli. Finally, we recommend the most effective strategies as well as numerous bacteriocin expression systems from E. coli, Lactococcus, Kluveromyces lactis, Saccharomyces cerevisiae and Pichia pastoris for their suitability for successful overexpression.
Collapse
Affiliation(s)
- Priyanshi M Jain
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Anagha Nellikka
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India
| | - Rajagopal Kammara
- Department of Microbiology and Fermentation Technology, CSIR-CFTRI, AcSIR, Mysore, India.
| |
Collapse
|
2
|
Real-time detection of response regulator phosphorylation dynamics in live bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201204119. [PMID: 35994658 PMCID: PMC9436347 DOI: 10.1073/pnas.2201204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria utilize two-component system (TCS) signal transduction pathways to sense and adapt to changing environments. In a typical TCS, a stimulus induces a sensor histidine kinase (SHK) to phosphorylate a response regulator (RR), which then dimerizes and activates a transcriptional response. Here, we demonstrate that oligomerization-dependent depolarization of excitation light by fused mNeonGreen fluorescent protein probes enables real-time monitoring of RR dimerization dynamics in live bacteria. Using inducible promoters to independently express SHKs and RRs, we detect RR dimerization within seconds of stimulus addition in several model pathways. We go on to combine experiments with mathematical modeling to reveal that TCS phosphosignaling accelerates with SHK expression but decelerates with RR expression and SHK phosphatase activity. We further observe pulsatile activation of the SHK NarX in response to addition and depletion of the extracellular electron acceptor nitrate when the corresponding TCS is expressed from both inducible systems and the native chromosomal operon. Finally, we combine our method with polarized light microscopy to enable single-cell measurements of RR dimerization under changing stimulus conditions. Direct in vivo characterization of RR oligomerization dynamics should enable insights into the regulation of bacterial physiology.
Collapse
|
3
|
Párraga Solórzano PK, Shupe AC, Kehl-Fie TE. The Sensor Histidine Kinase ArlS Is Necessary for Staphylococcus aureus To Activate ArlR in Response to Nutrient Availability. J Bacteriol 2021; 203:e0042221. [PMID: 34606376 PMCID: PMC8604075 DOI: 10.1128/jb.00422-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus is a versatile opportunistic pathogen whose success is driven by its ability to adapt to diverse environments and host-imposed stresses. Two-component signal transduction systems, such as ArlRS, often mediate these adaptations. Loss of ArlRS or the response regulator ArlR alone impairs the ability of S. aureus to respond to host-imposed manganese starvation and glucose limitation. As sensor histidine kinases and response regulators frequently work as pairs, it has been assumed that ArlS senses and activates ArlR in response to these stimuli. However, recent work suggests that the sensor histidine kinase GraS can also activate ArlR, calling the contribution of ArlS in responding to manganese and glucose availability into question. The results of current studies reveal that ArlS is necessary to activate ArlR in response to manganese sequestration by the host immune effector calprotectin and glucose limitation. Although the loss of ArlS does not completely eliminate ArlR activity, this response regulator is no longer responsive to manganese or glucose availability in the absence of its cognate histidine kinase. Despite the residual activity of ArlR in the absence of ArlS, ArlR phosphorylation by ArlS is required for S. aureus to resist calprotectin-imposed metal starvation. Cumulatively, these findings contribute to the understanding of S. aureus signal transduction in response to nutritional immunity and support the previous observation indicating that ArlRS is activated by a common signal derived from host-imposed manganese and glucose limitation. IMPORTANCE The ability of pathogens, including Staphylococcus aureus, to sense and adapt to diverse environments partially relies on two-component systems, such as ArlRS. Recent work revealed that the response regulator ArlR can be cross-activated by the sensor histidine kinase GraS, rendering the role of its cognate partner, ArlS, in response to manganese and glucose limitation uncertain. The results of this study reveal that ArlS is necessary for the activation of ArlR in response to calprotectin and glucose limitation. Although a low level of ArlR activity remains in the absence of ArlS, ArlS phosphotransfer to ArlR is required for S. aureus to overcome calprotectin-induced nutritional stress. Collectively, this study provides fundamental information to understand how ArlRS mediates staphylococcal adaptation during infection.
Collapse
Affiliation(s)
| | - Angela C. Shupe
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas E. Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines. Proc Natl Acad Sci U S A 2021; 118:2014139118. [PMID: 33372136 DOI: 10.1073/pnas.2014139118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteins are commonly known to transfer electrons over distances limited to a few nanometers. However, many biological processes require electron transport over far longer distances. For example, soil and sediment bacteria transport electrons, over hundreds of micrometers to even centimeters, via putative filamentous proteins rich in aromatic residues. However, measurements of true protein conductivity have been hampered by artifacts due to large contact resistances between proteins and electrodes. Using individual amyloid protein crystals with atomic-resolution structures as a model system, we perform contact-free measurements of intrinsic electronic conductivity using a four-electrode approach. We find hole transport through micrometer-long stacked tyrosines at physiologically relevant potentials. Notably, the transport rate through tyrosines (105 s-1) is comparable to cytochromes. Our studies therefore show that amyloid proteins can efficiently transport charges, under ordinary thermal conditions, without any need for redox-active metal cofactors, large driving force, or photosensitizers to generate a high oxidation state for charge injection. By measuring conductivity as a function of molecular length, voltage, and temperature, while eliminating the dominant contribution of contact resistances, we show that a multistep hopping mechanism (composed of multiple tunneling steps), not single-step tunneling, explains the measured conductivity. Combined experimental and computational studies reveal that proton-coupled electron transfer confers conductivity; both the energetics of the proton acceptor, a neighboring glutamine, and its proximity to tyrosine influence the hole transport rate through a proton rocking mechanism. Surprisingly, conductivity increases 200-fold upon cooling due to higher availability of the proton acceptor by increased hydrogen bonding.
Collapse
|
6
|
Lunova M, Kubovciak J, Smolková B, Uzhytchak M, Michalova K, Dejneka A, Strnad P, Lunov O, Jirsa M. Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling. Int J Mol Sci 2021; 22:2560. [PMID: 33806448 PMCID: PMC7961969 DOI: 10.3390/ijms22052560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
| | - Jan Kubovciak
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Kyra Michalova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital RWTH (Rheinisch-Westfälisch Technische Hochschule) Aachen, 52062 Aachen, Germany;
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; (B.S.); (M.U.); (A.D.); (O.L.)
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic;
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University, 12808 Prague, Czech Republic;
| |
Collapse
|
7
|
Kravchenko U, Gogoleva N, Kalubaka N, Kruk A, Diubo Y, Gogolev Y, Nikolaichik Y. The PhoPQ Two-Component System Is the Major Regulator of Cell Surface Properties, Stress Responses and Plant-Derived Substrate Utilisation During Development of Pectobacterium versatile-Host Plant Pathosystems. Front Microbiol 2021; 11:621391. [PMID: 33519782 PMCID: PMC7843439 DOI: 10.3389/fmicb.2020.621391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
Pectobacterium versatile (formerly P. carotovorum) is a recently defined species of soft rot enterobacteria capable of infecting many plant hosts and damaging different tissues. Complex transcriptional regulation of virulence properties can be expected for such a versatile pathogen. However, the relevant information is available only for related species and is rather limited. The PhoPQ two-component system, originally described in pectobacteria as PehRS, was previously shown to regulate a single gene, pehA. Using an insertional phoP mutant of Pectobacterium versatile (earlier-P. carotovorum), we demonstrate that PhoP regulates at least 115 genes with a majority of them specific for pectobacteria. The functions performed by PhoP-controlled genes include degradation, transport and metabolism of plant-derived carbon sources (polygalacturonate, arabinose-containing polysaccharides and citrate), modification of bacterial cell envelope and stress resistance. We also demonstrated PhoP involvement in establishing the order of plant cell wall decomposition and utilisation of the corresponding breakdown products. Based on experimental data and in silico analysis, we defined a PhoP binding site motif and provided proof for its universality in enteric bacteria. Scanning P. versatile genome for the locations of this motif suggested a much larger PhoP regulon enriched with the genes important for a plant pathogen, which makes PhoP a global virulence regulator. Potential PhoP targets include many regulatory genes and PhoP control over one of them, expI, was confirmed experimentally, highlighting the link between the PhoPQ two-component and quorum sensing systems. High concentrations of calcium and magnesium ions were found to abolish the PhoPQ-dependent transcription activation but did not relieve repression. Reduced PhoP expression and minimisation of PhoP dependence of regulon members' expression in P. versatile cells isolated from potato tuber tissues suggest that PhoPQ system is a key switch of expression levels of multiple virulence-related genes fine-tuned to control the development of P. versatile-host plant pathosystem.
Collapse
Affiliation(s)
- Uljana Kravchenko
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Natalia Gogoleva
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Laboratory of Extreme Biology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Nastassia Kalubaka
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Alla Kruk
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuliya Diubo
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| | - Yuri Gogolev
- Federal Research Center “Kazan Scientific Center of RAS”, Kazan Institute of Biochemistry and Biophysics, Kazan, Russia
- Department of Biochemistry, Biotechnology and Pharmacology, Kazan Federal University Institute of Fundamental Medicine and Biology, Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, Minsk, Belarus
| |
Collapse
|
8
|
Bräuer M, Zich MT, Önder K, Müller N. The influence of commonly used tags on structural propensities and internal dynamics of peptides. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02401-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Tsai KC, Hung PP, Cheng CF, Chen C, Tseng TS. Exploring the mode of action of inhibitors targeting the PhoP response regulator of Salmonella enterica through comprehensive pharmacophore approaches. RSC Adv 2019; 9:9308-9312. [PMID: 35517705 PMCID: PMC9062048 DOI: 10.1039/c9ra00620f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
The PhoQ/PhoP two-component system regulates the physiological and virulence functions of Salmonella enterica. However, the mode of action of known PhoP inhibitors is unclear. We systematically constructed a pharmacophore model of inhibitors to probe the interface pharmacophore model of the PhoP dimer, coupling it with Ligplot analysis. We found that these inhibitors bind on the α5-helix, altering the conformation and interfering with PhoP binding on DNA. Comprehensive pharmacophore approaches explore the mode of action of inhibitors targeting PhoP response regulator of Salmonella enterica.![]()
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare Taipei 112 Taiwan.,The PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University Taipei Taiwan
| | - Po-Pin Hung
- Division of Infectious Disease, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation New Taipei City 231 Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei and Tzu Chi University Hualien Taiwan.,Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica Taipei 115 Taiwan
| | - Tien-Sheng Tseng
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation New Taipei City 231 Taiwan
| |
Collapse
|
10
|
Silversmith RE, Bourret RB. Fluorescence Measurement of Kinetics of CheY Autophosphorylation with Small Molecule Phosphodonors. Methods Mol Biol 2018; 1729:321-335. [PMID: 29429101 DOI: 10.1007/978-1-4939-7577-8_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Escherichia coli chemotaxis protein CheY is a model receiver domain containing a native tryptophan residue that serves as a fluorescent probe for CheY autophosphorylation with small molecule phosphodonors. Here we describe fluorescence measurement of apparent bimolecular rate constants for reaction of wild type and mutant CheY with phosphodonors acetyl phosphate, phosphoramidate, or monophosphoimidazole. Step-by-step protocols to synthesize phosphoramidate (K+ salt) and monophosphoimidazole (Na+ salt), which are not commercially available, are provided. Key factors to consider in developing autophosphorylation assays for other response regulators are also discussed.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Biancucci M, Dolores JS, Wong J, Grimshaw S, Anderson WF, Satchell KJF, Kwon K. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag. BMC Biotechnol 2017; 17:1. [PMID: 28056928 PMCID: PMC5216533 DOI: 10.1186/s12896-016-0323-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. Results In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called “the CPD-tag”. The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. Conclusion pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA
| | - Jazel S Dolores
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jennifer Wong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Indiana University, Bloomington, IN, USA
| | - Sarah Grimshaw
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA.,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Keehwan Kwon
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
13
|
Cho LH, Yoon J, Pasriga R, An G. Homodimerization of Ehd1 Is Required to Induce Flowering in Rice. PLANT PHYSIOLOGY 2016; 170:2159-71. [PMID: 26864016 PMCID: PMC4825144 DOI: 10.1104/pp.15.01723] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
In plants, flowering time is elaborately controlled by various environment factors. Ultimately, florigens such as FLOWERING LOCUS T (FT) or FT-like molecules induce flowering. In rice (Oryza sativa), Early heading date 1 (Ehd1) is a major inducer of florigen gene expression. Although Ehd1 is highly homologous to the type-B response regulator (RR) family in the cytokinin signaling pathway, its precise molecular mechanism is not well understood. In this study, we showed that the C-terminal portion of the protein containing the GARP DNA-binding (G) domain can promote flowering when overexpressed. We also observed that the N-terminal portion of Ehd1, carrying the receiver (R) domain, delays flowering by inhibiting endogenous Ehd1 activity. Ehd1 protein forms a homomer via a 16-amino acid region in the inter domain between R and G. From the site-directed mutagenesis analyses, we demonstrated that phosphorylation of the Asp-63 residue within the R domain induces the homomerization of Ehd1, which is crucial for Ehd1 activity. A type-A RR, OsRR1, physically interacts with Ehd1 to form a heterodimer. In addition, OsRR1-overexpressing plants show a late-flowering phenotype. Based on these observations, we conclude that OsRR1 inhibits Ehd1 activity by binding to form an inactive complex.
Collapse
Affiliation(s)
- Lae-Hyeon Cho
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Jinmi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Richa Pasriga
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (L.-H.C., J.Y., R.P., G.A.);Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea (L.-H.C., J.Y.); andGraduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea (R.P., G.A.)
| |
Collapse
|
14
|
Acetylation of Lysine 201 Inhibits the DNA-Binding Ability of PhoP to Regulate Salmonella Virulence. PLoS Pathog 2016; 12:e1005458. [PMID: 26943369 PMCID: PMC4778762 DOI: 10.1371/journal.ppat.1005458] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
The two-component system PhoP-PhoQ is highly conserved in bacteria and regulates virulence in response to various signals for bacteria within the mammalian host. Here, we demonstrate that PhoP could be acetylated by Pat and deacetylated by deacetylase CobB enzymatically in vitro and in vivo in Salmonella Typhimurium. Specifically, the conserved lysine residue 201(K201) in winged helix-turn-helix motif at C-terminal DNA-binding domain of PhoP could be acetylated, and its acetylation level decreases dramatically when bacteria encounter low magnesium, acid stress or phagocytosis of macrophages. PhoP has a decreased acetylation and increased DNA-binding ability in the deletion mutant of pat. However, acetylation of K201 does not counteract PhoP phosphorylation, which is essential for PhoP activity. In addition, acetylation of K201 (mimicked by glutamine substitute) in S. Typhimurium causes significantly attenuated intestinal inflammation as well as systemic infection in mouse model, suggesting that deacetylation of PhoP K201 is essential for Salmonella pathogenesis. Therefore, we propose that the reversible acetylation of PhoP K201 may ensure Salmonella promptly respond to different stresses in host cells. These findings suggest that reversible lysine acetylation in the DNA-binding domain, as a novel regulatory mechanism of gene expression, is involved in bacterial virulence across microorganisms.
Collapse
|
15
|
Expression, purification and characterization of Plasmodium falciparum vacuolar protein sorting 29. Protein Expr Purif 2015; 120:7-15. [PMID: 26690372 DOI: 10.1016/j.pep.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023]
Abstract
Translocation of various proteins to the subcellular organelles is an essential mechanism to regulate the metabolic pathways and often vacuolar protein sorting (VPS) proteins are involved in this transportation. Plasmodium falciparum VPS29 (PfVPS29) is predicted to be a functional component in the assembly of the retromer complex; however, so far detailed characterization of PfVPS29 in its native form is not yet done. We report the successful expression and purification of tag-free recombinant PfVPS29 with a yield of 5.6 mg from 1 L of Escherichia coli culture. PfVPS29 was purified by combined anion-exchange and size exclusion chromatography. The protein showed a single band in SDS-PAGE and it exhibited molecular mass of 21.7 kDa as measured by MALDI-TOF mass spectrometry. Secondary structure was elucidated by circular dichroism spectroscopy. It was found to be a monomeric protein in solution as evident from dynamic light scattering studies, chemical cross-linking experiments and size exclusion chromatography. Subsequently, polyclonal anti-PfVPS29 antibody was generated and used for evaluating protein expression by western blot and following subcellular localization in P. falciparum by confocal immunofluoroscence microscopy. PfVPS29 was found to be located in cytoplasm and expressed from early trophozoite to schizont stages with maximum expression in trophozoite stage. This study provides purification, biophysical characterization and subcellular localization of PfVPS29 in different asexual stages of P. falciparum.
Collapse
|
16
|
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 2014; 5:172. [PMID: 24860555 PMCID: PMC4029002 DOI: 10.3389/fmicb.2014.00172] [Citation(s) in RCA: 1322] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/29/2014] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field.
Collapse
Affiliation(s)
- Germán L Rosano
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas Rosario, Argentina ; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| | - Eduardo A Ceccarelli
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas Rosario, Argentina ; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Argentina
| |
Collapse
|
17
|
Falero A, Marrero K, Trigueros S, Fando R. Characterization of the RstB2 protein, the DNA-binding protein of CTXϕ phage from Vibrio cholerae. Virus Genes 2014; 48:518-27. [PMID: 24643345 DOI: 10.1007/s11262-014-1053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/28/2014] [Indexed: 11/25/2022]
Abstract
The low abundant protein RstB2, encoded in the RS2 region of CTXϕ, is essential for prophage formation. However, the only biochemical activity so far described is the single/double-stranded DNA-binding capacity of that protein. In this paper, a recombinant RstB2 (rRstB2) protein was overexpressed in E. coli with a yield of 58.4 mg l(-1) in shaken cultures, LB broth. The protein, purified to homogeneity, showed an identity with rRstB2 by peptide mass fingerprinting. The apparent molecular weight of the RstB2 native protein suggests that occurs mostly as a monomer in solution. The monomers were able of reacting immediately upon exposure to DNA molecules. After a year of storage at -20 °C, the protein remains biologically active. Bioinformatics analysis of the amino acid sequence of RstB2 predicts the C-end of this protein to be disordered and highly flexible, like in many other single-stranded DNA-binding proteins. When compared with the gVp of M13, conserved amino acids are found at structurally or functionally important relative positions. These results pave the way for additional studies of structure and molecular function of RstB2 for the biology of CTXϕ.
Collapse
Affiliation(s)
- Alina Falero
- National Center for Scientific Research, Ave 25 and 158, Cubanacán, Playa, PO Box 6214, Havana, Cuba,
| | | | | | | |
Collapse
|
18
|
Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 2012; 95:61-75. [PMID: 22622839 DOI: 10.1007/s00253-012-4129-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Phosphate controls the biosynthesis of many classes of secondary metabolites that belong to different biosynthetic groups, indicating that phosphate control is a general mechanism governing secondary metabolism. We refer in this article to the molecular mechanisms of regulation, mediated by the two-component system PhoR-PhoP, of the primary metabolism and the biosynthesis of antibiotics. The two-component PhoR-PhoP system is conserved in all Streptomyces and related actinobacteria sequenced so far, and involves a third component PhoU that modulates the signal transduction cascade. The PhoP DNA-binding sequence is well characterized in Streptomyces coelicolor. It comprises at least two direct repeat units of 11 nt, the first seven of which are highly conserved. Other less conserved direct repeats located adjacent to the core ones can also be bound by PhoP through cooperative protein-protein interactions. The phoR-phoP operon is self-activated and requires phosphorylated PhoP to mediate the full response. About 50 up-regulated PhoP-dependent genes have been identified by comparative transcriptomic studies between the parental S. coelicolor M145 and the ΔphoP mutant strains. The PhoP regulation of several of these genes has been studied in detail using EMSA and DNase I footprinting studies as well as in vivo expression studies with reporter genes and RT-PCR transcriptomic analyses.
Collapse
|
19
|
Bhattacharya M, Das AK. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis. Biochem Biophys Res Commun 2011; 415:17-23. [PMID: 22001925 DOI: 10.1016/j.bbrc.2011.09.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/27/2022]
Abstract
TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has not been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by ∼30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.
Collapse
Affiliation(s)
- Monolekha Bhattacharya
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | |
Collapse
|
20
|
Phosphorylated CpxR restricts production of the RovA global regulator in Yersinia pseudotuberculosis. PLoS One 2011; 6:e23314. [PMID: 21876746 PMCID: PMC3158067 DOI: 10.1371/journal.pone.0023314] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 07/15/2011] [Indexed: 01/06/2023] Open
Abstract
Background RovA is a global transcriptional regulator of gene expression in pathogenic Yersinia. RovA levels are kept in check by a sophisticated layering of distinct transcriptional and post-transcriptional regulatory mechanisms. In the enteropathogen Y. pseudotuberculosis, we have previously reported that the extracytoplasmic stress sensing CpxA-CpxR two-component regulatory system modulates rovA expression. Methodology/Principal Findings In this study, we characterized CpxR phosphorylation (CpxR∼P) in vitro, and determined that phosphorylation was necessary for CpxR to efficiently bind to the PCR-amplified upstream regulatory region of rovA. The precise CpxR∼P binding site was mapped by a nuclease protection assay and directed mutagenesis confirmed that in vivo binding to the rovA promoter inhibits transcription. Reduced RovA production was most pronounced following CpxR∼P accumulation in the Yersinia cytoplasm during chronic Cpx pathway activation and by the indiscriminate phosphodonor action of acetyl phosphate. Conclusions/Significance Cpx pathway activation restricts levels of the RovA global regulator. The regulatory influence of CpxR∼P must therefore extend well beyond periplasmic quality control in the Yersinia envelope, to include genes involved in environmental survival and pathogenicity.
Collapse
|
21
|
Pathak A, Goyal R, Sinha A, Sarkar D. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s). J Biol Chem 2010; 285:34309-18. [PMID: 20814030 DOI: 10.1074/jbc.m110.135822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The PhoP and PhoR proteins from Mycobacterium tuberculosis form a highly specific two-component system that controls expression of genes involved in complex lipid biosynthesis and regulation of unknown virulence determinants. The several functions of PhoP are apportioned between a C-terminal effector domain (PhoPC) and an N-terminal receiver domain (PhoPN), phosphorylation of which regulates activation of the effector domain. Here we show that PhoPN, on its own, demonstrates PhoR-dependent phosphorylation. PhoPC, the truncated variant bearing the DNA binding domain, binds in vitro to the target site with affinity similar to that of the full-length protein. To complement the finding that residues spanning Met(1) to Arg(138) of PhoP constitute the minimal functional PhoPN, we identified Arg(150) as the first residue of the distal PhoPC domain capable of DNA binding on its own, thereby identifying an interdomain linker. However, coupling of two functional domains together in a single polypeptide chain is essential for phosphorylation-coupled DNA binding by PhoP. We discuss consequences of tethering of two domains on DNA binding and demonstrate that linker length and not individual residues of the newly identified linker plays a critical role in regulating interdomain interactions. Together, these results have implications for the molecular mechanism of transmission of conformation change associated with phosphorylation of PhoP that results in the altered DNA recognition by the C-terminal domain.
Collapse
Affiliation(s)
- Anuj Pathak
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
22
|
Narmandakh A, Bearne SL. Purification of recombinant mandelate racemase: Improved catalytic activity. Protein Expr Purif 2010; 69:39-46. [DOI: 10.1016/j.pep.2009.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
23
|
Harari O, del Val C, Romero-Zaliz R, Shin D, Huang H, Groisman EA, Zwir I. Identifying promoter features of co-regulated genes with similar network motifs. BMC Bioinformatics 2009; 10 Suppl 4:S1. [PMID: 19426448 PMCID: PMC2681069 DOI: 10.1186/1471-2105-10-s4-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background A large amount of computational and experimental work has been devoted to uncovering network motifs in gene regulatory networks. The leading hypothesis is that evolutionary processes independently selected recurrent architectural relationships among regulators and target genes (motifs) to produce characteristic expression patterns of its members. However, even with the same architecture, the genes may still be differentially expressed. Therefore, to define fully the expression of a group of genes, the strength of the connections in a network motif must be specified, and the cis-promoter features that participate in the regulation must be determined. Results We have developed a model-based approach to analyze proteobacterial genomes for promoter features that is specifically designed to account for the variability in sequence, location and topology intrinsic to differential gene expression. We provide methods for annotating regulatory regions by detecting their subjacent cis-features. This includes identifying binding sites for a transcriptional regulator, distinguishing between activation and repression sites, direct and reverse orientation, and among sequences that weakly reflect a particular pattern; binding sites for the RNA polymerase, characterizing different classes, and locations relative to the transcription factor binding sites; the presence of riboswitches in the 5'UTR, and for other transcription factors. We applied our approach to characterize network motifs controlled by the PhoP/PhoQ regulatory system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identified key features that enable the PhoP protein to control its target genes, and distinct features may produce different expression patterns even within the same network motif. Conclusion Global transcriptional regulators control multiple promoters by a variety of network motifs. This is clearly the case for the regulatory protein PhoP. In this work, we studied this regulatory protein and demonstrated that understanding gene expression does not only require identifying a set of connexions or network motif, but also the cis-acting elements participating in each of these connexions.
Collapse
Affiliation(s)
- Oscar Harari
- Department of Computer Science and Artificial Intelligence, University of Granada, c/ Daniel Saucedo Aranda, s/n 18071, Granada, Spain.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nichols ER, Craig DB. Single Molecule Assays Reveal Differences Between In Vitro and In Vivo Synthesized β-Galactosidase. Protein J 2008; 27:376-83. [DOI: 10.1007/s10930-008-9147-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Déméné H, Ducat T, De Guillen K, Birck C, Aymerich S, Kochoyan M, Declerck N. Structural mechanism of signal transduction between the RNA-binding domain and the phosphotransferase system regulation domain of the LicT antiterminator. J Biol Chem 2008; 283:30838-49. [PMID: 18682383 DOI: 10.1074/jbc.m805955200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LicT belongs to a family of bacterial transcriptional antiterminators, which control the expression of sugar-metabolizing operons in response to phosphorylations by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Previous studies of LicT have revealed the structural basis of RNA recognition by the dimeric N-terminal co-antiterminator (CAT) domain on the one hand and the conformational changes undergone by the duplicated regulation domain (PRD1 and PRD2) upon activation on the other hand. To investigate the mechanism of signal transduction between the effector and regulation modules, we have undertaken the characterization of a fragment, including the CAT and PRD1 domains and the linker in-between. Comparative experiments, including RNA binding assays, NMR spectroscopy, limited proteolysis, analytical ultracentrifugation, and circular dichroism, were conducted on native CAT-PRD1 and on a constitutively active CAT-PRD1 mutant carrying a D99N substitution in PRD1. We show that in the native state, CAT-PRD1 behaves as a rather unstable RNA-binding deficient dimer, in which the CAT dimer interface is significantly altered and the linker region is folded as a trypsin-resistant helix. In the activated mutant form, the CAT-PRD1 linker becomes protease-sensitive, and the helix content decreases, and the CAT module adopts the same dimeric conformation as in isolated CAT, thereby restoring the affinity for RNA. From these results, we propose that a helix-to-coil transition in the linker acts as the structural relay triggered by the regulatory domain for remodeling the effector dimer interface. In essence, the structural mechanism modulating the LicT RNA antitermination activity is thus similar to that controlling the DNA binding activity of dimeric transcriptional regulators.
Collapse
Affiliation(s)
- Hélène Déméné
- CNRS UMR 5048, Centre de Biocimie Structurale, Montpellier Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 2008; 287:22-33. [PMID: 18673393 DOI: 10.1111/j.1574-6968.2008.01287.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptococcal pathogens contribute to a wide variety of human and livestock diseases. The routine use of antibiotics to battle these pathogens has produced a new class of multidrug-resistant streptococci. Thus, there is a need for new antimicrobials. Bacteriophage endolysins (peptidoglycan hydrolases) comprise one group of new antimicrobials that are reportedly refractory to resistance development. The LambdaSa2 prophage endolysin gene was recently isolated from a Group B streptococcal genome, expressed on an Escherichia coli plasmid, and shown by homology screening and biochemical analysis to harbor an amidase-5 (endopeptidase) domain, an amidase-4 (glycosidase) domain, and two Cpl-7 cell wall-binding domains. In this study, turbidity reduction and plate lysis assays indicate that this hydrolase shows strong lytic activity toward Streptococcus pyogenes, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus equi, GES, and GGS. Deletion analysis indicates that the N-terminal endopeptidase domain with both Cpl-7 domains can lyse with a higher specific activity than the full-length protein (against some strains). This dual Cpl-7 domain truncated version also shows weak lytic activity against methicillin-resistant Staphylococcus aureus (MRSA) and the coagulase negative staphylococci, Staphylococcus xylosus. The truncated constructs harboring the glycosidase domain are virtually inactive, showing only minimal activity on plate lysis assays.
Collapse
Affiliation(s)
- David M Donovan
- Animal Biosciences and Biotechnology Lab, ANRI, ARS, USDA, Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|
27
|
Kong W, Weatherspoon N, Shi Y. Molecular mechanism for establishment of signal-dependent regulation in the PhoP/PhoQ system. J Biol Chem 2008; 283:16612-21. [PMID: 18434315 DOI: 10.1074/jbc.m800547200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we demonstrate that H-NS is essential for establishing the Mg(2+)-responsive transcriptional regulation of the PhoP regulon in Salmonella. Deletion of this regulatory gene abolished the transcriptional repression of PhoP-activated genes when bacteria were grown in high environmental Mg(2+), thus stimulating expression of phoP and other PhoP regulon genes. In the absence of H-NS, transcriptional activation was PhoP-dependent for those genes only activated by PhoP, but was PhoP-independent for those genes activated by both PhoP and SlyA. The H-NS protein footprints the phoP promoter in a sequence located upstream of the PhoP box; mutation of this cis-acting factor abolished transcriptional repression of the phoP gene equivalent to the phenotype exhibited in the hns mutant. Further results showed that H-NS gel shifts other PhoP regulon promoters, indicating that a PhoP-activated gene would be transcriptionally repressed via direct H-NS binding and inhibition of its activator PhoP. Furthermore, H-NS footprints a newly identified SlyA box and the reverse PhoP box in the pagC promoter, suggesting that both SlyA and PhoP compete with this regulatory protein. Therefore, H-NS should pair with SlyA and PhoP to establish a forward regulatory loop to regulate expression of pagC, and perhaps other PhoP- and SlyA-dependent genes.
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute and The School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | |
Collapse
|
28
|
Tsukahara K, Ogura M. Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol 2008; 8:8. [PMID: 18197985 PMCID: PMC2245950 DOI: 10.1186/1471-2180-8-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/15/2008] [Indexed: 11/11/2022] Open
Abstract
Background The response regulator DegU and its cognate histidine kinase DegS constitute a two-component system in the Gram-positive soil bacterium Bacillus subtilis. Unphosphorylated and phosphorylated forms of DegU are known to activate target gene transcription in B. subtilis. Although phosphorylated DegU (DegU-P) regulates more than one hundred and twenty genes, the targets of unphosphorylated DegU are unknown, except for comK. Results We found that the fla/che (flagella and chemotaxis) operon is positively regulated by unphosphorylated DegU. The effect was most prominent in a strain bearing the functional swrAA gene, a positive regulator of fla/che. Unphosphorylated DegU bound to two regions in the fla/che regulatory region containing an inverted repeat-like sequence that resembles the inverted repeat (IR) in the comK promoter. Mutational analysis revealed that positive regulation of fla/che by SwrAA requires DegU-binding. An analysis of the DegU-P-regulated gene sacB (levansucrase gene) by footprint and mutational analyses revealed that DegU-P bound to a direct repeat (DR) of the DegU-recognition motifs, which has been shown to be functional in vivo, while unphosphorylated DegU did not. These results strongly suggest that the arrangement of the DegU-binding motifs determines whether unphosphorylated DegU or DegU-P binds to the sacB promoter. The hypothesis was confirmed by observing degS-independent expression when the DR in the sacB-lacZ fusion was changed to an IR, suggesting that unphosphorylated DegU regulates the sacB promoter through the newly created IR. This was confirmed by binding of unphosphorylated DegU to the IR in the sacB promoter. Conclusion This study demonstrated that DegU positively regulates flgB and sacB through its binding to the promoter regions. We demonstrated that DegU-P prefers binding to DR but not to IR in the sacB promoter.
Collapse
Affiliation(s)
- Kensuke Tsukahara
- Institute of Oceanic Research and Development, Tokai University, 3-20-1 Orido-Shimizu, Shizuoka 424-8610, Japan.
| | | |
Collapse
|
29
|
PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J Bacteriol 2007; 190:1317-28. [PMID: 18065544 DOI: 10.1128/jb.01074-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis PhoP regulates the expression of unknown virulence determinants and the biosynthesis of complex lipids. PhoP, like other members of the OmpR family, comprises a phosphorylation domain at the amino-terminal half and a DNA-binding domain at the carboxy-terminal half of the protein. To explore structural effect of protein phosphorylation and to examine effect of phosphorylation on DNA binding, purified PhoP was phosphorylated by acetyl phosphate in a reaction that was dependent on Mg2+ and Asp-71. Protein phosphorylation was not required for DNA binding; however, phosphorylation enhanced in vitro DNA binding through protein-protein interaction(s). Evidence is presented here that the protein-protein interface is different in the unphosphorylated and phosphorylated forms of PhoP and that specific DNA binding plays a critical role in changing the nature of the protein-protein interface. We show that phosphorylation switches the transactivation domain to a different conformation, which specifies additional protein-protein contacts between PhoP protomers bound to adjacent cognate sites. Together, our observations raise the possibility that PhoP, in the unphosphorylated and phosphorylated forms, may be capable of adopting different orientations as it binds to a vast array of genes to activate or repress transcription.
Collapse
|
30
|
Wang S, Engohang-Ndong J, Smith I. Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochemistry 2007; 46:14751-61. [PMID: 18052041 DOI: 10.1021/bi700970a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The PhoP-PhoR two-component signaling system from Mycobacterium tuberculosis is essential for the virulence of the tubercle bacillus. The response regulator, PhoP, regulates expression of over 110 genes. In order to elucidate the regulatory mechanism of PhoP, we determined the crystal structure of its DNA-binding domain (PhoPC). PhoPC exhibits a typical fold of the winged helix-turn-helix subfamily of response regulators. The structure starts with a four-stranded antiparallel beta-sheet, followed by a three-helical bundle of alpha-helices, and then a C-terminal beta-hairpin, which together with a short beta-strand between the first and second helices forms a three-stranded antiparallel beta-sheet. Structural elements are packed through a hydrophobic core, with the first helix providing a scaffold for the rest of the domain to pack. The second and third helices and the long, flexible loop between them form the helix-turn-helix motif, with the third helix being the recognition helix. The C-terminal beta-hairpin turn forms the wing motif. The molecular surfaces around the recognition helix and the wing residues show strong positive electrostatic potential, consistent with their roles in DNA binding and nucleotide sequence recognition. The crystal packing of PhoPC gives a hexamer ring, with neighboring molecules interacting in a head-to-tail fashion. This packing interface suggests that PhoPC could bind DNA in a tandem association. However, this mode of DNA binding is likely to be nonspecific because the recognition helix is partially blocked and would be prevented from inserting into the major groove of DNA. Detailed structural analysis and implications with respect to DNA binding are discussed.
Collapse
Affiliation(s)
- Shuishu Wang
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
31
|
Bachhawat P, Stock AM. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 2007; 189:5987-95. [PMID: 17545283 PMCID: PMC1952025 DOI: 10.1128/jb.00049-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator PhoP is part of the PhoQ/PhoP two-component system involved in responses to depletion of extracellular Mg(2+). Here, we report the crystal structures of the receiver domain of Escherichia coli PhoP determined in the absence and presence of the phosphoryl analog beryllofluoride. In the presence of beryllofluoride, the active receiver domain forms a twofold symmetric dimer similar to that seen in structures of other regulatory domains from the OmpR/PhoB family, providing further evidence that members of this family utilize a common mode of dimerization in the active state. In the absence of activating agents, the PhoP receiver domain crystallizes with a similar structure, consistent with the previous observation that high concentrations can promote an active state of PhoP independent of phosphorylation.
Collapse
Affiliation(s)
- Priti Bachhawat
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | |
Collapse
|
32
|
Fang TY, Tseng WC, Guo MS, Shih TY, Hung XG. Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7105-12. [PMID: 16968069 DOI: 10.1021/jf061318z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The maltooligosyltrehalose trehalohydrolase (MTHase) mainly cleaves the alpha-1,4-glucosidic linkage next to the alpha-1,1-linked terminal disaccharide of maltooligosyltrehalose to produce trehalose and the maltooligosaccharide with lower molecular mass. In this study, the treZ gene encoding MTHase was PCR-cloned from Sulfolobus solfataricus ATCC 35092 and then expressed in Escherichia coli. A high yield of the active wild-type MTHase, 13300 units/g of wet cells, was obtained in the absence of IPTG induction. Wild-type MTHase was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified wild-type MTHase showed an apparent optimal pH of 5 and an optimal temperature at 85 degrees C. The enzyme was stable at pH values ranging from 3.5 to 11, and the activity was fully retained after a 2-h incubation at 45-85 degrees C. The k(cat) values of the enzyme for hydrolysis of maltooligosyltrehaloses with degree of polymerization (DP) 4-7 were 193, 1030, 1190, and 1230 s(-1), respectively, whereas the k(cat) values for glucose formation during hydrolysis of DP 4-7 maltooligosaccharides were 5.49, 17.7, 18.2, and 6.01 s(-1), respectively. The K(M) values of the enzyme for hydrolysis of DP 4-7 maltooligosyltrehaloses and those for maltooligosaccharides are similar at the same corresponding DPs. These results suggest that this MTHase could be used to produce trehalose at high temperatures.
Collapse
Affiliation(s)
- Tsuei-Yun Fang
- Department of Food Science, National Taiwan Ocean University, Keelung,
| | | | | | | | | |
Collapse
|
33
|
Dortay H, Mehnert N, Bürkle L, Schmülling T, Heyl A. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 2006; 273:4631-44. [PMID: 16965536 DOI: 10.1111/j.1742-4658.2006.05467.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.
Collapse
Affiliation(s)
- Hakan Dortay
- Institute of Biology/Applied Genetics, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
34
|
Jasiecki J, Wegrzyn G. Phosphorylation of Escherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiol Lett 2006; 261:118-22. [PMID: 16842368 DOI: 10.1111/j.1574-6968.2006.00340.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Escherichia coli, RNA polyadenylation is catalyzed mainly by poly(A) polymerase I (PAP I). Here we demonstrate that a PAP I variant with a C-terminal His tag (PAP I-His) can be phosphorylated both in vivo and in an artificial in vitro system. The in vivo phosphorylation of PAP I-His impairs activity of this enzyme. Previous studies, performed by others, indicated that phosphorylation of His-tagged proteins usually reflects such a modification of their native counterparts in bacterial cells. Therefore, our results suggest that phosphorylation and dephosphorylation of PAP I may be important regulatory processes in the control of activity of this enzyme.
Collapse
Affiliation(s)
- Jacek Jasiecki
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
35
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|